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Abstract
This paper deals with the design and modelling of a novel actuator assembly,
in which two THUNDER actuators are put in a clamshell configuration. A
simulation model is proposed to describe the mechanical and electrical
properties of the actuator assembly on the basis of parameters that can be
measured by experiments. In order to validate the model, a system
comprising a flexible cantilever beam connected to an actuator is discussed
numerically and experimentally. Results show that the novel actuator
configuration and the model developed in this paper work very well in the
low frequency range. Meanwhile, it is observed that the dynamics of the
actuator has an obvious effect on the response of the whole system near the
natural frequencies of the actuator itself. Considering the fact that active
isolation mainly targets the low frequency range, the established model can
serve the purpose and be easily integrated into any closed-loop control
simulations.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Actuators provide control actions in an active control system.
Due to the crucial role they play, there has been a persistent
interest in exploring high performance actuators suitable
for active control applications. Among a large number
of candidates, electromagnetic actuators, hydraulic systems,
piezoelectric elements, magnetostrictive actuators and shape
memory alloy (SMA) have found applications in noise and
vibration control to different extents [1, 2]. Generally
speaking, electrodynamic actuators are normally large and
heavy for the force they can generate. Hydraulic actuators
can provide very high forces but are heavy and limited to low
frequencies. Conventional piezoelectric and magnetostrictive
actuators can only provide very small displacement. Although
SMA actuators are able to generate high displacement, their
dynamic response is however limited to a rather low frequency
range. Typical vibration control requires an actuator capable of

1 Author to whom any correspondence should be addressed.

generating sufficient driving force while providing appreciable
deformation. The latter is of particular importance in vibration
isolation at low frequencies. Due to the aforementioned
drawbacks, the exploration for large displacement and force
actuators has attracted the attention of many researchers
[3–9]. Niezrecki et al [3] reviewed some novel concepts used
in piezoelectric actuation design to increase the displacement
generated by piezoelectric material. The main architectures
can generally be categorized into three types: externally
leveraged, internally leveraged, and frequency leveraged.
Moonie [4], whose name comes from the moon-shaped spaces
between the metal end caps and the piezoelectric ceramic,
is a typical example of an externally leveraged actuator.
Typical examples of internally leveraged actuators include C-
blocks [5], Rainbow [6] and THUNDER [7] actuators.

The development of THUNDER actuators (thin layer
composite unimorph ferroelectric driver) represents a typical
effort made towards this direction. This actuator uses an ultra-
high performance hot melt adhesive, LaRCTM-SI, to bond
metal foils to PZT ceramic at elevated temperature to create
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Figure 1. A THUNDER actuator: (a) photo of the actuator;
(b) typical deformation under applied voltage.

a pre-stressed condition when cooled to room temperature.
The differences in the thermal expansion coefficients of the
various bonded layers make up the curved composite laminate
as shown in figure 1(a). Thanks to this particular fabrication
process, the actuator deforms out of plane as illustrated
in figure 1(b), and may generate much larger displacement
than conventional piezoelectric actuators with reasonably high
loading capacity. In addition to its active property, the curved
stainless steel sheet used as the host of the piezoceramics
provides a natural flexibility. Therefore, this kind of actuator
may be an ideal candidate for the design of an active vibration
isolation system, in which both active and passive isolations
are needed. This avenue has been explored by two recent
papers (Malowicki and Leo [10] and Marouze and Cheng [11]).
In the first paper, a THUNDER was characterized and used
for active vibration isolation of automotive seats. In the
second one, practical issues related to the use of a THUNDER
for isolation were discussed. From a different perspective,
Jayachandran et al [12] used THUNDER actuators as acoustic
control sources in the control of low frequency harmonic
interior noise.

The aforementioned work showed very promising features
of the THUNDER for various active control application. It
was also shown that a proper installation of a THUNDER
plays a key role in fully exploring its high displacement and
loading feature. However, the actual implementation of a
THUNDER into a mechanical system is far from simple. The
ideal working condition for a THUNDER is to have both ends
free, since the vertical displacement at the midpoint of the apex
is generated by a change in the radius of curvature. However,
practical consideration requires at least one fixed end, which
results in a lower displacement in the vertical direction and an
undesirable horizontal motion. The latter makes it difficult to
physically attach the actuator to mechanical components. It
will actually limit the use of THUNDER actuators; therefore
a more practical design is essentially required. Another very
important issue is the characterization and the modelling of
the actuator, which is a crucial element to be integrated in
the controller design process. As far as the curved actuators

are concerned, various approaches can be considered, e.g. the
Thévenin equivalent model [8, 11], the continuum model [13]
and the finite element model [14]. The Thévenin equivalent
model is simple and effective, but it is not easy to use in
simulations because there is no formulation to express the
block force and free displacement produced by the actuators.
The deformation and force characteristics of a THUNDER can
be described through the classical plate and shell continuum
theory and finite element method. However, these approaches
are complicated and it is difficult to describe the actuator
assembly presented in this paper and to be integrated later in
simulating the whole control system. It is therefore neces-
sary to develop simple, yet reliable models, describing the
electromechanical properties of the actuator.

This paper presents an attempt to tackle these problems.
First, an actuator assembly comprising two THUNDERS in
a clamshell configuration is designed. The new actuator
device conserves the appealing features of the THUNDER and
improves its working condition by providing two free edges.
A simple model is developed to describe the mechanical and
electrical properties of the actuator, on the basis of parameters
that can be readily measured experimentally. In order to assess
the model, a cantilevered beam connected by one actuator to the
base structure is studied both numerically and experimentally.
Results show a good agreement between the numerical results
and experimental data. The established model can therefore
be further used for the design of an active isolation system of
other more complex structures.

2. Description of the novel actuator configuration

The THUNDER element used in the actuator assembly
is the model TH-8R, which has a physical dimension of
63.5 mm × 12.70 mm × 0.483 mm and can generate a
maximum displacement of about 2 mm without any loading.
The configuration of the new actuator design is shown in
figure 2, in which two THUNDER actuators are mounted in
a clamshell configuration. Each end of the THUNDER is
connected to a V-shaped clip made of flexible stainless steel
using small fibre plates as shown in figure 2(b). Two small
plastic blocks, attached at the midpoints of the THUNDER
apex, are used to connect with the structure for displacement
and force transmission. The dimensions of the new actuator
are about 12 cm in length and 4 cm height, weighing 15.5 g.

The experiments show that the new actuator assembly
can work very well. When an external voltage or loads
are applied to the actuator, the two THUNDERs drive the
actuator to move back and forth along the axis vertical to the
THUNDER apex at the same time. Due to its symmetrical
arrangement, both midpoints and ends of the actuator can
move freely under the activating voltages or external forces.
The passive property of the actuator is not only dependent on
the material and structure of the THUNDER, but also on the
properties of the steel sheets used in the actuator assembly.
Besides the advantages above, the actuator assembly can be
inserted and mounted very conveniently between the vibrating
structure and the supporting structure like a spring-type
element, so overcoming the existing drawbacks in the actual
implementation of THUNDER actuators into a vibration or
sound isolation system.
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Figure 2. The proposed actuator assembly: (a) a photograph of the
new design; (b) the components of the new design.

3. Characterization of actuators and the
measurement of mechanical and electric parameters

3.1. Electromechanical model of the actuator

The actuator assembly presented above exhibits both
mechanical and electrical properties at the same time, like
other piezoelectric actuators. A complete description of the
relationship between the mechanical and electrical parts of
the actuator is therefore required. The constitutive equation
of piezoelectric material [15] provides a solid basis to
establish such a model. Assuming linearity of elasticity and
piezoelectricity, the relationship between the mechanical and
electrical properties of the new actuator can be expressed by

[
f
I

]
=

[
K e1

e2 �
][
�x
V

]
(1)

where f , x , are, respectively, the force and the displacement
along the vertical direction at the apex of the arc as shown in
figure 3; I and V are the electrical current and voltage. K0 =

f
�x |V =0 is the dynamic stiffness (force per unit displacement)
of the actuator with electric circuit open, and K = K0(1 +η j ),
with η being the loss factor. e1 = f

V |x=0 is the force per
unit voltage when the actuator is blocked. e2 = I

�x |V=0 is
the current per unit displacement with electric circuit open.
� = I

V |x=0 is the electric admittance (current per unit voltage)
when the isolator is blocked.

x
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I

V
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V

Figure 3. A model of the new actuator.

All four parameters are interrelated. If there is no external
load applied to an isolator, i.e. f = 0, the free displacement xf ,
electric voltage and current will be obtained from equation (1):

V = − K

e1
xf or

xf

V
= −e1

K

I =
[

e2 − K�
e1

]
xf .

(2)

If the actuator is blocked, i.e. x = 0, the blocked force fb,
electric voltage and current from equation (1) will be

V = − fb

e1
or

fb

V
= −e1

I = �V or
I

V
= �.

(3)

It can be seen that all four parameters in equation (1) can be
obtained if the following three groups of parameters can be
obtained: xf

V , the free displacement per unit voltage in the
absence of any external load. fb

V , the blocked force per unit
voltage as the actuator is blocked with zero displacement; and
I
V , the electric admittance as the actuator is blocked. It is
pertinent to note that the first two groups of parameters are
frequency dependent, whilst the last one is a constant provided
by the manufacturer. The loss factor η can be obtained by a
measurement of the time taken for the actuator vibration to
decay by 60 dB [16] after cessation of an excitation force,

η = 4.4π

T60ω
(4)

where T60 is the reverberation time in seconds and ω is the
frequency of excitation.

3.2. Measurements of mechanical and electrical properties

Various tests were carried out to obtain the parameters used
in the aforementioned model. The free displacement xf was
measured by applying a sinusoidal voltage to the actuator in
the absence of any external load. The test set-up is shown
in figure 4, in which one side of the actuator was attached to
a rigid surface. The input voltage signal was amplified by a
Piezo Driver/Amplifier (TReK PZD 700) under 1 kHz. A laser
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Figure 4. The experimental set-up to measure the free
displacement.

vibrometer (Polytech OFV-512/3001) was used to measure
the free response of the actuator at the midpoint of apex.
Figure 5 shows the measured peak-to-peak values of the free
displacements with sinusoidal excitation voltage at different
frequencies of 10, 50, 60, 100 and 200 Hz. It can be seen
that the relation between free displacements and amplitude of
the actuating voltage at most testing frequencies (e.g. 10, 60,
100 and 200 Hz) can be roughly considered to be linear. An
exception occurs for 50 Hz, where the actuator experienced
a maximum displacement with more apparent nonlinearity
appearing. The plausible explanation is that the actuator
assembly is a structure itself and may undergo resonances
around 50 Hz. This is confirmed by figure 6, which shows
the narrow band frequency response of the free displacement
per unit voltage of the actuator from 0 to 900 Hz. It can be seen
from figure 6 that the structural characteristics of the actuator
itself have significant effect on the free displacement per unit
voltage. For example, a dominant peak can be observed at
51 Hz, which corresponds to the first natural frequency of
the actuator assembly itself. Though less pronounced, higher-
order resonances are also noticeable at 150, 224, 278, 354 and
490 Hz. In the low frequency range, where active control
is envisaged, the behaviour of the actuator can be roughly
approximated by a one degree-of-freedom system.

The blocked force fb was then measured as the actuator
was constrained to prevent any displacement as shown in
figure 7. A force transducer (B&K 8200), mounted between
the actuator and a rigid beam which blocked the actuator to
move vertically, was used to measure the force produced by
the actuator. Figure 8 shows the test results of the blocked
force versus the exciting voltage at different frequencies: 10,
30, 60, 100 and 200 Hz. It is demonstrated that there exists
an approximate linear relation between the blocked force and
exciting voltage for the frequencies of 10, 30, 60 and 100 Hz,
but at 200 Hz, the blocked force significantly increased with the
increase of the exciting voltage. This reveals that the blocked
force is also frequency dependent, like the free displacement.
This is confirmed by figure 9, which shows the test results of
the blocked force per unit voltage with exciting frequencies
within 0–900 Hz. This illustrates that the blocked force per
unit voltage undergoes strong variations with the actuating

Figure 5. Free displacements versus exciting voltage at different
excitation frequencies: 10 Hz - - - - ∗ - - - -; 50 Hz - - - - + - - - -;
60 Hz ——◦——; 100 Hz ——�——; and 200 Hz ——.

Figure 6. Free displacements per unit volt versus exciting
frequency.

frequency above 200 Hz. The maximum blocked force per
unit voltage occurs around the frequency of 350 Hz (around
the fifth natural frequency of the actuator itself). It is noticed
that the maximum blocked forces per unit voltage does not
take place around the first natural frequency of the actuator
by comparing figure 9 with figure 6, although there is a
much larger free displacement at 51 Hz. This means that
the structural characteristics of the actuator have a significant
effect on the blocked force only when the exciting frequencies
are higher (over 200 Hz).

The frequency-dependent characteristics of both the
blocked force fb and the free displacement xf are considered in
numerical simulations presented hereafter. The blocked force
per unit voltage is considered to be approximately constant,
at about 0.02 N V−1 for lower frequencies (0–180 Hz); it
increases linearly from 180 to 320 Hz and decreases from 320
to 450 Hz, before becoming constant again at about 0.1 N V−1

for frequencies higher than 500 Hz. The dynamic stiffness
of the actuator can be obtained from equation (2) using free
displacement and blocked force data. Typical values of the
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Figure 7. The experimental set-up to measure the blocked force.

Figure 8. Blocked force versus exciting voltage at different
excitation frequencies: 10 Hz ——◦——; 30 Hz ——; 60 Hz
- - - -; 100 Hz · · · · · ·; and 200 Hz —— + ——.

Figure 9. Blocked force per unit voltage versus exciting frequency.

dynamic stiffness are around 103 N m−1 for lower frequencies
(0–180 Hz) and about 105 N m−1 for the higher frequency
range over 600 Hz, while the stiffness without exciting voltage
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Figure 10. A cantilever beam system with an actuator: (a) the
system with a new actuator; (b) a model of the coupled system.

(pure passive case) is 5 × 102 N m−1. The loss factors of the
actuator were measured to be about 0.07.

4. The governing motion equations of the coupled
system

In order to verify the practicality of the new actuator and the
model described in sections 2 and 3, a system including one
cantilever beam connected by one actuator to the base structure
as shown in figure 10(a) is numerically and experimentally
investigated in this section. When there is an external
excitation force applied to the beam, the vibration can be
controlled by the active effect of the actuator when applying a
control voltage to it. In order to obtain more accurate numerical
results, the mass of the actuator itself m0 is included in the
simplified model, as shown in figure 10(b). Based on classical
beam theory, the governing motion equations of the system can
be expressed

E J
∂4 y

∂x4
+ρh

∂2 y

∂t2
= Fδ(x − xf)− f δ(x − x1)−m0 ÿδ(x − x1)

(5)

f = K y + fa = K y + eV (6)

where y is the transverse displacement of the beam and E, ρ, J
are the elastic modulus, mass density and the inertia moment
of the beam, respectively. δ(x − x1) is the Dirac delta
function. F = F0 sin(ωt) is the external harmonic exciting
force applied to the beam. f represents the force generated by
the actuator and applied to the beam at the connecting point.
This force can be divided into two parts: mechanical force and
electrical force. K is the dynamic stiffness of the actuator, and
K = K0(1 + η j ) when the actuator’s damping is considered,
where η is the loss factor. e, V are the blocked force per unit
voltage of the actuator and the control voltage applied to the
actuator, respectively.

The transverse displacements of the beam subjected to a
harmonic exciting force or voltage can be expressed by the
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well known eigenfunction expansion theorem [16].

y(x, t) =
M∑

m=1

Amψm(x) sin(ωt) = [ψ(x)][A] sin(ωt)

[ψ(x)] = [ψ1(x), ψ2(x) · · ·ψM(x)],

[A] = [A1, A2 · · · AM ]T

(7)

where ω is the excitation frequency, and ψm(x) are the
eigenfunctions of the beam which must satisfy all geometric
boundary conditions at the edges x = 0, x = L . For a
cantilever beam, the eigenfunctions are as follows:

ψm(x) = cos(qm x) − cosh(qm x) + rm[sin(qm x)− sinh(qm x)]

q1 = 1.875

a
, q2 = 4.214

a
,

qm = (m − 0.5)π

a
, m = 3, 4 . . .

rm = sin(qma)− sinh(qma)

cos(qma) + cosh(qma)
.

(8)

These characteristic functions used here have the following
orthogonal properties:∫ L

0
ρSψm(x)ψn(x) dx =

{
0 if m �= n

	m if m = n
(9)

where S is the cross-sectional area of the beam. The natural
frequencies of cantilever beam can be obtained by

ωm = (qm L)2

√
E J

ρSL4
. (10)

Substituting equations (7) and (6) into (5) and multiplying both
sides byψm(x) respectively, then integrating over the length of
whole beam on both sides and using the orthogonal properties,
equation (5) becomes

	m[ω2
m(1 + jηm)− ω2]Am =

∫ L

0
[F0δ(x − xf)

− f δ(x − x1) + m0ω
2yδ(x − x1)]ψm(x) dx

= F0ψm(xf)− f (x1)ψm(x1) + m0ω
2y(x1)ψm(x1)

= F0ψm(xf) + [m0ω
2 − K ]y(x1)ψm(x1)− eVψm(x1)

= F0ψm(xf) + [m0ω
2 − K ][ψ(x1)][A]ψm(x1)− eVψm(x1)

(11)

which can be expressed in matrix form as

[M][A] = F0[ψ(xf)]
T + [m0ω

2 − K ]

× [ψ(x1)]T[ψ(x1)][A] − eV [ψ(x1)]T (12)

where

[M] =



	1[ω2

1(1 + jη1)− ω2] 0
0 	2[ω2

2(1 + jη2)− ω2]
0 0
...

...

0 0
· · · · · · 0
· · · · · · 0
· · · · · · 0
· · · · · · 0
· · · · · · 	m[ω2

m(1 + jηm)− ω2]


 .

Rearranging equation (12) yields

{[M] − [m0ω
2 − K ][ψ(x1)]

T[ψ(x1)]}[A]

= F0[ψ(xf )]
T − eV [ψ(x1)]

T. (13)

Having obtained the unknowns of [A] from equation (13), the
responses of the system can be obtained from equation (7).

By neglecting the excitation force, electrical voltage and
loss factors, the natural frequencies of the coupled system
can be calculated by solving the eigenvalue problem of the
following coefficient matrix:

Det|[M] − [m0ω
2 − K ][ψ(x1)]T[ψ(x1)]| = 0. (14)

The purpose of the active control being to minimize the
resulting flexural vibration level in the beam, the following
cost function is adopted [16]:

J =
N∑

n=1

|yn|2 (15)

where yn is the displacement of nth point on the beam. The
optimal control voltage can be determined by minimizing the
cost function.

5. Theoretical and experimental results and
discussions

The cantilever beam shown in figure 10 is made of aluminium
with density ρ = 2700 kg m−3, elasticity modulus E =
7.2 × 1010 N m−2, and Poisson’s ratio ν = 0.3. The beam’s
dimensions are length L = 0.25 m, thickness h = 2 mm and
width b = 40 mm. The modal loss factors of the beams are
set to be 0.06 for lower modal frequencies and 0.01 for higher
modal frequencies. An actuator is connected to the beam on
the base structure at x1 = 22 cm. A vertical exciting force is
applied at the middle of the beam xf = 12.5 cm. The mass
of the actuator itself is m0 = 15.5 g. The natural frequencies
of the beam are calculated using equation (10). The first five
natural frequencies of the beam itself are 26.7, 134.8, 468.3,
917.9 and 1517.4 Hz. When the mass of the actuator is omitted,
the first five natural frequencies of the coupled system obtained
by equation (14) are 36.9, 135.1, 468.3, 917.9 and 1517.4 Hz.
When the mass of the actuator is considered, the first five
natural frequencies of coupled system are 27.7, 132.3, 467.3,
902.5 and 1418.7 Hz. It can be seen that the actuator has a
significant influence only on the first modal frequency of the
beam if the mass of the actuator is not considered. However,
there is an obvious effect on the natural frequencies of the
beam, especially for higher modal frequencies, if the mass of
the actuator is considered. The calculated results show that the
numerical values are accurate enough if the numbers of beam
modes are adopted to be m = 12.

Experimental tests were carried out using the test set-
up illustrated in figure 11. The dimensions and material
parameters of the aluminium cantilever beam are the same
as in the numerical model shown in figure 10. One end
of the beam was clamped on a steel frame, and an actuator
was used to connect the beam to the test table. A shaker
(B&K Mini Shaker 4810) exerted a driving force on the
beam, and the value of the force was measured by a force
transducer (B&K 8200). The signal to drive the actuator was
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Figure 11. The set-up for passive and active control of a coupled
beam.

Figure 12. Comparison between the experimental and numerical
results of accelerations at the point x = 25 cm on the beam (without
actuator) excited by a random excitation force at the middle of the
beam (xf = 12.5 cm): —— numerical results; · · · · · · experimental
results.

amplified by one Piezo Driver/Amplifier (TReK PZD 700).
The responses of acceleration or displacement were measured
using an accelerometer and a multi-channel signal analyser
(B&K type 3550).

First, a single beam without actuator was tested in order
to verify the equations and programs. Figure 12 shows the
experimental and numerical frequency spectrum responses of
vertical acceleration of the beam at the end point (x = 25 cm)
under random exciting force applied at the middle of the beam
(xf = 12.5 cm). Numerical simulations were conducted
by letting the stiffness and mass of the actuator be zero in
the equations from (11) to (14). It can be seen that the
numerical results agree well with experimental results. The
series truncation using 12 terms seems to adequately ensure a
convergence of the simulation in the whole frequency range
considered. This comparison validated the modelling part
related to the beam.

Figure 13 shows a comparison between the experimental
result and numerical result when considering the passive effect
of the actuator only. In this comparison, no external voltage is

Figure 13. Comparison between experimental and numerical results
of the beam excited by a random force without an external control
voltage (pure passive case): —— numerical results; · · · · · ·
experimental results.

provided to the actuator. The accelerations of the end point
on the beam (x = 25 cm) are plotted, when the beam is
excited by a random excitation force at the middle of the beam
(xf = 12.5 cm). It can be observed that the experimental and
numerical results of the coupled system match very well in
the lower frequency range (below 200 Hz). It also displays
clearly that the structural characteristics of the actuator have
obvious effects on the responses around the natural frequencies
of the actuator itself, especially for higher modal frequencies,
such as around 224, 278 and 354 Hz. Since the mass
of the actuator itself is included in the model as a single
freedom spring-supported mass, the actuator dynamics can be
characterized very well at lower frequency (before the second
modal frequency of the actuator); however, higher-order modes
of the actuator cannot be reflected well. Better prediction is
certainly possible at the expense of increasing the complexity
of the model. It demonstrates that the effect of the actuator
itself on the responses of the whole coupled system cannot
be neglected when the stiffness and mass of the beam is not
large enough compared to the actuator, especially for the higher
frequency range where nonlinearity may also occur for the
actuator.

A numerical and experimental comparison of the active
effect of the actuator is shown in figure 14. In this case, a
random external exciting voltage is applied to the actuator
with no external force applied. The accelerations of the beam
at x = 25 cm are used for comparison purposes. In the
numerical calculations, different values of the blocked force
per unit voltage of the actuator shown in figure 9 were used
within different frequency ranges, as spelled out in section 3. It
can be seen from figure 14 that the experimental and numerical
results match quite well within the range of frequencies 0–
150 Hz, and over 500 Hz. Some discrepancies occur, however,
in the middle frequency range between 150 and 450 Hz due
to the effect of the mass and structural characteristics of the
actuator. It can be found again that the characteristics of
the actuator itself have a significant effect on the response
of the whole system when it is used as an exciter, especially
for frequencies around the natural frequencies of the actuator
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Figure 14. Comparison between experimental and numerical results
of the beam excited by external random voltage signals without an
external excitation force: —— numerical results; · · · · · ·
experimental results.

itself. These observations coincide with the facts shown in
section 3 that the free displacement and blocked force per unit
voltage of the actuator have similar variations with respect
to frequency as shown in figures 6 and 9. The model, by
including the mass of the actuator itself, can characterize
very well the actuator dynamics before and around the first
modal frequency of the actuator. It is, however, insufficient to
cover the whole frequency range. Fortunately, the THUNDER
actuator distinguishes itself from other conventional actuators
mainly by its appealing features in the low frequency range.
Therefore, potential applications of THUNDERs for active
isolation mainly target low frequency, in which the proposed
model is of great help.

The verification of the combined passive and active effects
of the actuator with the presence of an external excitation force
and control voltage at the same time is conducted via two
cases. In the first case, the beam is excited simultaneously
by a sinusoidal force of 0.1 N (pk–pk) and a sinusoidal control
voltage of 20 V with a phase lag of 12.5◦, both at 30 Hz.
The second case targets a higher frequency of 140 Hz, in
which a 0.2 N (pk–pk) force is applied to the beam when the
actuator is activated using a 55 V voltage with a phase lag
of 22◦. In both cases, the forces are applied at the middle
of the beam (xf = 12.5 cm), while the acceleration of the
beam is examined at its end point (x = 25 cm). Since no
feedback is involved, the test is apparently open-loop control.
Figures 15(a) and (b) show the comparisons between numerical
simulations and experiments in time domains for these two
cases. In order to facilitate the comparison, passive cases with
the actuator inactivated are also included. It can be seen from
both figures that the simulations agree well with the test results
in both the passive and active cases. With the deployment of
the control voltage, the reduction in vibration amplitude of the
beam has been accurately predicted by the model.

Experimental results demonstrate that, using the actuator
assembly proposed in this paper, vibration can be controlled
effectively by the actuator to various degrees within a broad
frequency range by adjusting the magnitude and phase of
the active control voltage. The vibration can be reduced

(a)

(b)

Figure 15. Comparison between experimental and numerical results
of accelerations at x = 25 cm. (a) With a sinusoidal excitation force
of 0.1 N (pk–pk) and a control voltage of 20 V with a 12.5◦ phase
lag at 30 Hz; (b) with an excitation force of 0.2 N (pk–pk) and a
control voltage of 55 V with a 22◦ phase lag at 140 Hz: · · · · · ·
experimental results for the passive case; experimental
results for combined active and passive control; —— numerical
results for the passive case; —— • —— numerical results for
combined active and passive control.

to a minimum when the applied voltage is optimized. The
simulation model proposed in the present work can serve this
purpose. In fact, by minimizing the cost function defined by
equation (15), the optimal control voltage can be determined.
An example is given in figure 16, in which the time domain
accelerations of the beam are compared using three different
control voltages (passive case with V = 0; V = 20 V and
optimal case with V = 32 V). It can be seen that the vibration
of the beam can be attenuated almost completely when the
control voltage is 32 V.

6. Conclusion

A novel actuator configuration is presented in this paper and
a model is developed to describe the coupled mechanical
and electrical properties of the new actuator assembly. The
proposed model is validated using one cantilever beam with
one actuator. The modelling of both the passive and active
effect of the actuator has been systematically compared with
experiments, leading to the following conclusions.
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Figure 16. Numerical results of accelerations versus time at
x = 25 cm on the beam excited by a sinusoidal force of 0.1 N at
30 Hz and controlled by an actuator under different voltages:
- - - - V = 0; —— V = 20 V; · · · · · · V = 32 V.

The design of the actuator assembly can overcome the
existing drawbacks in the installation of THUNDER actuators,
while maintaining the passive and active features of the
THUNDER. The new actuator can provide larger deformation
than one single THUNDER does due to the new configuration,
making it an ideal candidate for low frequency active vibration
isolation, in which high displacement actuators are usually
needed.

The proposed model to describe the new actuator, in
which the parameters can be readily obtained by simple tests,
can be used effectively in the simulations of the coupled
systems. It can provide accurate results below the second
natural frequency of the actuator assembly (around 200 Hz in
the present case). At higher frequencies, although the model
can still correctly predict the overall tendency of the actuator
response, an apparent discrepancy has been noticed between
simulation and experiments. That is because the dynamics
of the actuator has an obvious effect on the response of the
whole system near the natural frequencies of the actuator itself.
Nevertheless, considering the fact that active isolation mainly
targets the low frequency range, the established model can
serve the purpose and be easily integrated into any closed-loop
control simulations.
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