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Abstract

This paper studies the dynamic strain measurement and delamination detection of clamped–clamped composite structures using

embedded multiplexed Fibre-optic Bragg grating (FBG) sensors through experimental and theoretical approaches. A dynamic strain

calibration of the FBG sensors and surface mounted strain gauges to find out the correlation between the strain and photovoltage is

reported. The embedded FBG sensors were used to measure the natural frequency and dynamic strain of intact and delaminated

composite structures. The strain profile of these structures subjected to external excitations was evaluated by using experimental

measured data and a modified vibration theory. The results revealed that the use of the embedded FBG sensors is able to actually

measure the dynamic strain and identify the existence of delamination of the structures. This allows the continuous estimation of

fatigue life and minimises the need of in-site inspection of the structures.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

With the rapid aging of civil infrastructures and of

both military and commercial aircrafts, a significant re-

search attention has been directed over the recent years

towards the field of structural health monitoring. Novel

methodologies in detecting and monitoring structural

degradation are necessary to extend the service life and to

minimise the time and cost for maintenance of current
structures. Advanced composite materials have been

widely used in a variety of load-bearing structures such

as rotor blades, aircraft’s fuselage and wing structures

because of their good specific stiffness and strength as

well as excellent corrosion resistance in the past decade.

These structures are always subjected to unexpected

external excitations at various vibration frequency ran-

ges. These dynamic interferences may cause the struc-
tures suffering from fatigue damages and/or catastrophic

failures due to an excitation frequency approaches to the

natural frequencies of the structures. Therefore, vibra-
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tion monitoring and damage detection are the two main
concerns in the area of structural health monitoring of

composite structures.

Fibre-optic Bragg grating (FBG) sensors are widely

accepted as embedded strain and vibration monitoring

devices for advanced composite structures [1]. The

advantages of using the FBG sensors include their small

physical size, insensitivity to electromagnetic interfer-

ence, lightweight, multiplexability and ability to be used
at relatively high temperature and environmentally

unfavourable conditions. However, most research re-

lated to the use of embedded FBG sensors has only

focused on the static strain measurement [2] and iden-

tification of vibration mode shapes of the structures [3].

Under dynamically operating conditions, Read and

Foote [4] experimentally demonstrated the feasibility of

using a FBG sensor system in real-time structural health
monitoring of sea and flight trials. Kim et al. [5] also

measured dynamic strains inside a subscale wing struc-

ture under real-time wind tunnel testing by using FBG

sensors. However, only little attentions provide com-

prehensive study on dynamic strain measurements that

truly respond to the mechanical performance of struc-

tures, on using the embedded FBG sensors.
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Fig. 1. FBG strain measuring system.
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Since the mechanical properties of composite mate-

rials may degrade severely in the presence of damage,

the damage detection is an important issue to maintain

the structural integrity. Delamination, debonding of
adjoining cracks in matrix materials, separation of

adjoining piles, and broken fibres originated during

manufacturing are the most severe damages occur in

advanced composite structures. Delamination is the

most destructive type of damage among others since this

damage cannot be visibly detected. Composite laminates

can usually be modelled as four separated beam seg-

ments to investigate the effects of delamination [6]. An
early model developed by Wang et al. [7] assumed that

two delaminated segments can be independently dis-

placed, but it resulted in a physically impossible inter-

penetration of the delaminated segments. Mujumdar

and Suryanarayan [8] developed a constrained mode

model in which delaminated segments are constrained to

have identical transverse displacement. As it is a simple

and more realistic model to arrive at a physical under-
standing of the basic effect of the delamination in order

to provide the general information for delamination

detection, this mathematical model would be employed

in this project.

In this paper, the feasibility of using embedded mul-

tiplexed FBG sensors as dynamic strain and vibration

monitoring devices for intact and delaminated com-

posite beams under various external excitations is pre-
sented. The principle of dynamic strain measurements

with the FBG sensors is also discussed. The effect of

delamination on the dynamic strain profile and natural

frequency of a composite beam is theoretically investi-

gated. A comparison of the results extracted from a

FBG sensor, a laser vibrometer and an accelerometer is

given. The potentiality of using an embedded multi-

plexed FBG sensor system for delamination detection is
also discussed.
2. Strain sensing principle of FBG sensors

The principle of FBG strain sensor is to measure the

change of reflected signal from a grating when it is

subjected to elongation. This change would influence

the reflective index (nb) and spatial pitch K at the

core section of the sensor [9]. A schematic illustration

of the FBG system for strain measurement is shown in

Fig. 1.

To utilise the FBG sensor for the strain measurement,
a grating, which acts essentially as a wavelength selective

mirror, must be firstly written in the core of an optical

fibre as demonstrated in Fig. 1. The grating is written by

exposing the fibre to a pair of strong Ultra-violet (UV)

interference signal. This method of grating writing for

strain and temperature measurements is called ‘‘Phase

mask technique’’. According to the Bragg law, the Bragg
wavelength (kB) that is reflected from the sensor is given
by

kB ¼ 2nbK ð1Þ
Any changes of strain in the grating region result in

changing of spatial period and core refractive index. The

measurement of the mechanical strain (eg) is determined

by the variation of the Bragg wavelength shift (DkB) [10].
By neglecting the temperature effect of the sensor and

the strain transfer to the fibre in transverse direction, the
change of the Bragg wavelength can be expressed as

DkB ¼ Keg ð2Þ

where K is called ‘‘Theoretical gauge constant’’ [11],

which can be determined experimentally.
3. Dynamic calibrations of FBG sensors

Calibration of FBG sensors should be conducted

separately for static and dynamic strain measurements.
In the static case, a gauge constant is generally obtained

by the relationship between the measured change of

strain and the corresponding reflective wavelength shift

[2]. For measuring dynamic strains, a conversion factor

of FBG strain measuring system is determined to relate

the strain changes and photovoltage variation.

Owing to the dependence of the photodetector output

denoted by photovoltage-variation (DVphoto) and the
wavelength shift (DkB) when the signal passes through

the OTF Transmitted Spectrum, the linear relationship

between the photovoltage (DVphoto) and the wavelength

shift (DkB) is obtained. This relationship can be ex-

pressed as

DVphoto ¼ CDkB ð3Þ

where C is the proportional constant which depends on

a desirable system. By combining Eqs. (2) and (3), a

following equation is formed:
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DVphoto ¼ SDeg ð4Þ

where S ¼ C � K. It is reminded that the photodetector

output is related to the power of the SLED and the

power loss such as the reflectivity of grating, splice loss

of fibre, insertion loss of TOF and the power splitting

reduction through the coupler, of the above FBG mea-

surement set up. A signal analyser was used in this

experiment to detect the photovoltage output.
A dynamic calibration test of a clamped–clamped

glass-fibre composite beam with an embedded FBG

sensor, subjected to an out-of-plate vibration motion at

different frequency ranges, was conducted. Ten layers of

0�/90� E-glass fabric and Epoxy-based resin (Araldite

MY 750) were used to fabricate the beam. A single

optical fibre with pre-written grating sensor was

embedded between the 9th and 10th layers for which
measuring from the top surface of the beam during the

lay up process. Fig. 2 shows an experiment setup of the

beam with the embedded FBG sensor and a surface

bonded strain gauge on its corresponding surface. The

beam was clamped rigidly at both ends. An electric-

driven shaker was attached to the bottom surface of the

beam at a position 100 mm from the left end and to

generate external excitations to the beam. A force
transducer was placed between the shaker’s stinger and

the beam. The photovoltage and strain measured by the

embedded sensor and the strain gauge were recorded

simultaneously.

In Fig. 3, the dynamic responses measured from the

strain gauge and the FBG sensor are plotted. It is

obvious that both the strain sensing devices were able to

indicate the first natural frequency of the beam, f1 ¼ 80
Hz. However, there were some deviations of the mea-

surements when the vibration frequency exceeded 100

Hz. The second natural frequency’s peak shown by the

FBG sensor is much more obvious that than of the

strain gauge. A small plateau is shown on the lower

curve, and thus the second natural frequency of the

beam is hard to be identified by the strain gauge.
Fig. 2. Dependence of photovol
It is understandable that for the clamped–clamped

beam, increasing the vibration frequency results in

decreasing out-of-plane vibration amplitude, thus

reducing the beam’s surface strain. By using the strain

gauge, it was found that inconsistent strain data were

measured at strain values below 3 le. However, the
photovoltage measured from the FBG sensors was more

reliable. In Fig. 3, it is clearly revealed that the second
natural frequency of the beam, f2 ¼ 230 Hz, is sharply

shown by the peak of the upper curve and this value

satisfies with the results addressed by Clarence [12].

Based on these results, the constant value S as indi-

cated in Eq. (4) was determined as 0.5898 using the

measured data shown in Fig. 3 at the frequency regions

between 25 and 100 Hz, and between 220 and 240 Hz.

The relationship between normalised vibration ampli-
tude, strains measured by the strain gauge and evaluated

by Eq. (4) is plotted in Fig. 4. In the figure, it is found

that no strains were measured by the strain gauge at the

normalised vibration amplitude below 0.0011, while the

FBG sensor still provides actual strain data within this

region. The scatter in results for normalised vibration

amplitudes between 0.0004 and 0.0008 might be due to
tage and wavelength shift.
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the low sensitivity of the strain gauge for strains below 3

le.
Fig. 5. Strain mode shapes of a clamped–clamped composite beam for

first three modes.
4. Determination of dynamic strain profile of a composite

beam using embedded multiplied FBG sensors

As the strain distribution along the beam is of inter-

est, theoretical strain mode shapes of different vibration

modes have to be studied. To obtain the strain mode

shapes of the beam, the relationship between strain and

lateral deflection of the beam is examined. The rela-
tionship between the strain and lateral deflection of the

beam can be expressed as [12]

eðxÞ ¼ y
o2wðxÞ
ox2

ð5Þ

From Eq. (5), it is known that the strain of the beam is

proportional to the second derivative of that lateral
displacement. For the clamped–clamped beam, the

displacement mode shape at the mode i can be expressed
as

/iðxÞ ¼ sin kix� sinh kixþ ai½� cos kixþ cosh kix� ð6Þ
where

ai ¼
sinh kiL� sin kiL
cosh kiL� cos kiL

for first three modes, kiL ¼ 4:73, 7.85 and 10.99 (i ¼ 1, 2

and 3); Ai is the vibration amplitude at mode i, which
depends on the excitation force; wi is the lateral dis-

placement at mode i. And
wðxÞ ¼
Xn

i¼1
Ai/iðxÞ: ð7Þ

Since the structural response is dominated by the mode i
at ith natural frequency, by considering the structural
resonance cases only, the lateral displacement can be

simply expressed by

wiðxÞ ¼ Ai/iðxÞ ð8Þ
Therefore, the strain mode shape is

eðxÞ ¼ y
o2wðxÞ
ox2

¼ Kif� sin kix� sinh kixþ aiðcos kixþ cosh kixÞg
ð9Þ

where Ki ¼ yAik
2
i is a constant at mode i.

The strain mode shapes of the clamped–clamped

beam for the first three modes are plotted in Fig. 5. The

amplitude of strain mode shape decreases with increas-

ing of the mode number.

In certain vibrating modes, the ratio of strain mea-

sured at two different points along the beam is constant.

To ensure the uniqueness of this ratio, the locations

where the sensors are installed, must not be symmetric
of the beam’s centre. For two given points along the

beam, denoted by X1 and X2, the theoretical strain values

at mode i are

eiðx1Þ ¼ y
o2wiðx1Þ

ox2
ð10Þ

eiðx2Þ ¼ y
o2wiðx2Þ

ox2
ð11Þ

The strain ratio is given by

eiðx1Þ
eiðx2Þ

¼ w00
i ðx1Þ

w00
i ðx2Þ

¼ /00
i ðx1Þ

/00
i ðx2Þ

ð12Þ
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To evaluate the strain profiles of a clamped–clamped

composite beam, two multiplexed FBG sensors were

embedded into the beam. The conversion factors (S’s)
between the strains extracted by strain gauges and
photovoltages of the FBG sensors was calculated using

the experimental measuring results. The conversion

factors (S) for the 1st and 2nd sensors were 0.6159 and

0.5765 respectively. A voltage input range was from 100

to 450 mV, a total of eight voltage inputs were used to

excite the composite beam. The photovoltages are re-

corded by the FBG sensors at points, X1 and X2 by Eq.

(4), the relationship between the strains is

VFBGiðx1Þ
VFBGiðx2Þ

¼ S1emeasurediðx1Þ
S2emeasurediðx2Þ

) emeasurediðx1Þ
emeasurediðx2Þ

¼ S2VFBGiðx1Þ
S1VFBGiðx2Þ

ð13Þ

Table 1 lists the experimental and theoretical surface

strain ratios at the first three vibration modes. It is

found that the measured strain ratio extracted from the

FBG sensors was close to the theoretical one. Therefore,

it is reasonable to conclude that the use of FBG sensors
is able to evaluate the strain profile along the beam at

the first three vibrating modes. Referring to Eq. (9), the

constant Ki can be calculated once the strain of the beam

is known.
Table 1

Physical and mechanical properties of the beam

Vibration mode Theoretical strain ratio Measured strain r

Mode 1 2.2936 2.3225

Mode 2 1.1158 1.0533

Mode 3 1.0829 1.1366
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5. Constrained beam model

Fig. 6 shows a constrained beam model with an

arbitrarily located through-width delamination devel-
oped by Mujumdar and Suryanarayan in 1988 [8]. In

this model, the beam is assumed to be homogenous and

isotropic. For the sake of simplicity, only a single

delamination is considered. Also, it is assumed that

there is no gap between the layers at the delamination

region under all conditions such that this model was

called the constrained model.

The governing equations for the transverse equilib-
rium for integral segments can be written in a dimen-

sionless form as

o4�wi

o�x4i
þ qAL4

EI

� �
o2�wi

ot2
¼ 0; i ¼ 1; 4 ð14Þ

where �wi ¼ wi=L and �ui ¼ ui=d are the dimensionless

axial coordinate and the transverse displacement of the

ith segment respectively.

For the delaminated segments, the governing equa-

tions can be written as

�EI2
o4�w2

o�x42
� Pd

o2�w2

o�x22
� qA2

o2�w2

ot2
� p ¼ 0; for segment 2

ð15Þ
atio Error between measured and theoretical values (%)

1.26

5.6

4.95

c 

3 
4 

Integral region 
 

elamination 
region 

 

2 
4 

X4,U4 

Y4,W4 

M4,V4 

of a constrained beam model [8].
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�EI3
o4�w3

o�x43
þ Pd

o2�w3

o�x23
� qA3

o2�w3

ot2
þ p ¼ 0; for segment 3

ð16Þ

where p is the normal contact pressure distribution be-
tween the two segments and Pd is the magnitude of an

axial load in each segment.

As the axial load Pd depends on the amplitude and

mode of deformation, the second terms on the left hand

side in Eqs. (15) and (16) are nonlinear. Based on the

free mode of deformation assumption, the nonlinear

terms are not taken into account. Also, in the con-

strained model, w2 is assumed to be equal to w3 in
everywhere in the delamination region and x2 is equal to
x3. As the results, Eqs. (15) and (16) can be combined to

represent the behaviour of the delaminated region and

the equation in dimensionless form can be expressed as

o4�w2

o�x42
þ qðA2 þ A3ÞL4

EðI2 þ I3Þ

� �
o2�w2

ot2
¼ 0 ð17Þ

The general solutions of Eqs. (14) and (17) can be

written in the following form:

�wið�xiÞ ¼ FiCi ð18Þ
where

Fi ¼ ½ f1ið�xiÞ f2ið�xiÞ f3ið�xiÞ f4ið�xiÞ�
Ci ¼ ½ c1i c2i c3i c4i �T

in which

f1iðxiÞ ¼ sinðki�xiÞ; f2iðxiÞ ¼ cosðki�xiÞ
f3iðxiÞ ¼ sinhðki�xiÞ; f4iðxiÞ ¼ coshðki�xiÞ

where the dimensionless frequency parameters, ki, are

given by

k41 ¼ k44 ¼ k4 ¼ qAx2L4=EI

k42 ¼ qðA2 þ A3Þx2L4=EðI2 þ I3Þ ¼ k4=ð �d23 þ �d3
3Þ

in which �d2 ¼ d2=d and �d3 ¼ d3=d.
By combining Eqs. (5) and (18), the strain along the

whole beam can be expressed as

�eð�xÞ ¼
D1C1 2 ½0; �aÞ
D2C2 2 ð��b; �bÞ
D3C3 2 ð�c; 0�

8<
: ð19Þ

where Di ¼ ½f1i;xxð�xiÞ f2i;xxð�xiÞ f3i;xxð�xiÞ f4i;xxð�xiÞ�, in which
ð Þ;xx denotes the second derivative with respect to xi.
�a ¼ a=L, �b ¼ b=L and �c ¼ c=L are the dimensionless

length of the beam segments 1, 2 and 4 respectively.
6. Boundary and continuity conditions of a constrained

beam model

For a clamped–clamped beam, the boundary condi-

tions at �x1 ¼ �x4 ¼ 0 are
�wi ¼ 0 and o�wi=o�xi ¼ 0 for i ¼ 1 and 4 ð20Þ
At the junction among beam segment 1, delaminated

segments 2 and 3 represented by �x1 ¼ �a and �x2 ¼ ��b=2
respectively and the continuity conditions are

continuity of transverse displacement:

�w1 ¼ �w2 ð21Þ
continuity of normal slopes:

o�w1=o�x1 ¼ o�w2=o�x2 ð22Þ
continuity of shear forces:

o3�w1=o�x31 ¼ ð �d23 þ �d3
3Þo3�w2=o�x32 ð23Þ

continuity of bending moments:

o2�w1=o�x21 ¼ ð �d23 þ �d3
3Þo2�w2=o�x22 � PdL2=2EI ð24Þ

where the term PdL2=EI can be determined by the con-

tinuity of axial displacement of the beam segments,
therefore,

PdL2=EI ¼ ð6 �d2 �d3=�bÞ½o�w1ð�aÞ=o�z1 � o�w4ð��cÞ=o�z4�:
Similarly, the continuity conditions at junction

among beam segment 4, delaminated segments 2 and 3

represented by �x4 ¼ �c and �x2 ¼ �b=2 are obtained by

replacing �w1 and �x1 by �w4 and �x4 respectively in Eqs.
(21)–(24). There is a set of 12 simultaneous linear

homogenous algebraic equations in 12 unknown con-

stants of the continuity and boundary conditions. The

frequencies and displacement mode shapes can be cal-

culated as the eigenvalues (ki) and eigenvectors (Ci) of

this equation set. Moreover, the strain mode shape can

also be obtained by Eq. (19).
7. Analytical results and discussions

Figs. 7–11 illustrates the analytical results bringing

out the influence of delamination size (�b), spanwise and
thickness-wise locations (�ac and �d2) of the delamination
on the change of natural frequency and strain mode

shape of the delaminated beam.
In Fig. 7, it shows the effect of the delamination size

on the fundamental frequency of the central delami-

nated beam. Noticed that the frequency shift was cal-

culated by (natural frequency of the intact

beam ) natural frequency of the delaminated beam)/

natural frequency of the intact beam. The table indicates

that the natural frequency would decrease due to

the existence of the delamination. It is observed that the
percentage of frequency shift is the highest while the

delamination is located at the mid-plane (�d2 ¼ 0:5), and
the frequency shift becomes smaller as the delamination

location shifts towards the surface of the beam. The

substantial effects of the delamination on the frequency

shift are seen as the delamination size increases. How-

ever, for the delamination is only 10% or 20% of the
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total beam length, the changes of the fundamental fre-

quency are not obvious, only approximately equal to

1%. It is reasonable to obtain those results as the

delamination causes the reduction of the stiffness of the

beam and hence leading the change of natural fre-

quency.
Apart from the central delamination, Fig. 8 indicates

the effect of spanwise location on the first and second
natural frequencies with a 40% delamination for various

delamination sizes respectively. The significant influence

on the frequency shift due the delamination occurs in

the different spanwise locations are noticed. The

delamination effect on the natural frequency becomes

minimum as �ac ¼ 0:5 at the first mode and �ac ¼ 0:3 and
0.7 at the second mode. Contrastively, that effect ap-

pears to be a maximum when the delamination located
at the edges and central of the beam at modes 1 and
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2 respectively. As the delamination located at these

locations, essential change of the natural frequency even

for small delaminations (�b ¼ 0:1 and 0.2) is observed.
To explain this phenomenon, the displacement mode

shapes of the clamped–clamped beam, as indicated in

Fig. 5, and shear force which is proportional to the third

derivative of the transverse displacement with respect to

spanwise location are considered. As the weakening ef-

fect on natural frequency depends on the shear force,

locating the delamination at the spanwise location with

high shear force causes the large frequency shift. For a
clamped–clamped beam, modes 1 and 3 are the sym-

metric modes. The curvature and shear force are the

maximum and minimum at mid-span respectively.

Therefore, the weakening effect on natural frequency is

minimum for centrally located delamination (�ac ¼ 0:5)
as shown in Fig. 8. Alternatively, for the asymmetric

modes such as mode 2, it is seen that the curvature is

zero and the shear force is maximum at mid-span. As
the results, the weakening effect on natural frequency is

a maximum when the delamination is located at centre

of the beam as indicated in Fig. 8. It can be briefly

concluded that the delamination effect on the natural

frequency of the beam highly depends on the delami-

nation size, vibrating mode, spanwise and thickness-wise

locations.

Delamination not only affects the natural frequency,
but also the strain mode shape of the beam. The effects

of the delamination on the strain mode shapes of the

beams are illustrated in Figs. 9–11. For the central

delamination with various delamination sizes, the strain

profile of the delaminated beams at the first mode is

symmetric at the mid-span of the beam as shown in Fig.

9(a). Moreover, the changes of strains are observed at

both edges of the delaminated beams in all cases, and it
seems that the strain is seriously affected by increasing

the delamination size. Compared with Fig. 9(a) and (b),

the delamination effect on the strain mode shape of the

beam is more obvious in mode 2. It is seen that the

upward and downward shifts are observed at the ends of

the beam with all delamination sizes. These upward and

downward shifts indicate that the delamination effect is
not restricted at the delaminated location, and it already

affects the mechanical properties of a whole beam. To

investigate the influence of the mode on the strain mode

shape of the delaminated beam, Fig. 10 illustrates the
strain mode shape with 40% central delamination in

middle layer with different modes. It is known that the

strain mode shape could be affected in the similar

manner for the symmetric modes such as modes 1 and 3,

but it is quite different for the asymmetric and symmetric

modes, modes 1 and 2. As mentioned in the above, the

influence of the delamination in the spanwise location

on the natural frequency of the beam is not noticeable at
the small delamination size. The effect of spanwise

location on the fundamental frequency with small

delamination, only 20% delamination size, in middle

layer of the beam, was presented in Fig. 11. Significant

changes of the strain due to the small delamination lo-

cated at all spanwise locations are observed. Obvious

disruption of the strain at the delamination area is no-

ticed for the case 2e in which the delamination was
centrally located. According to the above results on

strain mode shape, it can be known that the delamina-

tion effect on the strain mode shape of the beam greatly

depends on the delamination size, vibrating mode and

spanwise location.

Based on the results of the delamination effect on

the natural frequency and strain mode shape of the

beam, it is summarised that the delamination influence
of the strain mode shape is more obvious in all cases,

especially for the small delamination, than that of the

natural frequency. Additionally, in case of the various

delamination sizes and locations, the same value of the

frequency shift could be given in two different cases.

The uniqueness of this value could not be guaranteed.

Therefore, it is not accurate to use the change of the

natural frequency for the aspect of delamination
identification. However, if the strain mode shape is

employed to combine with the natural frequency shift

to be used for delamination detection, the reliabil-

ity of the delamination identification results can be

enhanced.
8. FBG sensor as a delamination detection device

Associated with the strain mode shape and the nat-

ural frequency shift of the delaminated beam, the

delamination, even for the small one, could be effectively
detected. Therefore, delamination location can be

identified provided that the sensors can real-timely

monitor the strain and natural frequency of the struc-

tures. In the above section, the FBG sensors were vali-

dated to be a dynamic strain monitoring device. In the

following experimental study, the reliability of utilising

the FBG sensors for natural frequency measurement of



Fig. 13. Glass-fibre composite beam with 25% delamination simulated

by inserting thin Telfon film.
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intact and delaminated beams was also investigated. An

experiment was performed in order to compare the

measurements of the natural frequency of intact and

delaminated beams by using an accelerometer, a laser
vibrometer and a FBG sensor.

A clamped–clamped glass-fibre composite beam with

embedment of a FBG sensor was fabricated. An accel-

erometer and the measurement point of the laser vib-

rometer was bonded and pointed to the surface of the

beam at the same position where the FBG sensor was

embedded respectively. Since the mass of the acceler-

ometer could affect the accuracy of the natural fre-
quency of the beam, the FBG sensor and the laser

vibrometer were used to measure the natural frequency

of the beam simultaneously without bonding the accel-

erometer on the beam surface. On the other hand, the

natural frequency of the beam was measured by the

accelerometer separately under the same experiment

configuration as the one used for the FBG sensor and

the laser vibrometer.
The frequency response function of the clamped–

clamped intact beam was plotted in Fig. 12. It is clearly

observed that a good agreement of the FBG sensor and

the laser vibrometer is demonstrated. However, the

mismatching of the accelerometer and laser vibrometer

is indicated. This inconsistent result might be due

additional mass of accelerometer that affects the natural

frequency of the beam.
In order to investigate the natural frequency shift of

the delaminated beam, delaminations were made by

inserting Telfon film between 5th and 6th layer-lami-

nates of the 10-layer glass-fibre composite beam to

simulate the middle layer delamination as mentioned in

the previous analytical model, as shown in Fig. 13. The
Fig. 12. The frequency response function o
experimental results are listed in Table 2. The FBG

sensor and the laser vibrometer demonstrated the fact

that the reduction of the natural frequencies of the beam

due to the 25% delamination of the beam. As the results,
the FBG sensor could detect the existence of the

delamination by comparing the natural frequency of the

delaminated beam and the intact one.

However, it is found that the natural frequencies

measured by the accelerometer of the delaminated beam

slightly increased at 1st and 3rd modes and decreased at

the second mode in Table 2. The reason is that the mass

effect of the accelerometer dominated the delamination
effect on the natural frequencies at the 1st and 3rd

modes, so that the natural frequencies of the delami-

nated beam increased. As the mode shape of mode 2 was

different from that of the modes 1 and 3, the mass effect

of the accelerometer might be ignorable. As the results,

the delamination effect on the natural frequency was

normally shown at second mode.
f the clamped–clamped intact beam.



Table 2

The experimental results of natural frequencies of the beam without and with 25% delamination measured by an accelerometer, a laser vibrometer

and a FBG sensor

Sensors Natural frequency of beam without delamination (Hz) Natural frequency of beam with 25% delamination (Hz)

Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

Accelerometer 34.5 101.5 198.5 35.5 95 200

Laser vibrometer 34.5 104.5 199 34.5 93 196.5

FBG sensor 34.5 104.5 199 34.5 93 196.5
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9. Conclusion

Dynamic strain measurement and delamination

detection of clamped–clamped composite structures

using embedded multiplexed FBG sensors through

experimental and theoretical approaches are presented.

It was revealed experimentally that the multiplexed

embedded FBG sensors could measure the dynamic
strain profile of an intact beam at certain natural fre-

quency provided that the sensors are correctly mapped.

Based on the theoretical results of a constrained model

of a delaminated beam, the delamination effect on the

natural frequency and strain mode shape of the beam

highly depends on the delamination size, vibrating

mode, spanwise and thickness-wise locations. Compar-

atively, the delamination effect is more observable on the
strain mode shape than the natural frequency of the

beam, especially for the beam with a small delamination.

Therefore, combined with the results of the strain mode

shape and the natural frequency shift of the delaminated

beam, the delamination, even for the small one, could be

effectively detected. Moreover, FBG sensors showed the

comparable results with a laser vibrometer for measur-

ing the natural frequency of the beam. The existence of
delamination could be identified experimentally by

unitising the FBG sensors. In the future work, it is

valuable to develop an embedded multiplexed FBG

sensor mapping system for delamination detection for

advanced composite structures.
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