Modifications of acoustic modes and coupling due to a leaning
wall in a rectangular cavity

Y. Y. Li and L. Cheng®
Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon,
Hong Kong SAR, China

(Received 1 January 2004; revised 24 September 2004; accepted 30 Septembper 2004

Acoustic modes and the coupling characteristics of a rectangular-like cavity with a slight
geometrical distortion introduced through a leaning wall are investigated in this paper. A pressure
variation index is proposed to quantify the global changes in acoustic modes caused by the
inclination of the wall. Effects on the coupling between acoustic modes and structural modes are
investigated using coupling coefficients. Numerical results show a simple relationship between the
distortion effect and the acoustic wavelength. The effect is most significant when the distortion
approaches the half wavelength. Compared with a rectangular enclosure, the existence of the leaning
wall gives rise to a much more effective coupling between the structure and the enclos@@4©
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I. INTRODUCTION how acoustic modes are altered. Literature survey shows that
few works on the irregular-shaped cavity have been reported.
The study of sound radiation by a vibrating structureOne of the plausible reasons is that, classical modal-based
into an enclosure has received a great deal of attention fanethods rely on the availability of acoustic modes, which
years. A comprehensive modal-based theoretical frameworkannot be analytically known in the presence of geometry
for interior sound field simulation was developed in the earlyirregularity. For a long time, numerical methods, such as the
work of Dowell et al! and Fahy Since then, a large amount finite element methdd and the boundary element methgd,
of effort has been devoted to investigating the vibro-acoustitiave been adopted to deal with the problem. The develop-
behavior of such systenié,Given an excitation on the struc- ment of acoustoelastic methi§dand the Green function
ture, structural vibration radiates sound into the enclosurenethod’ made it possible to handle the irregular shaped
through its coupling with acoustic modes. Therefore an aceavities in a semi-analytical way. Both methods were then
curate characterization of the sound-structure interactioimproved by the authors, who proposed the *“combined
plays a key role in the prediction of acoustic field. The inter-integro-modalCIM) approach,” in which the cavity was dis-
play between the structure and the enclosure is usually chagretized into a series of subcavities, and the acoustic pressure
acterized by the structural-acoustic modal coupling coeffiwas decomposed either over a modal basis of regular sub-
cient, which is a measure of the spatial match betweegavities or over that of the bounding cavities in the case of
structure modes and cavity modes. The coupling analysis cafegular-shaped boundari&s:® Comparisons between theo-
be easily done for cavities with simple geométfydue to  retical or other existing results and the presented numerical
the existence of analytical modal solutiohhis exercise ~solutions showed excellent agreeméht.

turns out to be very useful in many aspetiespecially in The purpose of this paper is to investigate possible
revealing useful physical insights to lead subsequent soungh@nges in acoustic modes and coupling characteristics due
control strategie&? 13 to the introduction of a leaning wall in a rectangular-like

Literature review shows that most of previous work cavity. The whole system is modeled using the CIM ap-
dealt with rectangular or cylindrical enclosure. Although theProach. A pressure variation index is defined to quantify the
use of such regular-shaped cavities with perfect geometr?'c’baI change in acoustic modes caused by the wall inclina-
greatly simplifies the modeling procedure, one of the direct'o"- The tendency plots of index reveal the relationship be-

consequences of such assumption is that, due to the symmi€en the distortion effect and the wavelength of acoustic
try in both the structure and the enclosure, the structuralModes involved. The impact on the structural-acoustic cou-

acoustic coupling occurs in a very selective way, whichP!ing is also examined.
physically means that a structure mode can only be coupled

to a small'pqrtugrlzof acou;tlc modes to warrapt an effe'ctlve”. FORMULATION
sound radiationt®*?In practice, however, slight imperfection

in geometry always exists, which may affect the acoustic ~ As shown in Fig. 1, the cavity under investigation is a
mode shapes and, consequently, bring drastic changes in thectangular-like cavity with one leaning wat trapezoidal
coupling nature. As a first step, it is necessary to comprehengnclosure The enclosure has a volurivg (cavity with solid
lines) surrounded by a surfac® which is acoustically rigid.

aAuthor to whom correspondence should be addressed; electronic addredd: Small anglea, which d_eﬁnes the degree of the inclination
mmicheng@polyu.edu.hk of the leaning wallS;, is used to represent the geometry
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V=" bmn@mn, |=1...L; m=1,..M; n=1,.N, (6)
A I,m,n
L;  S1c whereb,,,, are the unknown coefficients to be determined;
S3 (L,M,N) the numbers of the terms to be kept after the trun-
cation of the series. Combining Egdl)—(4) with (6) and
i using the orthogonality property of mode shapes lead to the
following eigenvalue equation:
L (k2 Imn )bimn= 2 bljkn|mnljk(a) (7)
E,
4
4 > where
° L, Li+Lstgoe
FIG. 1. Geometry and coordinate system of a rectangularlike cavity with Mimn.ij k(a) j J Qii—— ‘len S. (8)
one leaning wall. ! T on

For the cavityVy, doimn/dn=0 holds at all walls except on

distortion of the cavity, as opposed to its rectangular counthe leaning walls, . In light of the relationship between vari-
terpart. The acoustic pressueinside the enclosure can be gplesx andz:

expressed in the form of wave equation

(V24 K2) W =0 i x=L;+(L3—2)-tga, 9
with the Neumann boundary condition one has

((9\1,/(9”)50:0' 2) a(lenz—C SI"ﬂ7Ty | 7 cosa

an L, \L;+Lstger
where k is the wave number and the normal direction
towards outside. In parallel, a rectangular bounding cavity, % sin |7 cosmTZ
which encloses the trapezoidal enclosMgeand occupies a L;+Lstga Ls
volumeV, ((L;+LsXtga)XL,XLj3) with a surfaceS,, is .
A . . . nwsina [ X . nwz

constructeddashed in Fig. 1 Inside the bounding cavity, + coS sin ) (10)
the Green'’s functiois(r,r ) satisfies the following inhomo- Ls Li+Lstge Ls

geneous Helmholtz equation with a point source: Substituting Eg(10) into (8) and then integrating oves,,

(V24+K2)G(r,ro)=—38(r—ry), (38  Nimn,ijk(@) can be expressed as
(9G(r,rq)/dn)s =0, (3b) [1—[signm—j)|]7L,
Nimn,ijk(@) = 16
where §(r —rg) is the Dirac delta functionG(r,rg) can be
expressed in terms of normal modeg of the bounding | cosa
cavity V, as : m[%(al—aﬁas—%)
G(r,ro)= E ‘len(r)(len(rO) 4) +|Sigr‘(|—i)|-Cz(a5—a6+a7—a8)]
( Imn™ I(2)\/R/\Imn nsina
Where + L3 [Cl(a1+ az+ a3+ a4)+C2(a5
[ X mary nmz 5
‘len co L1+L3tga co L2 co L3 ’ ( a) +a6+a7+a8)] y (11)

with kimn and /\ i, being, respectively, the wave number where ¢, c,, a;, ..., ag) are a set of coefficients which can
and the generalized acoustic mass of lie-th mode, viz.  pe calculated for a givea. sign is a symbol function defined

2 - |7 2 Ima n 54 as

=\ L Letga) T\ T E L—3 ’ 5D L x>0
1 signx)=4 O, x=0,

/\Imn:V_cfVCQImn(r)¢Imn(r)dU- (50 —1, x<O0

According to the CIM approact;* the acoustic pres- It is clear thatny,,j(«) vanishes whem =0, showing the
sure insideV, is decomposed on the basis of normal modesorthogonality property of the modes when there is no distor-
¢@imn Of the bounding cavity as tion. Rearranging Eq(7) in the matrix form gives
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FIG. 2. Contour of the iso-pressure of
the acoustic modeg(1,0,1) over the
cross aredABCE

(c) @=8", 332.9Hz d). a=10°, 3312Hz

Nooo.0od @) — (K2—K3go) .. Nooor mn( @) Booo
t b =0, (12)
NLmN,o0d @) o Newnmn(@) = (K2 =kEyn) brumn

The solution of Eq(12) yieldsb,,, for constructing acoustic due to the wall inclination. The matching of the pair is en-
pressurgor acoustic mode shapmside the cavity from Eq. sured by carefully checking the mode shdpeessure distri-

(6). bution) of each mode during the calculation.
In order to quantify changes in acoustic modes, a varia-  The truncation of the decomposition serj&s). (6)] is a
tion index is defined as main factor affecting the accuracy of the calculation. A care-
ful convergence analysis was carried out by following the
Jimn( @)= f Axplzmn(a)ds, (13) procedure detailed in our previous Wdﬁ(Rougth speak-
S

ing, (L,M,N) was gradually increased until no noticeable
where AW, .(a) is the residual mode shape over a gi\,enchanges in the calculated results were observed. For the
surfaceS: present configuration, the series is truncated up to 60, 3, and
10inL, M, andN, respectively.
A‘len(a):\len(a‘)_‘lllmn(azo)- (14arb . .
A. Analysis of acoustic modes

Obviously, J;hn(a) represents the global change in the

Imn-th mode over the surface caused by the wall inclination. Changes in acoustic pressure distribution due to the
variation of « are first investigated by choosing one typical

mode(1,0,1). Figure 2 shows the contour plot of the acoustic

pressure over the cross arl@BCE (y=L,/2 in Fig. 1) with
lll. NUMERICAL SIMULATION AND DISCUSSIONS different inclination angles. The dashed are the iso-pressure
lines whena=0° taken as the nominal case. The pressure
The dimension of the cavity is set dsXL,XLy=0.92 amplltude is normalized to the ma_X|ma_I pressure va!ue_l_n the

: TR cavity. It can be seen that the distortion has no significant

% 0.15x 0.6 n?. Since the inclination is introduced parallel . .

influence on natural frequencies, due to the large wavelength

to y-axis, .d|scu35|ons wil focu; on t-hose modes with or?erof the mode with respect to the distortion. With the increase
(I,m,n) with m=0. In the following discussions, the term

(I.m.n) mode” will be used to designate a pair of acoustic of a from 2° to 10°, the mode shape deviates gradually from
m,od’es before and after is introduced. It should be men- its nominal case. This change in acoustic pressure is quanti-

tioned that although this notation has clear physical meaninaed by the r<?3|dual mode shapelso(«) in Fig. 3. It can
R : . ; e seen that:

when =0, it is loosely used for the cavity with a leaning

wall for the sake of convenience. In the latter case, it simplye For the case oix=2°, change in the acoustic mode is

stands for a mode evolving from théih,n) mode @=0) observed, and the maximal difference is 4% compared to

The formulation described in Sec. Il is implemented.
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FIG. 3. Residual acoustic pressure
0.18 A\1,101(“)'

the nominal one. With the increase of this change be- is little change on the surface opposite to the leaning wall.

comes more significant, reaching 23% fo+ 10°. Therefore, the effect ai on acoustic pressure variation is
e The perfect symmetry of mode shape at edgBsandDE mainly on the two walls adjacent to the inclined wall

in the case olx=0° is altered due to the distortion. rather than on the opposite one, with the maximal varia-
e There is a maximum pressure change area at édgyéor tion appearing at the area close to the leaning wall.

each configuration, ranging from 0.04 to 0.18. Its location

gradually moves towards the leaning wall of the enclosure  The global variation of a number of selected acoustic
when « increases. For the same token, an even largemodes is quantified using the variation ind#x,(«). Fig-
variation areafrom 0.04 to 0.23 can be observed at the ure 4 illustrates the tendency curve i «) for a number
bottom part of the cavityedgeDE), with the same mov- of selected modes with varying from 0° to 30°. It can be
ing tendency as shown at edgd. In comparison, there seen that

y=AL/L

0 0.19 0.38

FIG. 4. Pressure variation index. Solid
line: acoustic modesl( 0,0 with 0°
<a<30° at S,; dashed: 1D duct
modes withy varying from O to 0.38.
A 1=1; V:1=3; O: I=5; ¢: |
=7;0:1=9.

Pressure variation index

Angular o
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H | FIG. 5. Pressure variation index
Jimn(@) at'S, vs AL/N with 0°<«
<30° (AL=Lj3-tga,L3=0.6).

Pressure variation index

AL/ A

e For a smalle, the variation indexJ,oo( @) increases with  shorter wavelength, a slight distortion can therefore lead to a
the increase of orddr. That is, a certain distortion will significant variation of mode shapes. Results are also plotted
have a more sensitive effect on pressure variation foin Fig. 4 and compared with previous ones for the cavity,
high-order modes than for low-order ones. showing a strong similarity.

e Within the range of interest, no extremum &p(«) is This observation is further verified in Fig. 5 using
observed for low-order modes. However, peaks appeahe cavity defined before, which illustrates the varia-
with the increase of. For exampleJ,oo( @) reaches its tion of J,,,(a) (0°=a<30°) with respect toAL/A
maximum ata~22° for mode(7,0,0 and ata~16° for (AL=Lj3-tga). A large variety of modes are included in the
mode (9,0,0. With further increase of, multiple peaks figure to check the observation made earlier. It should be
emerge. mentioned that, due to the difference in wavelength of dif-

ferent modes, the variation ranges/Xif /A are not the same
The earlier results show that there are critical values ofor all modes considered. The highest mode involved is 30 in

a for each mode in which the variation is the most remark-x-direction of the cavity, for whicifour extremum are de-

able. There might be a relationship between these criticalected atAL/A=0.55, 1.15, 1.8, and 2.54, respectively

values and the wavelength of modes in question. Quantifyingmarked with arrows in the figuyeThis result is in consis-
this possible relationship can help estimate the impact ofent with the prediction given by Eq(15), which are
distortion on one particular mode of interest. AL/N|i—p9. 260.52, 1.07, 1.67, and 2.3. In addition, with

x-direction, an auxiliary study was performed using a one-indeed convergences to 0.5.

dimensional(1D) duct with a lengthL to understand the The effect of the inclination on different walls is also
observed phenomena. Some details are given in the Appeaxamined. Two walls, i.eS, which is adjacent to the leaning
dix. Using the duct theors/, it can be found that maximum wall andS, which is opposite to it are taken as example, and
alteration in the acoustic pressure occurs at those locationfie pressure variation indices for a number of selected modes
AL satisfying are compared in Fig. 6. Apparently, the distortion has much
| greater effect ors, thanS;.

| 2L
,__1):<_-—1)|_, A= (19

AI-|i=|—1,|—2,...:?

and thefirst one is located at

Ao
ALz 1=5 . (16) Replacing the top wall of the enclosure by a simply-

2 1-1 supported flexible panel, a coupling analysis is conducted to
Clearly, the number and locations of extrema depend on thgquantify the effects of the wall inclination on the structural-
wavelengthn and mode ordelr. For thefirst one, an increase acoustic coupling feature. The commonly used coupling co-
in I makesAL/N approaching 0.5, implying that for high- efficient L(«) is defined as the integral of the product be-
order modes, the change in acoustic modes is the most réweenij-th structure modep;; and thelmn-th cavity mode
markable whemAL—\/2. Since higher-order modes have ¥ ,,(«) over the vibrating surfacé :

B. Vibroacoustic coupling analysis
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FIG. 6. Pressure variation ind&x,,(«) with 0°<a<30° atS, (solid line)

?f;?o(dashed £:(1,0,0;*: (4,1,2; V: (6,0,0; ©:(7,0,2; O: (8,0,2; +: FIG. 8. Effect ofe on the coupling coefficient ;190 (I = 1,3,...,9).

1 cases. For examplé,3; 30{0)=0 between thg3,1) mode

Lij,lmn(a'): A_f ¢ij\P|mn(a)dS. (17) and the(3,0,Q mOde WhileL3113o({10°)=0.15(marked with

f an arrow in the figurg attaining 37% of the maximum val-

Figure 7 compares the magnitude of the coupling coefues ofL;; mn(@) (L11,10d @) =0.4053). Apparently, a strong
ficients when =0 and «=10° using sixteen acoustic coupling is created due to the distortion of the enclosure.
modes (=0,...,3m,n=0,1) and nine structural modes, | Taking the structural modél,1) as an example, varia-
=1,..,3). It can be seen that, wher+ 0, only a few acoustic tions of the coupling strength with respectdare examined
modes are coupled to each structural m@tnoted by a star in Fig. 8. Thefive acoustic modes are the same as the ones
in Fig. 7). In fact, any symmetric/anti-symmetric modes of previously used in Fig. 4. For each particular acoustic mode,
the panel, with respect to the center, would not be coupled tthe general tendency of the curve is somehow similar to its
an acoustic mode if the latter is anti-symmetrical/ counterpart in Fig. 4, which implies that a maximum alter-
symmetrical in one of the two directions parallel to the panelation of the pressure would most likely also lead to a signifi-
surface. The distortion of the walla(=10°) greatly in- cant change in its coupling strength to the lower-order struc-
creases the number of the coupled modes, denoted by circlasral modes. This agreement becomes, however, less
in Fig. 7. Comparing the two cases, the coupling strengtttonsistent, for higher-order structural modemt shown.
between the originally coupled modes are not significantlyTherefore, the criterion previously established to quantify the
altered, as judged by the closeness of the star-circle pairs jpressure variation can be roughly used to predict the cou-
Fig. 7. The additional coupling caused by the inclination ofpling strength between an acoustic mode with a lower-order
the wall, however, can reach a relatively high level in somestructural mode.

0-5 T 1 T T T T T T T T T
I 1 I 1 1 1
] [} I I I |
L %0 | i | | | | ]
(0,0,1) ! !
] |
0.3 i
* O * o %
& |
[o] ] * *O odh*- ]
* (20,0 | * O | o | %9 S |
£ 0.1} x© i *9 | -*-8 *x8 | * ]
S 1.01) 0 (30,0 ol %9 : * *8
~ of 8 I o1 o o 8 ] 0 - FIG. 7. Coupling coefficientL; jmn
1,000 O I ¥ o ! *g * 9 between acoustic modes and structural
01 @O1 * o 2] * *Q 1 ¥ ] modes of a simply-supported panl.
* *o 1 e | *xo0 | © a=0 andO: a=10° (i,j=1,..3;|
20,1) 7o %71 o ] =0,..,3;m,n=0,1).
I [}
* 0 x© *
-0.3f 1
I I
- , , ]
(0,0,0) ! |
] ] 1 1 L 1 : 1 : 1 1 1

(1,1) (1,20 (1,3) 2,1) (22 (2,3) (3,1) (3.2 (3,3
Modes of the panel
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IV. CONCLUSIONS Ji(g) reaches its extrema wheid|(e)/de =0, i.e.:

Acoustic modes and the coupling characteristics of a _
rectangular-like cavity with a slight geometrical distortion E\/1+(27T|8)2SIFKarCtEIZW'S)—ZW'S)
introduced through a leaning wall are investigated in this

paper. A pressure variation index is proposed to quantify the 2 1+¢2\? 5 .

global change in acoustic modes. The coupling coefficient is + 1—g2 \/(m +(mle) sm( | e

used to measure the effect caused by the distortion. Numeri-

cal simulations are performed to find out the relationships lme(1—¢?)

between the variation index, the coupling coefficient and the +arctg 1+¢g? ) =0 (A3)

distortion. The following conclusions can be drawn. A simplification of Eq.(A3) results in an approximate solu
(1) The pressure distribution inside the cavity is sensi- ion 01[3 . —il g 1 Th ongza
tive to geometrical changes. The most affected areas move H) &, Viz., e=i/l (i=1,...n). Thus, S

the leaning wall when the distortion is getting larger. I
(2) A simple relationship between the distortion effect i'_l Al |
and the acoustic wavelength involved is established. Whether AL|[;—_1, 2. T = (i_ - 1) L. (A4)

a given distortion is important depends on the wavelength of

the acoustic modes. For a lower-order mode, a small distowhere\ is the wavelength of the-th mode andh=2L/I.

tion has no apparent influence due to its large acoustic wave-

length. For high-order modes, however, the effect is apparente. 4. powell, G. F. Gorman, and D. A. Smith, “Acoustoelasticity: Gen-
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