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Abstract
A methodology for evaluating the response of embedded fibre Bragg grating
(FBG) sensors in composite structures based on the strain in a host material
is introduced. In applications of embedded FBG sensors as strain sensing
devices, it is generally assumed that the strain experienced in a fibre core is
the same as the one measured in the host material. The FBG sensor is
usually calibrated by a strain gauge through a tensile test, centred on
obtaining the relationship between the surface strain in the host material and
the corresponding Bragg wavelength shift obtained from the FBG sensor.
However, such a calibration result can only be valid for uniform strain
measurement. When the strain distribution along a grating is non-uniform,
average strain measured by the strain gauge cannot truly reflect the in-fibre
strain of the FBG sensor. Indeed, the peak in the reflection spectrum
becomes broad, may even split into multiple peaks, in sharp contrast with a
single sharp peak found in the case of the uniform strain measurement. In
this paper, a strain transfer mechanism of optical fibre embedded composite
structure is employed to estimate the non-uniform strain distribution in the
fibre core. This in-fibre strain distribution is then utilized to simulate the
response of the FBG sensor based on a transfer-matrix formulation.
Validation of the proposed method is preceded by comparing the reflection
spectra obtained from the simulations with those obtained from experiments.

Keywords: fibre Bragg grating (FBG) sensors, strain measurement, transfer
matrix, non-uniform strain

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Fibre Bragg grating (FBG) sensors have been exploited as
intrinsic strain sensors for the applications of smart composite
structures in aerospace, marine and civil engineering
communities over the past decades due to their superior
characteristics such as localized strain measurement ability,
relatively small size, high sensitivity, inertness to electric or
magnetic inference and multiplexing capability [1, 2]. The

FBG sensors are most commonly used as point sensors to
measure an average strain over their gauge length by examining
the Bragg wavelength shift in a reflection spectrum. On the
other hand, they can also be capable of the determination of a
distributed strain field along the grating [3].

For strain sensing applications, a bare optical fibre is
usually surrounded by a protective coating in order to avoid
the defects induced in the optical fibre during the fabrication
process of a smart composite. The presence of the protective
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coating influences the strain transfer efficiency from a host
material to an embedded FBG sensor. Moreover, the precision
of strain measurement in the embedded FBG sensor depends
mainly on the bonding characteristics of a fibre core, the
protective coating, an adhesive layer and the host material.
In general, the strain measured in the fibre core is assumed
to be equivalent to the one experienced by the host material
[4]. However, the strain experienced by the host material is
not totally transferred to the bare fibre as part of the energy
is absorbed by the protective coating and the adhesive layer
when the structure is loaded. To measure the actual strain in
the fibre core, the aspect of strain transfer mechanism of optical
fibre embedded composite structure has been considered
[5–7]. Duck and LeBlanc [6] investigated the mechanical load
transfer from a fibre core to a host material by theoretical
approaches. In their studies, the effects generated by the
thickness of a protective coating and an adhesive layer were
neglected. With a known strain field of the host material, an in-
fibre strain profile along the fibre core can be estimated. It was
found that the strain transfer efficiency is highly dependent
on the variation of the strain field in the host material.
Subsequently, Lau et al [7] proposed a theoretical model to
interpret the effects induced by the adhesive thickness and the
protective coating material on embedded FBG sensors. An
axial strain profile in a fibre core can be calculated provided
that an axial strain of a host material at the mid-span of the
beam is known.

A calibration test is widely used in establishing the
relationship between the strain in the host material and the
response of the FBG sensor, in which the Bragg wavelength
shift is obtained from the reflection spectrum and the strain
variation is recorded by using a strain gauge [8]. Although
such a reflection spectrum can quantitatively evaluate the
uniform strain, the strain distribution along the grating cannot
be found. In order to correlate the non-uniform strain
distribution along the grating and the reflection spectrum,
Huang et al [9] applied a transfer-matrix (T-matrix) method,
introduced by Tamada and Sakuda [10], to establish the
relationship between the applied strain along the grating and
the reflection spectrum. This method is broadly accepted for
constructing the reflection spectrum from the FBG sensors
subjected to a known strain field [3, 11, 12].

Motivated by the necessity of relating the non-uniform
strain in the host material and the form of the reflection
spectrum from the embedded FBG sensors, this paper presents
a methodology for evaluating the response of the embedded
FBG sensors in the composite structures based on the surface
strain of the host material. Evaluation of the non-uniform
strain measurement of the FBG sensor is carried out on
the basis of a strain transfer mechanism of an optical fibre
embedded composite structure, a finite-element model (FEM)
and a transfer-matrix (T-matrix) formulation. Firstly, the
strain distribution of the host material subjected to a bending
load is numerically calculated by the FEM. Then, the strain
transfer mechanism is employed for obtaining the in-fibre
strain distribution of the embedded FBG sensor. Lastly,
such a strain distribution is utilized to simulate the FBG
sensor response based on the T-matrix formulation. The
proposed method for the in-fibre non-uniform strain evaluation
is validated by comparing the reflection spectra obtained from
the simulations with those obtained from experiments.

Optical spectrum analyser

Broadband Light Source 

Coupler Fibre Bragg Grating 

Figure 1. A typical FBG measuring system.

2. Non-uniform strain sensing principle
of the FBG sensor

A FBG, in which a spatially periodic modulation has been
imposed on the refractive index of the core of a single mode
fibre, is fabricated by exposing a segment of the fibre to an
interference pattern of ultraviolet light. The length of the FBG
normally varies from 1 to 20 mm for meeting versatile sensing
purposes and the grating reflectivity can be approximately
100% in an ideal case [13]. A typical FBG measuring system,
shown in figure 1, consists of a FBG sensor, a broadband light
source, a 3 dB fibre optic coupler and an optical spectrum
analyser (OSA). Light is emitted from the broadband light
source to the FBG sensor via the coupler. Similar to a Y-type
channel, the role of the coupler is to guide the emitted light
to the FBG sensor and the reflective signals back to the OSA
simultaneously. The reflective signals from the FBG sensor
are then recorded by the OSA in which the reflection spectrum
with a sharp single peak is observed as a result.

The FBG sensor, prepared for processing embedment, is
always formed by three different cylindrical layers which are
the fibre core, a cladding and the protective coating. Figure 2
depicts the configuration and the light propagation in the FBG
sensor. Generally, the fibre core is surrounded by the cladding
which is made of silica glass, and both fibre core and coating
have the same mechanical properties. The protective coating is
the outermost layer of the sensor for protecting the fibre from
damage and moisture absorption. According to Bragg’s law,
the Bragg wavelength (λB) that is reflected from the sensor is
given by

λB = 2nB�, (1)

where � is the spacing between maxima in index modulation,
the so-called ‘spatial pitch’, and nB is the refractive index of
the fibre core. Both the spatial pitch and the refractive index
are dependent on the strain and the temperature that the FBG
exposes.

Unlike a uniform strain sensing, where both spatial pitch
and refractive index of the fibre core proportionally change
along the grating, non-uniform strain causes non-uniform
variation of the spatial pitch and the refractive index of the
fibre core along the grating. For a grating subjected to a
non-uniform strain, εxx(x), along the longitudinal direction
(x-direction), equation (1) can be rewritten as

λB(x) = 2neff(x)�(x) = 2neff0�0[1 + aεxx(x)], (2)

where a = 1 − 1
2 n2

0[p12 − ν(p11 − p12)] is the grating gauge
factor [14], in which p11 and p12 are the strain-optic constants
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Figure 2. Configuration and light propagation in the FBG sensor.

for the optical fibre and ν is Poisson’s ratio. �0 and neff0 are the
initial spatial pitch and the initial refractive index of the fibre
core at the strain-free state, respectively. Equation (2) implies
that the Bragg wavelength varies with the non-uniform strain
and results in the deformation of the reflection spectrum.

3. Non-uniform strain sensing

In accordance with the non-uniform strain sensing principle,
the reflection spectrum shows a strong correlation with the
in-fibre strain distribution along the grating. With the goal
of relating the reflection spectrum to the strain distribution
of a host material, a strain transfer mechanism is considered.
The proposed non-uniform strain evaluating methodology is
illustrated by means of the strain transfer mechanism, FEM
and T-matrix formulation. By modelling the host material
under a three-point bending configuration with the FEM, the
surface strain distribution of the host material is numerically
calculated. This strain distribution is then transferred to the
corresponding in-fibre strain distribution of the embedded
FBG sensor through the strain transfer mechanism. It is
recalled that this methodology only works for the host with
well-understood mechanical properties. As a result, the
response of the embedded FBG sensor can be simulated using
the T-matrix formulation. The validation of the proposed
method for the in-fibre non-uniform strain evaluation can
be preceded by means of a comparison of the reflection
spectra obtained from the simulations with those obtained from
experiments.

3.1. Strain transfer in embedded optical fibre

In Duck and LeBlanc’s theoretical model, they only
considered a two-cylinder model to represent the strain transfer
mechanism between the host material and the optical fibre [6].
It was assumed that the optical fibre sensor is modelled as an
infinitely long axisymmetric system and both host material and
optical fibre are isotropic. From a practical point of view, this
model cannot represent the situation of the composite structure
with embedded optical fibre sensor, since the optical fibre
sensor always includes the protective coating which protects
the bare optical fibre from damage during the embedment
process. As a result, a four-cylinder model considered by
one of the authors is studied here [7]. In the consideration
of the bonding characterization at the interfaces between the
host material and the adhesive layer, the adhesive layer and
the protective coating, and the protective coating and the
fibre core, a modified four-cylinder model shown in figures 3
and 4 is introduced to study the strain transfer of optical fibre
embedded composite structure.

In figure 3, the longitudinal direction (z) and the transverse
direction (r) represent the direction of the applied load and
the distance measured from the centre of the fibre core,
respectively. The subscripts f, c, a and m denote the fibre
core, protective coating, adhesive layer and host material,
respectively. Tensile and shear moduli are given by E and G.
σ̄z and τrz are the mean normal stress acting on the cross
section and the shear stress acting on the outer surface of
different materials, respectively. The symbols rf , rc, ra and rm

represent the outer radii of the fibre core, protective coating,
adhesive layer and host material, respectively, measured from
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Figure 3. Free-body diagrams of (a) bare fibre, (b) protective coating, (c) adhesive layer and (d) host material.
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Figure 4. Cross-sectional view of the modified four-cylinder model.

the centre of the fibre core. All basic assumptions are made
based on the model presented earlier in the literature [7].

Figure 3 sketches schematic free-body diagrams of an
incremental element of different parts of the optical fibre
embedded composite system. The force equilibrium equations
for the fibre core, protective coating, adhesive layer and host
material are expressed as equations (3a)–(3d), respectively,

∂σ̄ f
z (z)

∂z
= −2τ f

rz(rf, z)

rf
, (3a)

∂σ̄ c
z (z)

∂z
· r2

c − r2
f

2
= τ c

rz(rf, z)rf − τ c
rz(rc, z)rc, (3b)

∂σ̄ a
z (z)

∂z
· r2

a − r2
c

2
= τ a

rz(rc, z)rc − τ a
rz(ra, z)ra, (3c)

∂σ̄ m
z (z)

∂z
· r2 − r2

a

2
= τm

rz(ra, z)ra − τm
rz(r, z)r. (3d)

Equations (3a) and (3b), equations (3b) and (3c), and
equations (3c) and (3d) are related through the equivalence of
shear forces for the bonding characterization at the interfaces
between the fibre core and the protective coating, the protective

coating and the adhesive layer, and the adhesive layer and
the host material, respectively, i.e., τ f

rz(rf, z) = τ c
rz(rf, z),

τ c
rz(rc, z) = τ a

rz(rc, z) and τ a
rz(ra, z) = τm

rz(ra, z). Therefore,
the interfacial shear can be eliminated. By combining
equations (3a)–(3d),

τm
rz(r, z) = −Efr

2
f

2r

[
Em

(
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)
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2
f
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+
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c

)
Efr

2
f
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z(z)
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+
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(
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f

)
Efr

2
f

· ∂ε̄c
z(z)

∂z
+

∂ε̄f
z(z)

∂z

]
. (4)

As the stiffnesses of the host material, adhesive layer and
protective coating are two orders less than that of the fibre
core [6], equation (4) becomes

τm
rz(r, z) ≈ −Efr

2
f

2r

[
dε̄f

z(z)

dz

]
. (5)

The shear stress is then expressed in terms of the shear modulus
of the host material (Gm) and material displacements in the
w-direction only since u-displacements caused by the Poisson
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contraction are less significant than w-displacements as

τm
rz(r, z) = Gm

[
∂wm(r, z)

∂r

]
. (6)

Combination of equations (5) and (6) gives

∂wm(r, z)

∂r
= − Ef

Em
(1 + νm)r2

f

∂ε̄f
z(z)

∂z
. (7)

Integrating both sides of equation (7) with respect to r yields

wm(rm, z) − wm(ra, z) = − Ef

Em
(1 + νm)r2

f ln

(
rm

ra

)
∂ε̄f

z(z)

∂z
.

(8)

Since the axial displacement of the host material can be
obtained by considering the condition of compatibility for all
elements,

wm(ra, z) = δa(z) + δc(z) + wf(rf, z), (9)

in which the relative displacements of the adhesive layer and
the protective coating are determined by

δa(z) = 1

Ga

∫ ra

rc

τrz(r, z) dr (10a)

and

δc(z) = 1

Gc

∫ rc

rf

τrz(r, z) dr. (10b)

Substituting equation (10) into equation (9) and equating
equation (8),( rf

n

)2 ∂2ε̄f
z(z)

∂z2
− ε̄f

z(z) = −ε̄m
z (rf, z), (11)

where n is the shear–lag parameter which encapsulates both
the effects of geometry and the relative stiffness of the system
components and is written as

n2 = 1
Efrc
2ra

(
1

Ga
ln

(
ra
rc

)
+ 1

Gc
ln

(
rc
rf

))
+ Ef

Em
(1 + νm) ln

(
rm
ra

) . (12)

Equation (11) is a second-order, inhomogeneous, linear
differential equation with the in-fibre strain, ε̄f

z(z), sought as a
function of the axial coordinate, z. The inhomogeneous term,
ε̄m
z (rm, z), is a forcing function, at rm, that drives the response

Table 1. Mechanical and geometrical properties of the optical fibre
embedded system.

Description Symbols Values

Radius of bare fibre (µm) rf 62.5
Outer radius of protective coating (µm) rc 125
Thickness of adhesive layer (mm) ta 0.1
Thickness of glass fibre composite (mm) tm 0.2

Young’s modulus (GPa)
Bare fibre Ef 72
Protective coating Ec 0.1
Adhesive material Ea 3.3
Glass fibre composite Em 15

Shear modulus (GPa)
Protective coating Gc 0.037
Adhesive material Ga 1.2
Glass fibre composite Gm 6.5789

of the in-fibre strain, ε̄f
z(z). Equation (11) is the same as

the standard shear–lag relationship, except that ε̄m
z (rm, z) now

varies with z. The shear–lag parameter (n) in the case of the
two-cylinder model is as follows [6]:

n2 = Em

Ef
· 1

(1 + νm) ln(rm/rf)
. (13)

Equation (11) is solved by the Fourier transform followed by
the steps addressed in Duck and LeBlanc’s model [6], in which
the transfer function of the system is defined as

H(k) = ε̂f
z(k)

ε̂m
z (rm, k)

= 1

(2πkrf/n)2 + 1
. (14)

In this study, a typical singly periodic function (i.e. ε̄m
z (rm, z) =

cos(2πkz)) with different k was assumed to be applied on the
surface of the host material for simulating the induced strain
field in the fibre core

(
ε̄f
z(z)

)
. Table 1 lists the material and

geometrical properties of the optical fibre embedded system.
By using this table, H(k) can be calculated. Figure 5 indicates
the transfer function H(k) with different values of k in the
cases of two-cylinder and modified four-cylinder models. The
higher k means a more abrupt strain variation applied on the
surface of the host material. The transfer function generally
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Figure 6. Transfer of a single period of function εm
z (rm, z) = cos(2πkz) with (a) k = 100, (b) k = 200, (c) k = 500 and (d) k = 1000.

decreases with increasing k in both cases. This implies that
the efficiency of the strain transfer from the host material to
the bare fibre strongly depends on the shape of the applied
strain distribution. The transfer function gradually drops with
increasing k for the two-cylinder model, while it decreases
in an exponential manner with increasing k for the modified
four-cylinder model. It is reasonable to obtain these results as
the strain attenuation should be greater for transferring strain
through four material layers in the modified four-cylinder
model rather than the two-cylinder model with two material
layers only.

The applied strain profile at the surface of the host material
and the induced strain distributions at the bare fibre obtained
from the two-cylinder and modified four-cylinder models, but
with different values of k, are illustrated in figures 6(a)–(d).
Both shape and amplitude of the strain profile are changed
after the strain transfer. The higher the k, the weaker the strain
transfer obtained. It is important to note that the reflection
spectrum from the FBG sensor cannot be simulated accurately
without knowing the in-fibre strain distribution obtained by
the modified four-cylinder model.

3.2. FEM model

A FEM analysis, using a MSC visual Nastran/Patran
commercial software package, was carried out to calculate
the surface strain distribution at the grating region while a
glass fibre–reinforced epoxy (GF/EP) composite beam was
subjected to a three-point bending load. It is generally
assumed that the material properties are constant in the width-
wise direction for an isotropic material. A 2D FE model,
depicted graphically in figure 7, was chosen to simulate
the beam under a three-point bending test in the present
study. Moreover, the effects of the embedded optical fibre
are neglected here although these effects cannot be ignored
under some conditions [15]. The mesh was generated using
six-noded triangular finite elements. Two-way bias elements,
as emphasized in figure 7, were selected in a region near the
gauge length to achieve a high resolution of strain variation.
There are 7982 nodes and 3401 elements in this model. Linear
elastic properties of GF/EP composite were assumed. The
elastic modulus and the Poisson ratio of GF/EP composite
are 15 GPa m−2 and 0.14, respectively. The surface strain
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FEM calculation and the modified four-cylinder model.

distribution within the grating region can then be obtained at
every 5 mm lateral displacement of the loading head.

The surface strain distribution within the grating region
when the beam was loaded with various bending loads based on
a FEM calculation is exhibited in figure 8. The beam exhibited
a linear strain gradient while it was subjected to the bending
loads and the strain gradient increases with the increasing
applied load under this loading condition. This figure also
shows the in-fibre strain distribution, which was calculated
by means of the modified four-cylinder model based on the
corresponding surface strain distribution obtained from the
FEM analysis. Obviously, the strain gradient of the in-fibre
strain distribution is smaller than that of the surface strain
distribution and a reduction of the strain gradient increases
with the increasing bending load. Furthermore, the average
strain values of the surface and the in-fibre strains remain the
same.

3.3. Spectrum simulation

A FBG is defined as a small periodical perturbation to the
effective index of refraction neff of an optical fibre core
described by [16]

δneff(z) = δneff

{
1 + ν cos

[
2π

�0
z + φ(z)

]}
, (15)

where ν is the fringe visibility, �0 is the nominal period, φ(z)

is the grating chirp and δneff is the ‘dc’ index change spatially
averaged over a grating period. By coupled-mode theory, the

first-order differential equations describing mode propagation
through the grating in the z-direction are

dR(z)

dz
= iσ̂R(z) + iκS(z) (16a)

and

dS(z)

dz
= −iσ̂ S(z) − iκR(z), (16b)

where R(z) and S(z) are the amplitudes of the forward- and
backward-propagating modes, respectively. σ̂ is the general
‘dc’ self-coupling coefficient as a function of the propagating
wavelength λ, defined as

σ̂ = 2πneff

(
1

λ
− 1

λD

)
+

2π

λ
δneff − 1

2
φ′(z), (17)

where φ′(z) = dφ/dz and φ′(z) = 0 for the uniform grating,
λD = 2neff�0 is the designed wavelength (1540.2 nm in this
study) and κ = π

λ
νδneff is the ‘ac’ coupling coefficient, in

which δneff = 1.131 × 10−4 and ν ≈ 1.
The length of a uniform grating is assumed to be L (L =

10 mm), so the limit of the grating is defined as −L/2 �
z � L/2, while the boundary conditions of the uniform
Bragg grating are R(−L/2) = 1 and S(L/2) = 0 [16]. The
reflectivity of the Bragg grating, calculated as a function of the
wavelength, can be expressed as

r(λ) =
∣∣∣∣ S(−L/2)

R(−L/2)

∣∣∣∣
2

. (18)

To obtain the reflectivity of the uniform Bragg grating, which is
subjected to either uniform or non-uniform strain, the T-matrix
formulation is used to model the Bragg grating with non-
constant properties. In this approach, the grating is assumed
to be divided into M small sections, each with uniform coupling
properties. It is important to note that M cannot be arbitrarily
large since several grating periods are required for complete
coupling. Hence, M is constrained as [3]

M � 2neffL

λD
, (19)

and M is set to be 200 in the present study.
By defining Ri and Si as the field amplitudes after

traversing the ith grating section, the propagation through this
uniform section can be described by[

Ri

Si

]
= Fi

[
Ri−1

Si−1

]
, (20)

where

Fi =
[

cosh(γBz) − i σ̂
γB

sinh(γBz)

i κ
γB

sinh(γBz)

−i κ
γB

sinh(γBz)

cosh(γBz) + i σ̂
γB

sinh(γBz)

]
,

in which z is the length of each section and γB = √
κ2 − σ̂ 2.

As a result, the T-matrix formulation for entire grating can be
written as [

R(−L/2)

S(−L/2)

]
= F

[
R(L/2)

S(L/2)

]
, (21)
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Figure 9. (a) Simulated reflection spectra from the FBG sensor
based on the surface strain distribution along the grating obtained
from the FEM. (b) Simulated reflection spectra from the FBG
sensor based on the in-fibre strain distribution along the grating
obtained from the FEM with the consideration of the stress transfer
model.

where F = FM · FM−1 · · · F1. The reflectivity of the entire
grating is then calculated using equation (18).

By using the above FEM results, the reflection spectra
from the FBG sensor in which the specimen was loaded
with various bending loads can be simulated in virtue of the
T-matrix formulation. Such reflection spectra simulated based
on the surface and the in-fibre strain distributions are illustrated
in figures 9(a) and (b), respectively.

For the cases of the reflection spectra obtained from the
surface and the in-fibre strain distributions, as illustrated in
figures 9(a) and (b), the level of intensity and the bandwidth
of the reflection spectrum decreases and increases with the
increasing load, respectively. These changes can be explained
by the properties of the uniform FBG subjected to the linear
strain gradient. The chirped grating effect [3] occurs when
the uniform FBG exhibits the linear strain gradient. The level
of strain gradients in different loading cases can be found in
figure 8. Moreover, a shift of single peak to smaller wavelength
results from the FBG sensor subjected to a compressive strain

100 mm

Composite beam with 

embedded FBG sensor 

Figure 10. Three-point bending test configuration.

during the bending test. The single peak starts to distort when
the applied load is larger than approximately 18 N in the case
of the surface strain distribution. However, such a distortion
does not occur in the case of the reflection spectra simulated
based on the in-fibre strain distribution. Referring to the FEM
results in figure 8, the distortion found in the spectrum can
be explained by the level of strain gradient. The higher the
strain gradient, the higher the chance for a spectrum distortion
to occur. This figure clearly demonstrated a correlation of
the strain distribution along the grating and the reflection
spectrum. Even for the same average strain, the form of the
reflection spectrum is totally different since the shape of the
strain profile along the grating is not the same.

3.4. Experimental validation

In this experiment, a GF/EP composite beam (16 cm ×
2.5 cm × 0.2 cm), with the mechanical properties of E11 =
E22 = 13.363 GPa, G12 = 5.86 GPa, ν = 0.14 and ρ =
1664.03 kg m−3, was fabricated by a hand lay-up process
for conducting a three-point bending test. Figure 10 depicts
a photograph of the three-point bending test configuration.
The test was processed using an MTS static axial loading
test machine. The specimen was loaded under a constant
displacement rate of 0.5 mm min−1. The strain distribution
along the grating was recorded by the FBG sensor as illustrated
in a form of the reflection spectrum which was displayed in an
optical spectrum analyser and then saved in every extension
interval with 0.5 mm instantaneously. The test was stopped
when the extension reached 3.5 mm. A schematic diagram of a
whole data acquisition system in this experiment is indicated in
figure 11.

The experimental results of the reflection spectra obtained
from the FBG sensor are shown in figure 12. There is
no observable distortion of the reflection spectrum obtained
from the experiment. Such an observation exhibits good
agreement with the simulation found in figure 9(b), in terms
of the shape, the level of intensity as well as the Bragg
wavelength shift. However, the discrepancy in the shape of
the reflection spectrum is noted in the case of the simulated
spectra in the presence of the strain distribution without
the strain transformation, as indicated in figure 9(a). These
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Figure 11. A schematic diagram of a whole data acquisition system for a three-point bending test.
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Figure 12. Reflection spectra captured from the FBG sensor during a three-point bending test.

results imply that the change in the shape of the strain profile
due to the existence of the protective coating and the adhesive
layer significantly affects the reflection spectrum from the
FBG sensor. This influence becomes more obvious when
the strain gradient along the grating is higher. Therefore,
the response of the FBG sensor can only be simulated
accurately in conjunction with the modified four-cylinder
strain transfer model. Without the deployment of such a
transfer model, the response of the FBG sensor would be
overestimated, and hence, result in the distortion of the
reflection spectrum

4. Conclusion

This paper presents the methodology for evaluating the
response of embedded FBG sensors in a composite structure
based on the non-uniform strain found in a host material. By
virtue of the strain transfer mechanism of the optical fibre
embedded structure, FEM analysis and T-matrix formulation,
the reflection spectra from the embedded FBG sensor which
was subjected to various bending loads were estimated on the

basis of the in-fibre strain distribution. From the experimental
validation, the reflection spectra captured from the OSA in the
bending test were in good agreement with those obtained by the
spectrum simulation based on the in-fibre strain distribution, in
terms of the spectrum parameters such as the shape, the level
of intensity and the Bragg wavelength shift. However, the
discrepancy was found in the case of the simulative spectra
obtained from the surface strain in the host material for
which the distortion of the reflection spectrum was observed.
Such a result demonstrates the importance of the strain
transfer mechanism to the accuracy of the reflection spectrum
construction.

In practice, the damage in the composite structures can
be detected by the FBG sensor since the non-uniform strain
caused by the damage may give the failure threshold of
the structures. Such a damage detection scheme can be
developed provided that the relationship between the in-fibre
strain field along the grating and the reflection spectrum is
well defined. The proposed method can effectively establish
this relationship assisted by the theoretical or the numerical
model of the damaged structures. Future works will focus
on the reconstruction of the reflection spectrum from the
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embedded FBG sensors in delaminated composite structures
using the methodology presented in this paper. By knowing
the correlation of the in-fibre strain distribution somewhere
near the delamination and the simulated reflection spectrum,
the delamination location, probably its size, can be identified
in association with some inverse problem techniques to be
solved.
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