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Abstract

Emphasis of this paper is given to the modal characteristics of a brake rotor which is utilized in automotive disc brake
system. The brake rotor is modeled as a combined structure comprising an annular plate connected to a segment of
cylindrical shell by distributed artificial springs. Modal analysis shows the existence of three types of modes for the
combined structure, depending on the involvement of each substructure. A decomposition technique is proposed, allowing
each mode of the combined structure to be decomposed into a linear combination of the individual substructure modes. It
is shown that the decomposition coefficients provide a direct and systematic means to carry out modal classification and
quantification.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Brake squeal is a very notorious noise phenomenon which occurs during the process of vehicle braking
[1-3]. Early studies on brake squeal problems can be traced back to 1950s. Even now, consentaneous
explanation of such phenomenon still evades researchers due to its fugitive nature and the complex physical
interactions between different components involved in a brake system, among which the brake rotor is the
most crucial one.

In the generation of brake squeal, the brake rotor reveals its significance mainly in two aspects: the
indispensable involvement in the process of friction interaction and the effective sound radiation due to its
vibration. Based on a common belief that the brake noise is aroused primarily by the self-excited vibration of
the brake structure [1,2], a significant portion of the existing works focuses on structural vibration instead of
noise itself.

Commonly used modeling methods for brake systems can be roughly classified into two categories: methods
based on analytical continuum theories and the finite element (FE) models. The apparent advantage of FE
method rests in its capacity of dealing with more realistic brake rotor models and generating accurate
solutions. Both free and forced vibration analyses can be carried out using commercial FE software [4-6].
Systematic methodologies have also been developed to extract structural parameters from FE analysis and
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then perform stability analysis externally [5]. However, most FE models used for vibration analyses of brake
rotor are highly computationally demanding. By contrast, a simplification of the brake system model makes it
possible to use more conventional, efficient and physical methods based on analytical continuum theories.
Differences in existing models root in different beliefs on the brake noise generation mechanism. Analyses
based on such simplified analytical models are able to focus on specific physical aspects and explore
major underlying physics of the system. While using analytical continuum models, researchers generally
cover only the brake pads and the brake rotor. Such analyses usually focus on the structure interaction
and/or modal coupling between the pads and the rotor due to the friction interaction. For example, Ouyang
and Mottershead [6,7] proposed a brake model comprising a uniform annular plate and, on the top of it, a
rotating mass—damper—spring exciter. Their studies focused on the stability analysis of this parametric excited
system. In Hulten et al. [8,9], both the rotor and brake pads were modeled as beam structures. It was proposed
that the bending moment of the rotor is responsible for the modal coupling and wave propagation within
the rotor.

It is known that a brake rotor responds differently in low- and high-frequency brake squeal [2]. In the case
of the low-frequency squeal, the brake rotor is predominated by bending modes without nodal circle. While in
the case of high-frequency squeal, the rotor displays both in-plane movement and bending. Controversial
viewpoints about the rotor behavior in the high-frequency squeal still exist. Chen et al. [10] claimed that high-
frequency brake squeal resulted from modal coupling between an in-plane mode and an out-of-plane
(bending) mode of the brake rotor. Therefore, when the in-plane modes of a rotor had the same resonant
frequencies with the out-of-plane modes, the in-plane vibration energy was effectively transferred to the out-
of-plane vibration that was efficient/sufficient to generate squeal noise. Usually, the out-of-plane mode with a
higher resonant frequency adjacent to the in-plane mode tended to be the one that had the same vibration
pattern as the squeal deformation shape. However, experiment results reported in a recent paper [11] seem to
indicate that frequency lineup of in-plane circumferential (IPC) mode and out-of-plane diametric (OPD) mode
had no impact on squeal, which challenged the conventional assumption based on the IPC-OPD frequency
coupling. Despite these differences in the interpretation of squeal noise generation mechanism, there is
one argument which seems to be well accepted, i.e., a thorough understanding of the structural modal
characteristics of the brake rotor is indispensable and critical to further disclose the brake vibration/noise
mechanism.

Except FE models, a large majority of analytical models reported in the literature simplified the
brake rotor as a uniform annular plate. Although such a model greatly simplifies the mathematical
treatment, it inevitably deviates from the real brake rotor structure, since the in-plane and transversal
motions are totally decoupled in an annular plate. A more reasonable model should at least consider
the practical brake rotor as a combined structure, including a top annular plate connected to a short
segment of cylindrical shell. In practice, the existence of the shell segment serves as a vehicle for the
coupling between the in-plane and transversal motions of the disc. The degree of difficulty in handling
such a model, however, significantly increases. Of a few available references dealing with such models,
Bae and Wickert [12] used FE analysis to investigate a disc-hat structure of the brake rotor, which evolves
from a simple thin plate with an increasing hat depth. Parametric studies have also been carried out in
their paper.

This paper proposes an alternative to the existing FE model using a combined structure, comprising
an annular plate connected to a short segment of shell, to model the brake rotor. Artificial springs are
utilized to combine them together. The primary aim of the paper is to discuss the modal characteristics
of such combined structure using a semi-analytical approach. A numerical procedure for modal analysis is
derived by means of Rayleigh—Ritz method. Accuracy of the model is then verified by comparison
with FE simulations. Structural coupling phenomena between different parts of the brake rotor are
identified through numerical results. Structural modes are investigated and classified according to their
deformation features. Emphasis is put on those modes which show strong coupling between the out-of-plane
motion of the plate and the in-plane motion of the whole structure. Influences of the rotor dimension are also
investigated. It is demonstrated that modal characteristics of the combined structure can be quantitatively
evaluated through a decomposition analysis, in which each mode is expanded as a linear combination of
individual substructure modes. The linear combination coefficients quantify the contribution of each single
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substructure mode to the coupled mode of the combined structure, thus indicating its characteristic
deformation pattern.

2. Numerical procedure based on a three-dimensional elasticity theory

The proposed model for a brake rotor comprises an annular plate and a segment of cylindrical
shell connected by distributed artificial springs, as illustrated in Fig. 1. Theses springs, having translational
stiffness k,, k, and k»,, are used to couple the translational deformations in the radial, circumferential
and axial directions, respectively, at the interface between the plate and the shell. Meanwhile,
rotational springs having distributed stiffness C, are also used to couple the bending deformation
between the two substructures. Advantages of using an artificial spring system to deal with mechanically
coupled structures have been extensively documented in the past. Typical examples can be found in
Refs. [13,14], in which artificial springs were successfully applied to a thin cylindrical shell ended with
circular plates.

The boundary conditions of the combined structure are implemented in two ways in the present case. One is
through the choice of appropriate expansion functions for different displacement components to satisfy
certain types of geometrical boundary conditions related to the deformation. This will be clarified in the
following sections. The other alternative is again to use artificial springs to impose mechanical constraints,
such leading to certain types of boundary conditions. In practice, the brake rotor is screw-mounted on the
wheel knuckle through an internal annular plate at the free end of the combined model. To better reflect
the reality, additional axial translational springs k; and rotational springs C; are further incorporated into the
model at the free end of the shell segment to impose constrains on the axial translation and bending of
the shell.

Various elasticity theories are available in particular for plate or shell structures. For instance,
Mindlin plate theory is quite appropriate for the mid-thin plate, and Fligge theory is able to
give satisfactory results for the thin but at least moderately long shell. These theories, however, are found
to be inappropriate for the model employed here. This is mainly due to the relatively short length
of the shell segment of the brake rotor. Thus, the following formulation resorts to the three-dimensional
elasticity theory.

The derivation of the numerical procedure for modal analysis is based on the Hamilton’s principle:

31
(5HC=5/ (T.—E)dr=0 (1)
to

in which, H, denotes the Hamiltonian function defined as the integral of the difference of kinetic energy T
and potential energy E. of the system, provided the dynamic system is conservative. These energy terms,

Plate Shell

Fig. 1. Combined structure model of a disc brake rotor.
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corresponding to the combined structure in Fig. 1, comprise the kinetic and elastic potential energies incurred
by structural deformation of the plate and the shell segment, and the potential energy of the distributed
artificial springs. Despite the apparent differences in their dimensions, both the annular plate and the shell
segment can be regarded as a hollow cylindrical structure, complying with the general three-dimensional
elasticity theory [15-17]. Therefore, energy analysis of a general hollow cylindrical structure is first derived,
and then applied to the plate and shell part of the combined model. For this purpose, a cylindrical reference
coordinate system (r, 0, x) is used as shown in Fig. 2. The figure also defines symbols to denote the dimensions
of the hollow cylindrical structure.

Let u, v and w denote the displacement components in the direction of r, 6 and x, respectively. According to
the three-dimensional elasticity theory, the strain—displacement relationship with respect to the cylindrical
coordinate system is expressed as
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Fig. 2. General hollow cylindrical structures with corresponding reference coordinate system.
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Translating the potential energy (E.) and kinetic energy (7,) into the functional of these displacement
components with respect to the strain—stress and strain—displacement relationship yields

oo @) <2 o)+ ()
vy () (G )+1(%+)(g—)+(g_)<g_>>

(1—=2w) [ (10u Ov v\? ou  ow\? ov low
T o e ) tlaeta) Tlaxtrae) | (rdrdodx 3)

- g / / (i + 0 +w?)r dr do dx, @)

where, E = E/(1 + u)(1 — 2p) is a Lame constant; p the density; u the Poisson’s ratio and E the Young’s
modulus.

Different displacement components involved in the above expressions should then be expanded on the basis
of a set of properly chosen admissible functions. It is proposed to adopt the trigonometric series for the
circumferential expansion and the orthogonal polynomial series for the radial and axial expansions. Assuming
harmonic response with an angular frequency ®, the expansion for these displacement components is
expressed as:

u= {fu(r)gu(x) Z Z Z U (]’) (r)qu(x) COS(}’lQ)} lmt (5)
v = {f (r)gu(x) Z Z Z V qﬁ (V)(P/(X) SIn(nH)} lwt (6)

w= {fu (r)g,,(x) Z Z Z W (]5 (V)(p](x) COS(nO)} lwt 7

in which, Uy, Vi and W7 denote the expansion coefficients to be determined. f;(r) and gp;(x) are
incorporated here to satisfy the typical geometrical boundary conditions of the structure, which has been
previously mentioned. These two functions are defined, respectively, as

S = (r=10)" (r—1D,)* (8)

g9 = e = Ly, 9)

where, D; and D, are the internal and external diameters of the cylindrical structure, respectively, and L its
length. In the above expressions, the exponents would be settled either as 0 or 1 depending on the boundary
conditions. They are defined as follows:
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For an annular plate: All exponents in Eq. (9), i.e. /3[1'] and ﬂg], are zeros, while exponents in Eq. (8) are
defined as:

l] =0, ocl”]] =0, oc:]] =0, i=1,2: for free circumferences;

[] [v]
3—0 cxlb]—

O‘[z] =1 O‘[z] = l,oc[:}] =2, i=1,2:forclamped circumferences.

0, oc[:}] =1, i=1,2:forsimply supported circumferences;

For a cylindrical shell: All exponents in Eq. (8), i.e. oc[l'] and ocg], are zeros, while exponents in Eq. (9) are
defined as:

ﬂF;]] = ﬁ[l] = ,BB;] =0, i=1,2:for free circumferences;
/3%] = ﬂﬁ] = ,BF‘] 1, i=1,2:for simply supported circumferences;
ﬁE‘]] 1 [3[,] =1 ﬂF‘] i = 1,2 : for clamped circumferences.

In Eqgs. (5)—(7), both {¢,(r)} and {q)j(x)} are orthogonal polynomial series. Taking {¢;(r)} as an example, the
following shows the algorithms for its generation [18] with the initial conditions ¢,(r) = 0 and ¢,(r) = I:

¢i+l(r):(r_Bi)¢i(r)_ Ciqsifl(r)’ i= 1’2’3""’ (10)

1r%,b%(r) dr / / qus,?(r) dr
1 1
Ci = / r¢?(r) dr / / r¢? (r) dr,

where ¢ = D;/D,. The potential energy contributed by the distributed artificial springs is expressed as

0 Ou
= %/ /{k2(wp - Ws)z + ku(up - us)z + ku(”p - 05)2 + C2< aWp + au > }V drdo

2
+%/S /{km/? + C; <%> + ko(w, — ws)z}r dr do (11

in which subscripts p and s refer to variables applied to the plate or to the shell of the combined structure,
respectively. Substituting the expansion functions (5)—(7) and the energy expressions (3), (4) and (11) into the
Hamiltonian function (1), extremization is performed using Lagrange’s equation with respect to unknowns
UZ, VZ, WZ A coupled linear equation in terms of all structural unknowns of the whole structure is finally
obtained for a given circumferential expansion order n, which actually represents the number of the nodal
diameters. Based on this linear equation, stiffness matrix and mass matrix can be formed and eigen analysis
can be carried out. Modal solutions can then be obtained.

The convergence and accuracy of the model are first validated by applying the formulation to a free annular
plate with a medium thickness. The benchmark plate is the one used by Leissa [15] with H/D,= 0.2,
D;/D,=0.5 and H = (D,—D,)/2. The Poisson’s ratio is v = 0.3. Table 1 tabulates results obtained by the

present model and those extracted from Ref. [15], expressed in terms of the non-dimensional modal frequency

Q, which is defined as the ratio between the natural angular frequency and the wave velocity \/4E/ pDi.

Calculations using the present model are carried out using different truncation orders for the polynomial series
{¢,(r)} and {p;(x)}. Note that Q decreases when more terms are used, which is a well-known feature of the

where

and

Rayleigh—Ritz method. Consistency and improved accuracy of the solution are evident, as the numbers of the
expansion terms are gradually increased. Results presented hereafter use (1,J) = (5,3), (7,5) or (9,7) in
different cases, with /, J being the maximum orders for {¢,(r)} and {¢;(x)}, respectively.
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Table 1
Non-dimensional modal frequencies () of a plate with dimension H/D, = 0.2, D;/D, = 0.5 and Poisson ratio v = 0.3

n Q (Symmetric modes) Q (Asymmetric modes)
Ref. [15] I=5 I1=7 I1=9 Ref. [15] I=5 I1=7 I1=9
J=3 J=35 J=17 J=3 J=35 J=17
0 2.234 2.234 2.234 2.233 1.388 1.391 1.388 1.388
6.814 6.816 6.814 6.814 7.854 8.483 7.856 7.854
9.957 10.209 9.958 9.957 8.321 8.660 8.323 8.321
11.343 12.690 11.365 11.343 9.127 9.993 9.137 9.127
12.207 12.904 12.228 12.207 10.398 11.021 10.399 10.398
14.295 15.939 14.309 14.295 14.133 15.541 14.216 14.133
1 2.806 2.806 2.806 2.805 1.943 1.992 1.944 1.943
7.372 7.378 7.372 7.372 8.039 8.481 8.041 8.039
9.868 10.077 9.868 9.868 8.534 9.071 8.537 8.534
11.386 12.697 11.408 11.386 8.945 9.744 8.953 8.945
12.077 13.112 12.094 12.077 10.876 11.567 10.893 10.876
2 0.949 0.949 0.949 0.949 0.691 0.701 0.691 0.691
4.177 4.178 4.177 4.177 3.123 3.241 3.124 3.123
8.630 8.720 8.630 8.630 8.400 8.673 8.403 8.400
9.721 9.956 9.722 9.721 8.793 9.508 8.800 8.793
11.516 12.640 11.536 11.516 9.233 9.859 9.237 9.233
3 2.249 2.251 2.249 2.249 1.681 1.712 1.681 1.680
5.717 5.719 5.717 5.717 4.450 4.635 4.451 4.450
9.441 9.622 9.442 9.441 8.808 9.187 8.813 8.808
10.270 11.048 10.271 10.270 8.986 9.577 8.991 8.986
11.744 12.949 11.760 11.744 10.233 10.353 10.239 10.233
4 3.622 3.628 3.622 3.622 2.771 2.838 2.771 2.771
7.209 7.216 7.209 7.209 5.805 6.057 5.807 5.805
9.626 9.943 9.627 9.626 9.238 9.813 9.245 9.238
11.310 11.790 11.315 11.310 9.587 9.834 9.593 9.587
12.130 13.151 12.142 12.130 11.357 12.253 11.366 11.357

I and J are the maximum orders used in the expansion of the displacement components.

A full validation is conducted using a typical and complete disc brake rotor model. Dimensions of the
annual plate are D; = 124 mm, D, = 237mm, L = 12mm, and those of the shell segment are D; = 124 mm,
H =55mm and L = 23.5mm. Two boundary conditions are considered for the shell at its right-hand side
(see Fig. 1): free with k; = 0 and C; = 0; and supported with k; = 3 x 10° N/mm and C, = 5 x 10° N/rad. The
rigid connection between the shell and the plate is ensured using k, = 5 x 10° N/mm, k, = 5 x 10° N/mm,
kr = 5x 10°N/mm and C> = 5 x 10°N/rad, all well exceeding the bending stiffness of the structure. It is
pertinent to mention that, when the value of the spring stiffness is gradually increased, calculation results
undergo a converging process. In simulating a rigid connection, the stiffness terms are gradually increased
until no further variation is observed in terms of natural frequencies of the structure. More details on the
selection of the spring stiffness can be found in Ref. [13]. Apart from the previously established formulation
based on the three-dimensional elasticity theory, a parallel formulation using Mindlin plate theory and Fliigge
shell theory is also implemented to assess the applicability of these theories to the present configuration. FE
simulation is conducted to provide reference solutions. The FE model uses three-dimensional eight-node
elements, with each node having three translational degrees of freedom, to reconstruct the solid structure. The
FE model involves a total of 16,288 nodes and 11,287 elements.

Table 2 compares the results obtained under the free boundary condition in terms of the non-dimensional
modal frequency. Errors with respect to the FE results are calculated. The first several low-order modes for
n = 0-6 are considered. The agreement between the present three-dimensional formulation and the FE results
is obvious, with errors being mostly within 1-2%. Mindlin—Fliigge theory apparently leads to much larger
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Table 2
Non-dimensional modal frequencies (Q) of the combined structure of brake rotor with free boundary conditions

n FEM Mindlin—Fligge theory 3D theory
Q Q Error (100%) Q Error (100%)

0 0.3478 0.3003 13.68 0.3528 1.41
0 1.2079 1.2146 0.55 1.2089 0.09
0 1.7221 1.7819 3.48 1.7280 0.35
0 2.2308 2.1982 1.46 2.2371 0.28
1 0.5035 0.4513 10.37 0.5080 0.90
1 1.5126 1.5134 0.05 1.5115 0.08
1 1.6633 1.7459 4.97 1.6721 0.53
1 2.2480 2.2065 1.85 2.2506 0.12
2 0.1279 0.1224 4.25 0.1284 0.43
2 0.4544 0.4632 1.94 0.4532 0.26
2 0.8192 0.7670 6.38 0.8260 0.83
2 1.6998 1.7573 3.38 1.7069 0.42
3 0.3243 0.3143 3.10 0.3232 0.34
3 1.0077 1.0408 3.29 1.0094 0.17
3 1.1658 1.1396 2.25 1.1671 0.11
3 1.9487 1.9295 0.99 1.9477 0.05
4 0.5663 0.5522 2.49 0.5612 0.90
4 1.3119 1.4071 7.26 1.3170 0.39
4 1.7920 1.7394 2.93 1.7744 0.98
4 2.3081 2.2580 2.17 2.2985 0.41
5 0.8515 0.8304 2.48 0.8381 1.57
5 1.6203 1.7644 8.89 1.6120 0.51
6 1.1807 1.1466 2.89 1.1526 2.38
6 2.0043 2.1852 9.03 1.9704 1.69

errors, mainly due to the short length of the shell segment in the model. Similar comparison between the
present three-dimensional formulation and FE simulation is performed for simply supported boundary as
listed in Table 3. Similarly, typical errors totter around 1%, indicating a fairly good accuracy of the present
approach.

3. Modal characteristics of the combined structure of the brake rotor

The following sections focus on the modal characteristics of the combined structure of the brake rotor
model. We attempt to shed light on three aspects about the modal characteristics of the combined plate—shell
structure: (a) mode classifications; (b) variations of modes with respect to the rotor dimensional parameters;
(¢) quantitative decomposition analysis of modes.

3.1. Mode classifications

There are a total of six displacement components (u, v, w, and u v, w,), which account for the deformation of
the combined structure for each mode. According to the relative deformation scale of these displacement
components, the structure may exhibit various deformation patterns. The modes of the brake rotor are
categorized according to these deformation patterns and ranked in an ascending order of the modal frequencies.

The three-dimensional mode shapes of the brake rotor are plotted in Fig. 3, corresponding to the modal
results tabulated in Table 2. Generally speaking, the combined structure displays three typical deformation
patterns. The structure might present overwhelming deformation only in its plate or shell part. Such type of
modes is referred to as plate-dominant-mode (PDM) or shell-dominant-mode (SDM), respectively. For
instance, Fig. 3 shows that all the first modes when n = 2, 3, 4, 5, 6 are PDMs, and all the second modes when
n=13,4,5, 6 are SDMs. By contrast, there exists also another category of modes, being referred to as strongly
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Table 3
Non-dimensional modal frequencies (Q) of the combined structure of brake rotor with supported boundary conditions
n FEM 3D theory
Q Q Error (100%)
0 0.1930 0.1942 0.61
0 0.5809 0.5818 0.15
0 0.7082 0.6909 2.51
0 1.2092 1.2094 0.02
0 2.1792 2.1689 0.48
1 0.1731 0.1718 0.73
1 0.4910 0.4897 0.28
1 1.0101 1.0001 1.00
1 1.5143 1.5130 0.09
1 2.2515 2.2397 0.53
2 0.2362 0.2360 0.09
2 0.6114 0.6091 0.37
2 1.4480 1.4403 0.54
2 2.2482 2.2435 0.21
2 2.5081 2.4918 0.65
3 0.3879 0.3877 0.06
3 1.1523 1.1442 0.70
3 1.8413 1.8321 0.50
4 0.5948 0.5908 0.68
4 1.8293 1.8111 1.00
4 2.2018 2.1867 0.69
5 0.8626 0.8501 1.47
5 2.4988 2.4671 1.29
5 2.6151 2.5864 1.11
Nedal lines n =0 Nodal lines n =1
First
Mode
(@-1 03528 ®-1 05080
Second
Mode
(@)-2 12089 -2 15115
Third
Mode :
(-3 17280 (b)—3' 1!.3721
Fourth
Mode
(b)—4 22506
(a)-4 22371

Fig. 3. Typical mode shapes of the brake rotor.
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Nodal lines n =2 Nodal lines n =13
First
Mode
(c) -1 0.1284
Second
Mode
(c)-2 04532
Third
Mode
(-3 1.1671
Fourth
Mode
(©)-4 17069 (-4 19477
Nodal lines n =4 Nodal lines n =35
First
Mode
(€)-1 05612 -1 08381
Second
Mode
©-2 13170
(-2 16120
Nodal lines n =6
Third First
Mode Mode
-3 L7744
© @-1 11526
Second
Fourth
l\:lmode Mode
(e)-4 22985 (@-2 19704

Fig. 3. (Continued)

coupled-mode (SCM), in which both the plate and shell of the combined structure exhibit strong
deformations. Typical examples include the second and third modes when n = 2, and the third and fourth
modes when n = 3.
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Table 4
Classification of the combined structure modes, with PDM denoting plate-dominant-mode; SDM shell dominant mode and SCM strongly
coupled-mode

n=20 n=1 n=2 n=3 n=4 n=>,5 n==~06
Ist PDM SCM PDM PDM PDM PDM PDM
2nd PDM PDM SCM SDM SDM SDM SDM
3rd SDM SDM SCM™* SCM™* SCM™*
4th SCM SCM SDM SCM™* SCM™*

" indicating strong deformation in w, and v, and/or v,.

The differences in modal characteristics root in the way that structural coupling among the plate and shell
takes place. An individual annular plate has well-separated in-plane (or longitudinal) and out-of-plane (or
transversal) modes. An out-of-plane mode usually involves strong undulation (w,) out of the flat surface of the
plate. By contrast, an in-plane mode is primarily dominated by stretching and compression (u,, v,) within the
plate surface. However, this simple classification is not suitable for a cylindrical shell due to its curved profile.
The out-of-plane motion (wy) and the in-plane motion (u, and v,) are interrelated for most of its modes. So
does the incorporated model for the brake rotor. The mechanical joining in-between the plate and the shell
destroys the decoupling between the in-plane and out-of-plane motions of the plate part. As inferred,
transversal response of the plate is to be aroused to some extent, even though the combined structure is merely
under an in-plane excitation, e.g. the tangential friction force. Such modes are most responsible for sound
radiation. For this particular reason, attention should be paid to those modes in which the displacement
components w, and v, and/or v, are strong. Such deformation feature ensures that an in-plane force is able to
excite the structure efficiently to generate a bending motion. These modes are marked by “ * in Table 4.

Special attention is paid to the second modes whilst n>2. In such modes, the plate of the combined
structure shows nearly no out-of-plane motion but slight in-plane motion. By contrast, the shell presents
obvious strong waveform along its circumference. Evidently, such modes would not be effective in making
sound out of the combined structure.

3.2. Parametric study of modes

It is inferred that modes of the combined structure definitely have certain relationship with the modes of
each substructure. How do the substructures interact to form the dynamic characteristics of the whole
structure? How does such feature vary when dimensions of the combined structure change? To answer these
questions, a parametric analysis is carried out. The analysis procedure is contrived to explain the association
of the structure coupling with the combined structure modes, and also to reveal the influence of the structure
dimensions and shape features on the dynamic characteristics of the combined structure.

The shell depth, which is one of the key parameters in the brake rotor design, is taken as variable and
gradually changed from zero to a certain value, while the plate dimensions are fixed. Thus, as the shell depth
changes, the whole structure would undergo continuous shape variations from an individual annular plate to a
long shell fringed at one end with an annular plate.

Displayed in Fig. 4 are the modal characteristics of the tree typical combined structure modes varied with
the shell depth. The shell depth is normalized to the external diameter of the plate using a non-dimensional
relative shell depth defined as L* = L/D,. Particular attention is given to the low-frequency modes of the
combined structure, which primarily relate to the low-frequency modes of the substructures, i.e. the plate and
the shell. Such low-frequency modes have no nodal circles, whilst the number of nodal lines n =2, 3, 4,
respectively. The three selected modes of the combined structure involve the bending motion of the
substructures. The bending magnitudes of the substructures are indicated by displacement components u«; and
wp, respectively. Two associated parameters are adopted to identify the characteristics of such modes. One is
the previously defined non-dimensional modal frequency (£2). The other is the bending magnitude ratio,
defined as A" = 10log(max(u,)/ max(w,)), reflecting the bending deformation feature of the modes. The
plate and shell display comparable bending magnitudes if A" is around zero. Large positive 2* means the
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Fig. 4. Variation of modes with respect to the relative depth of the shell for n = 2, 3, 4 modes: (a) bending ratio A"; (b) non-dimensional
modal frequency Q.

overwhelming plate bending over that of the shell; otherwise, the opposite is true. The A*—L" and Q—L" curves
for the disc brake rotor are given in Figs. 4 (a) and (b) when n = 2, 3 and 4, respectively.

In Fig. 4(a), the climbing A"—L" curves demonstrate the changes in the three mode shapes. A left downward
extension of the A°'—L" curves implies a plate-bending dominant pattern of the deformation for all three
modes, and the right upward extension implies a shell-bending dominant pattern for » = 2 and 3 modes. This
implies that all three modes are dominated by plate bending while the shell is short. When the length of the
shell increases, the shell reveals intensified bending motion for n = 2 and 3 modes. Strong coupling occurs at
around L = 0.2 for these two modes. For n = 4 mode, however, plate domination is persistent through the
entire region irrespective of the shell depth. The similarity between n = 2 and 3 modes and their difference with
n = 4 mode are also reflected in Fig. 4(b). For the former, the Q—L" curves increase as the shell depth increases
up to L" = 0.2 before negotiating a smooth decrease. This is understandable since in the plate-dominant
region (L* <0.2), the presence of the shell is to impose restrictions to the plate, such increasing its natural
frequency, whilst in the shell-dominant region ((L*>0.2), Q decreases as the shell is getting longer, therefore
more flexible. By contrast, n = 4 mode exhibits a stable Q for large shell depth due to the dominance of the
plate motion.

Modes of the combined structure and those of each substructure, before they are coupled together, are
investigated with a view to shed light on their interrelationship. Fig. 5 shows the Q—L" curves of the first two
modes when n = 2, for the combined structure (solid lines), plate (dot lines) and shell (dash lines). Since the
dimensions of the plate are kept unchanged, the dot curves are just horizontal lines along L -axis. It can be
seen that the first mode of the combined structure starts to deviate from the first mode of the plate when
the depth of the shell is very short, before getting more close to the first mode of the shell when L
increases. Note that the first mode of the shell involves a strong bending motion of the shell along its
circumferential direction, whose stiffness increases with L*. Apart from the reason given above to explain the
increase of Q at about L = 0.2, influence of the second mode of the shell at the peak region, corresponding to
the intersection area between the membrane effect and bending effect, is also accountable. Variations of the
second mode of the combined structure start from a plate mode (for small L"), degenerate rapidly with an
increasing L", and then evolve to a shell mode when L is large, basically following the variation of the second
mode of the shell.
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3.3. Decomposition analyses

As can be secen from the above discussion, one mode of the combined structure is either highly
related to a certain plate or shell mode or a result of strong interaction among a number of substructure
modes. Being able to quantify a given mode on the basis of sub-structural modes will be very helpful
since the later can readily be obtained by simple structural analysis. To this end, a systematic procedure,
being referred to as decomposition analysis, is proposed hereafter. Such decomposition helps to discern the
modal characteristics of the combined structure through grasping the modal features of the substructure
modes.

The general second-order differential vibration equation of the combined structure can be cast into the
following general form for a given circumferential expansion order n:

M X K X ¢ ¢ X
o Mp p p » n K r|
N T T

where M| and Kj; denote the mass and stiffness matrices of each substructure, respectively; Kj; the
connecting stiffness matrix due to the distributed artificial springs between the two substructures and X|; a
vector containing all expansion coefficients (see Eqgs. (5)—(7)). Subscript p (or s) applies to the plate (or shell).
Let &) and A} be matrices containing the eigen solutions of the substructure and assume the following
orthogonal relationships:
! (13)
= Il
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Let us define a new coordinate vector {4, s}, which is the corresponding projection of the original
unknown expansion coefficient vector { Xp Xs}T on the combined substructure modal space, i.e.

Xp 4p
HRONT

qs
A transformed Eq. (16) is obtained by substituting the projection relationship (15) into the original Eq. (12)
and utilizing the modal transformation relationship among @), Mj and K|,.
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A subsequent eigen analsysis is to be conducted based on this equation, leading to eigen values and an eigen
matrix. These eigen values give the modal frequencies of the combined structure and the eigen matrix is
defined as the decomposition coefficient matrix. The ith row of this eigen matrix reflects how the ith mode of
the combined structure is composed by the substructure modes, i.e. g, nd ¢,. Accordingly, the (i, j)th element
of this matrix indicates how much the jth substructure mode contributes to the ith mode of the combined
structure.

This decomposition analysis is conducted for the modes of the combined structure listed in Table 2. Results
are given using bar-charts in Figs. 6(a)—(c). Selected modes include the first four modes whilst n = 2, 3, 4. The
non-dimensional frequency of each mode is given in the horizontal axis. Distributed bars show decomposition
coefficients of a given mode in terms of plate modes and shell modes, which are identified by “P”” and “S”,
respectively, in the figures. Each group of the decomposition coefficients is normalized to the largest
decomposition coefficient value within the group. Considering that the low-frequency modes of the combined
structure are primarily composed of the low-frequency modes of the substructure, only the first five low-
frequency modes of each substructure are included in the figures. The serial number following the symbol “P”’
or “S” indicates the order of the substructure mode in an increasing order of the modal frequency.
Specifications about each mode of the substructure are tabulated in Table 5, so as to better understand the
modal characteristics of the modes of the combined structure.

Using the bar-charts, one could (1) identify which individual substructure modes would dominate the mode
of the combined structure, and (2) predict the deformation features of the combined structure. For example,
for n = 2 mode (2 = 0.1284), Fig. 6(a) reveals that this mode is predominated by the first plate mode P1,
which is an out-of-plane mode of the plate without nodal circles, as indicated in Table 5(a). S1 and S2 modes
also contribute in a non-negligible manner. Referring to Table 5(a), superposition of SI1 and S2 modes
forecasts a bending motion of the shell part. For this mode, the plate part of the combined structure presents
strong out-of-plane undulation; meanwhile, the circular profile of the shell moderately deforms into an oval
shape. By contrast, the second n = 2 mode (2 = 0.4532) is mainly composed of P2 and S1. The former is an in-
plane mode of the plate, while the latter demonstrates only bending with no longitudinal movement of the
shell. Thus, the whole structure deforms only two dimensionally, without any undulation along the axial
direction. Strongly coupled modes feature a strong contribution from several modes belonging to each
substructure. Typical examples are the third and fourth modes when n =4 (2 =1.7744 and 2.2985 in
Fig. 6(c)). Similar analysis also applies to all other modes, leading to conclusions consistent with the
observations made in Fig. 3 and Table 4.

®)

. (14)

(pp
2

T
Al’ ¢P

o

¢ c
Kll K]2

Ay K5 K5,

4. Conclusions

Most existing analytical studies on the brake rotor dynamics simplify the brake rotor as a thin annular
plate. Such simplification neglects inherent structural coupling of the brake rotor, such warranting the
development of more realistic models, along with necessary analysis tools. The primary objective of this paper
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Table 5

Modal characteristics of the substructure modes used in Fig. 6(a)—(c)
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Serial no. Plate mode ( P ) Shell mode ( S)

(a) withn=2

1 Out-of-plane (0, 2) Bending without longitudinal motion

2 In-plane (0, 2) Bending plus longitudinal motion, without nodal circle
3 Out-of-plane (1,2) Bending plus longitudinal motion, with one nodal circle
4 In-plane (1,2) Torsional motion

(b) withn =3

1 Out-of-plane (0, 3) Bending without longitudinal motion

2 In-plane (0, 3) Bending plus longitudinal motion, without nodal circle
3 Out-of-plane (1, 3) Bending plus longitudinal motion, with one nodal circle
4 Out-of-plane (2, 3) Torsional motion

(c) withn =4

1 Out-of-plane (0, 4) Bending without longitudinal motion

2 Out-of-plane (1,4) Bending plus longitudinal motion, without nodal circle
3 In-plane (0,4) Bending plus longitudinal motion, with one nodal circle
4 Out-of-plane (2,4) Torsional motion

(m, n) stands for the number of nodal circles and nodal diameters, respectively.

is to propose such a model and subsequently to study its modal characteristics, which is believed to be useful in
further investigation on the noise in automotive disk brake system.

The proposed brake rotor model is a combination of an annular plate and a cylindrical shell segment
connected together by distributed artificial springs. The model presents two main appealing features: one is its
closeness to a real brake rotor in terms of structural complexity; the other one is the facility it offers to carry
out dynamic analyses using a semi-analytical approach. Based on a three-dimensional elasticity theory, a
numerical procedure is established using variational principle and Raleigh—Ritz method.

Numerical simulations are performed. Modal solutions are found to agree well with FE results. Modal
analyses show the existence of three types of modes for the combined structure, which can be classified as
PDM, SDM and SCM, depending on the involvement of each substructure. From the squeal noise control
point of view, those modes, demonstrating strong coupling between w, and v,/vs, should be targeted. Such
deformation feature ensures the efficiency of an in-plane force in exciting the structural vibration with
dominant bending motion, which is responsible for sound generation.

A decomposition technique is proposed. The technique allows each mode of the combined structure to be
translated into a linear combination of the individual substructure modes. It is shown that the decomposition
coefficients provide a practical means to carry out mode classifications and systematically quantify the
complex deformation features of the modes.
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