
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr
Journal of Sound and Vibration 297 (2006) 895–915

www.elsevier.com/locate/jsvi
Drum-like silencers using magnetic forces in a pressurized cavity

Y.H. Chiu, L. Cheng�, L. Huang

Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, PR China

Received 1 August 2005; received in revised form 21 April 2006; accepted 2 May 2006

Available online 5 July 2006
Abstract

A feasibility study is carried out for utilizing magnetic force to yield a low-frequency shift of the transmission loss

spectrum provided by a drum-like silencer consisting of two side-branch, rectangular cavities covered by ferromagnetic

membranes. The results show that the transmission loss spectrum of the drum-like silencer is mainly controlled by the

vibration of the first and second modes of the membrane. Three pairs of magnets are employed inside the cavity to promote

the response of these modes. It is found that the magnetic force imposes both static and dynamic effects on the silencer.

While the latter helps shift the effective region of the silencer towards lower frequencies, the former results in an increase of

stiffness of the membrane which is detrimental to the operation of the silencer at low frequencies. Cavity pressurization is

then proposed to neutralize the static effects of the magnetic force. A finite element model is developed to predict and

optimize the performance of the proposed silencer with some of the results validated experimentally. The desired shift

towards the lower frequency is validated although the silencer performance is still less than ideal due to both parametric

and operational constraints of the rig.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Low-frequency noise is very annoying and difficult to attenuate since most of the dissipative noise absorbers
are ineffective and conventional reactive silencers are bulky. As an alternative, active noise control (ANC) is
regarded as a suitable technique in low-frequency noise control [1]. However, some drawbacks related to the
technique still limit its use in noise control practices. Its cost, sophistication in design and reliability are just a
few key factors. For this reason, it is still necessary and desirable to extend the low-frequency limit for passive
noise control.

Helmholtz resonator is commonly used in passive noise control. It consists of a neck and a cavity and
produces a resonance frequency at which a very high transmission loss can be achieved within a very narrow
bandwidth. In order to extend the usefulness of the device, many adaptive-passive noise control techniques
have been developed [2,3]. In those techniques, the resonator neck dimensions, cavity volume, or both are
adjusted according to the working condition. However, the involvement of active tuning devices inherits the
cost and reliability drawbacks from ANC.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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To deal with these problems, Huang and Choy [4–9] proposed to use a drum-like silencer to control the duct
noise from low-frequency to medium-frequency range. When a sound wave travels over the cavity-backed
membrane in a duct, the sound wave in air is coupled with the flexural waves over the membrane, and the
membrane compliance makes the coupled wave speed less than the speed of sound in air [4]. This represents an
acoustic impedance discontinuity at a junction where the physical geometry of the duct remains unchanged.
The discontinuity reflects sound, much like an expansion chamber does, and there is also acoustic scattering. If
the drum-like silencer is properly designed, a large amount of the incoming sound energy can be reflected to
the source, hence reducing the noise downstream. Although the performance of this type of silencer for the
low-frequency duct noise is limited by the cavity stiffness, it provides a new concept for extending the effective
bandwidth of the transmission loss spectrum with a compact passive device.

To overcome the cavity stiffness of drum-like silencers with shallow cavities, Huang [10] further proposed
the use of magnetic force. A theoretical analysis assuming a piston-like behaviour of the membrane shows that
zero impedance of the membrane type silencer may be maintained over a certain band of frequencies so that
the low-frequency limit can be removed with the help of dynamic magnetic effect. As shown in Fig. 1, when a
permanent magnet is separated from a ferromagnetic membrane by an air gap of d, an attractive force is
generated to promote the displacement of the membrane. This attractive force increases when the membrane is
drawn into the cavity, and vice versa. Given the dynamic magnetic force per unit area as Fdyn ¼ B/(d+Z)2,
where B is the magnetic flux density and Z the vibration displacement of the membrane, a magnetically
induced stiffness is introduced by the magnetic force, which is proportional to �2Bd�3 and is negative.
Therefore the factor of d�3 provides an effective way to balance the cavity stiffness and the mechanical
stiffness of the membrane.

Previous investigations, however, totally bypass issues of practical implementation with a lack of
experimental support. Moreover, by assuming piston behaviour for the membrane, the effect of the static
magnetic force on the membrane tension has not been considered. In fact, given a real membrane, apart from
the dynamic magnetic force, a static magnetic force is also imposed on the membrane. The static magnetic
force is defined as Fstat ¼ B/(d+Zo)

2 where Zo is the static membrane deflection. In this case, the
membrane tension is increased to balance the static magnetic force and hence the mechanical stiffness of
the membrane increases. Therefore the increase in the mechanical stiffness may exceed the magnitude of the
negative magnet induced stiffness.

In the current study, a simplified theoretical model considering both static and dynamic effects of the
magnetic force is established. This theoretical analysis shows that the performance of the proposed silencer is
mainly dominated by the vibration of the first and second modes of the membrane. Therefore the low-
frequency shift of the transmission loss can be achieved by properly locating three pairs of magnets in the
cavity to maximize the vibration amplitudes of the first two modes.

Results show that the static magnetic effect sometimes exceeds the dynamic magnetic effect. As a result,
magnetic forces shift the effective range of the drum-like silencer to higher frequencies rather than to lower
frequencies. To suppress the static magnetic effect, a pressurized cavity is introduced in this study. The role of
the cavity pressure is to balance the static magnetic force. Although the pressurization also increases the cavity
stiffness, its effect on reducing the membrane tension far outweighs its own contribution to the cavity stiffness.
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Fig. 1. Theoretical model of a drum-like silencer with magnetic force. A magnetic, tensioned membrane of length L lines part of the

otherwise rigid duct wall. The cavity of depth d is equipped with a pair of permanent magnets with North and South poles as shown.
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This is so because, when the membrane is flat initially, membrane tension is unable to resist transverse
displacement. If the static magnetic force applied on the membrane is uniform, cavity pressure is set to
Pcav ¼ Fstat and hence Zo ¼ 0. Therefore, the membrane tension will not be increased and the dynamic
magnetic effect is still effective to overcome the cavity air stiffness. In practical implementation of the
magnetic force, the magnetic effect is applied on the membrane in a non-uniform way. Therefore, zero
deflection of the membrane cannot be achieved everywhere even with the use of a pressurized cavity. This
significantly increases the complexity of the analysis. It requires a more sophisticated model to carry out
parametric optimization. To this end, a finite element (FE) model is developed to predict and to optimize the
performance of the proposed silencer. This FE model fully couples the membrane vibration, acoustic pressure
and the magnetic field, and is validated experimentally.

It is pertinent to mention that the present study constitutes a step forward on the development of a novel
noise control device. Further investigations are certainly needed to tackle various issues regarding its practical
implementation before such a device can find its applications in a number of areas such as the acoustic
quietening in ventilation duct systems, tunnels and engine testing chambers, etc.

2. A theory of uniform magnetic field

This section outlines the theory of a drum-like silencer and reveals the influence of the magnetic effect on a
drum-like silencer. The underlying theory is the principle of vibroacoustic coupling between a flexible
membrane and the acoustic wave (see Refs. [4–9]). To simplify the theoretical analysis, it is assumed that a
static magnetic force is applied on a ferromagnetic membrane by using a single large magnet while the volume
occupying the cavity is ignored.

The theoretical model under investigation is shown in Fig. 1. It has a two-dimensional (2D) duct (channel)
of height h lined in part by a membrane of length L and width h on the lower wall. In the subsequent
theoretical modelling, the membrane is actually represented by a one-dimensional (1D) string, and the whole
configuration is denoted as a 2D model as the channel is 2D in space. As a first step in modelling the magnetic
effect, the 2D model is adopted instead of the three-dimensional (3D) configuration implemented in
experiment. A 3D configuration for the cavity would embrace all cavity walls and the membrane becomes 2D
instead of 1D (a string) in the current model. For a 2D membrane, it has four edges and they all have to be
fixed on the cavity walls, which seems to differ from the current model substantially. Besides the desire to keep
analysis simple at this stage, the following result from Ref. [9] provides justification for such a simplification. It
was found that, when the transverse tension, Ty, vanished, the transmission loss of the drum-like silencer
represented by a 3D model was identical to that of the 2D model although the membrane vibration differed. It
was also found that the presence of Ty40 would be unhelpful for the silencer performance. These conclusions
were validated experimentally in that study. If, in the current study, static imbalance exists and the membrane
deforms before sound induced vibration occurs, the result predicted by the 2D model would differ from the
reality of a 3D configuration. However, when the static balance is achieved by the method of cavity
pressurization, Ty is expected to vanish and the 2D model is expected to predict the same result as a 3D model.

The membrane is fixed at the two edges at jxj ¼ L/2, and is enclosed by a rigid-walled cavity of depth d,
length L. The mass per unit length of the membrane is m and the tension applied on the membrane is T. The
separation between the ferromagnetic membrane and the magnet is d. The static equation of the ferromagnetic
membrane is

r � ðTrZ0Þ ¼
c

ðd þ Z0Þ
2
; T ¼

Tx 0

0 Ty

" #
; rZ0 ¼

qZ0=qx

qZ0=qy

" #
, (1)

where both the tensile stresses T and the vector rZ0 should be interpreted as matrices as tension differs in x

and y directions. As the membrane is fixed at two edges only, Ty ¼ 0 and qZ0=qy ¼ 0. The stress–strain
relationship of the membrane can be described as [11]

�x ¼
du

dx
þ

1

2

dZ0
dx

� �2

and Et�x ¼ Tx � To, (2)
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where Z0 is the static membrane deflection,C the constant magnetic function, t the thickness of the membrane,
ex the strain of the membrane in the x-direction, u the displacement in the x direction for a membrane element
of finite length, E the Young’s modulus of the membrane and To the initial tension applied to the stretched
membrane. The derivation of Eq. (1) is shown in Appendix A. Assuming that the initial membrane tension is
high enough so that the displacement in the x direction for a membrane element can be ignored, Eq. (2) can be
combined to form an equation for the resultant tension in the membrane:

Et
2

dZ0
dx

� �2

¼ Tx � To. (3)

Putting Eq. (3) into Eq. (1) yields

r �
Et
2

dZ0
dx

� �2

rZ0 þ TorZ0

 !
¼

c

ðd þ Z0Þ
2
. (4)

Eq. (4) is a nonlinear partial differential equation (PDE) and needs to be solved by numerical methods.
Once the membrane deflection is determined using Eq. (4), the membrane tension can be obtained from Eq.
(3). The reason for determining the static membrane tension of the membrane under magnetic force is to
consider the static magnetic effect on the dynamic response of the membrane. The static magnetic effect is
represented by the membrane tension in the dynamic equation of the membrane:

m
q2Z
qt2
� r � ½TxrðZ0 þ ZÞ� þ

c

ðd þ Z0 þ ZÞ2
þ ðPþ � P�Þ ¼ 0, (5)

where Z is the vibration displacement of the membrane, and (P+– P�) is the acoustic pressure difference over
the two sides of the membrane.

By substituting Eq. (1) into Eq. (5), one has

m
q2Z
qt2
� r � ½TxrðZÞ� �

2c

d3
Zþ ðPþ � P�Þ ¼ 0. (6)

As mentioned before, the membrane tension needs to be solved by numerical methods. As a first step, the
membrane tension is approximated by a sine function expressed in Eq. (7). This approximation will later be
validated by numerical results:

Tx ¼ ðTo � TmÞsinðpxÞ þ Tm, (7)

where x ¼ ðx=LÞ þ 1
2
, and Tm is a constant which is directly proportional to the magnetic force. Substituting

Eq. (7) into Eq. (6) yields

m
q2Z
qt2
�
ðTo � TmÞp

L
cosðpxÞ

qZ
qx
� ðTo � TmÞsinðpxÞ þ Tm½ �

q2Z
qx2
� 2

c

d3
Zþ ðPþ � P�Þ ¼ 0. (8)

Using standard Galerkin procedure, Z can be expanded as a series of in vacuo modes of the membrane with
modal amplitude Z(r):

ZðrÞðtÞ ¼ 2

Z 1

0

Zðx; tÞ sinðrpxÞdx; Zðx; tÞ ¼
X1
r¼1

ZðrÞðtÞsinðrpxÞ. (9)

Hence, Eq. (8) can be rewritten as

�mo2 þ Tm

rp
L

� �2
� 2

c

d3

� �
ZðrÞ þ 2

ðTo � TmÞrp2

L2

�

Z 1

0

cosðpxÞsinðrpxÞZdxþ 2ðTo � TmÞ
rp
L

� �2 Z 1

0

sinðpxÞsinðrpxÞZdx

þ 2

Z 1

0

ðPþ � P�ÞsinðrpxÞdx ¼ 0, ð10Þ

where r ¼ 1; 2; 3; . . . :
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As the coupling between the membrane and the acoustic pressure, (P+–P�), is too strong to be determined
by the approach of room acoustics. It is reasonable to study the acoustic pressure by three parts. Part one is
the upper surface pressure due to the harmonic incident wave, Pi(x,t) ¼ exp[i(ot– kox)], without considering
the membrane vibration. Part two is the radiation acoustic pressure Prad on the upper surface of the
membrane. The third part is the acoustic back pressure from the cavity, denoted as Pb. Hence,

Pþ � P� ¼ ðPi þ PradÞ � ðPbÞ. (11)

Prad can be calculated if the radiation impedance of the membrane is known. Let Z
ðsÞ
rad;ðrÞ be the radiation

impedance on the rth mode induced by the vibration of the sth mode. It can be calculated as [4]

Z
ðsÞ
rad;ðrÞ ¼ L

X1
n¼0

cnð2� d0nÞI2ðn; s; rÞ (12)

where cn is the modal phase speed,

cn ¼
icoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðnpco=ohÞ2 þ 1

q
and d0n is the Kronecker delta, I2 is expressed as

I2ðn; s; rÞ ¼

nrp2ðeinp � e�iknLÞðeinp þ eirpÞ

½ðknLÞ2 � ðnpÞ2�½ðknLÞ2 � ðrpÞ2�

�
iknLdrn

ðknLÞ2 � ðnpÞ2
; ras and koL=par or s;

i½1þ ð�1Þrþs
�rp

2½ðkoLÞ2 � ðrpÞ2�
; ras and koL=p ¼ r or s;

1

4
�

3i

4koL
; r ¼ s:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(13)

Similarly, the pressure inside the cavity can also be calculated via the radiation impedance, Z
ðsÞ
b;ðrÞ involving

two modes of the membrane. Z
ðsÞ
b;ðrÞ can be calculated using the following expression [12,13]:

Z
ðsÞ
b;ðrÞ ¼ �roo

2
X1
n¼0

aðsÞn aðrÞn

mn

cotðmndÞð1þ d0nÞ, (14)

where aðsÞn and aðrÞn are the coupling coefficients defined as

aðqÞn ¼

R 1
0 sinðqpxÞdx; n ¼ 0; q ¼ r or s;

2
R 1
0
sinðqpxÞcosðnpxÞdx; n40; q ¼ r or s

8<
: (15)

and mn is calculated by

mn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
co

� �2

�
np
L

� �2s
.

Eq. (10) becomes

�mo2 þ Tm
rp
L

� �2
� 2

c

d3

� �
ZðrÞ þ 2

ðTo � TmÞrp2

L2

Z 1

0

cosðpxÞsinðrpxÞdx

þ 2ðTo � TmÞ
rp
L

� �2 Z 1

0

sinðpxÞsinðrpxÞZdxþ K
ðsÞ
ðrÞZ
ðsÞ
ðrÞ ¼ �Pi;ðrÞ, ð16Þ
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where K
ðrÞ
ðsÞ is defined as cross acoustic stiffness with

K
ðsÞ
ðrÞ ¼

X1
n¼0

rocoL

h2
cnð2� d0nÞI2ðn; s; rÞ þ roo

2
c

aðsÞn aðrÞn

mn

cotðmnÞð1þ d0nÞ

� �
. (17)

By cosine Fourier analysis, we have

sinðqpxÞ ¼
X1
n¼0

aðqÞn cosðnpxÞ. (18)

Since
R 1
0 cosðppxÞcosðqpxÞdx ¼ 0 if p and q are integers, Eq. (16) becomes

�mo2 þ Tm

rp
L

� �2
� 2

c

d3
þ
ðTo � TmÞrp2

L2
a
ðrÞ
1

� �
ZðrÞ þ ðTo � TmÞ

rp
L

� �2X1
n¼0

að1Þn aðrÞn ZðrÞð1þ d0nÞ þ K
ðsÞ
ðrÞZ
ðsÞ
ðrÞ ¼ �Pi;ðrÞ.

(19)

Having found the cross acoustic stiffness, Eq. (19) can be cast as a truncated set of linear equations for the
modal vibration amplitudes, r ¼ 1; 2; 3; . . . ;N,

K
ð1Þ
ð1Þ þ kð1Þ K

ð2Þ
ð1Þ � � � K

ðNÞ
ð1Þ

K
ð1Þ
ð2Þ K

ð2Þ
ð2Þ þ kð2Þ � � � K

ðNÞ
ð2Þ

� � � � � � � � � � � �

K
ð1Þ
ðNÞ K

ð2Þ
ðNÞ � � � K

ð2Þ
ð2Þ þ kðNÞ

2
666664

3
777775

Zð1Þ
Zð2Þ
� � �

ZðNÞ

2
66664

3
77775 ¼ �

Pi;ð1Þ

Pi;ð2Þ

� � �

Pi;ðNÞ

2
66664

3
77775, (20)

where

kN ¼ �mo2 þ To

Np
L

� �2

� 2
c

d3|{z}
Dynamic magnetic effect

þ ðTmÞ
Np
L

� �2

1�
X1
n¼0

að1Þn aðNÞn ð1þ d0nÞ

" #
þ
ðTo � TmÞNp2

L2
a
ðNÞ
1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Static magnetic effect

. ð21Þ

Eqs. (20) and (21) clearly show the magnetic effect on the vibration of the membrane type silencer. The third
term and the last two terms on the right-hand side of Eq. (21) represent the dynamic magnetic effect and the
static magnetic effect, respectively.

Therefore, if

2
c

d3
4ðTmÞ

Np
L

� �2

1�
X1
n¼0

að1Þn aðNÞn ð1þ d0nÞ

" #
þ
ðTo � TmÞNp2

L2
a
ðNÞ
1 ,

the dynamic magnetic effect will be able to over-rule the static effect on system stiffness. This would most
likely happen at low frequencies. Otherwise, the system stiffness will increase, since the static effect is getting
larger as N increases corresponding to higher frequencies. Moreover, Eq. (20) shows that the magnetic effect
would only affect the direct cavity stiffness. It is because the magnetic effect only exists on the diagonal
elements of the matrix in Eq. (20).

After solving Eq. (20) by standard matrix inversion techniques for Z(r), the transmission loss provided by
this silencer is calculated by

TL ¼ �20 log10
Pþ

Pi

				
				 ¼ �20 log10 1þ

Prad;x!þ1

Pi

				
				 (22)

with [4]

Prad

Pi

¼ io
L

2

X1
r¼1

Zrrp e
�ikoL=2 eiðkoL�rpÞ � 1

ðkoLÞ2 � ðrpÞ2

� �
. (23)



ARTICLE IN PRESS
Y.H. Chiu et al. / Journal of Sound and Vibration 297 (2006) 895–915 901
The influence of the magnetic effect on a typical drum-like silencer is now investigated. The configuration
being used is the one optimized in Ref. [5] in the absence of magnetic force, with the following set of
parameters:

L ¼ 250mm; d ¼ 50mm; To ¼ 3611N=m and m ¼ 0:01 kg=m2. (24)

The stopband, defined as TL410 dB, of this optimal drum-like silencer starts from frequency 390Hz. This
configuration is used here as a benchmark system.

For any given value of uniform magnetic forcing, c=d2, Eqs. (3) and (4) can be used to find the distribution
of the tension. The tension distribution is further approximated by a sine curve as given in Eq. (7). Fig. 2
illustrates how well the tension distribution is approximated by the sine curve for c=d2

¼ 809Pa, a value
which is shown later to yield a rather good transmission loss spectrum. More details of the tension calculation
by the FE method are given in Ref. [14]. The trough of the sine curve, Tm, is 4740 Pa for this curve, and it is
found to vary with c=d2 roughly in a quadratic manner

Tm � 14:5094þ 0:9898
c

d2
� 2:844� 10�4

c

d2

� �2

(25)

and the approximation is illustrated in Fig. 3.
The comparison in terms of the transmission loss spectra for a drum-like silencer without and with magnetic

field is shown in Figs. 4(a) and (b), respectively. These two figures show an obvious shift of the transmission
loss spectrum towards low frequencies due to the magnetic effect. When a static magnetic forcing of
c/d2 ¼ 809 Pa is applied, peaks ‘P1’, ‘P2’ and ‘P3’ are shifted from 411, 725 and 942 to 325, 639 and 887Hz,
respectively. However, if the stopband level is defined as 10 dB, the stopband width is decreased from 671 to
455Hz. This decreased stopband width is mainly due to a notable TL decrease at the trough ‘T2’. Meanwhile,
a slight increase in TL at ‘T1’ can also be observed. Given such a trade-off between the two troughs, and
taking a liberal view of the stopband by ignoring the local violation of the rule of TL410 dB around ‘T2’, it
may be said that the bandwidth hardly changes but merely shifts to lower frequencies.

It is shown for the drum-like silencer without magnetic forces that the response of the membrane is strong in
the first two in vacuo modes. Detailed analysis reveals that the membrane deformation at the first peak is
Fig. 2. Membrane tension caused by a uniform magnetic forcing of c=d2
¼ 809Pa. The solid curve is obtained by the finite element

computation and the dashed line is the approximation by a sine curve given in Eq. (7).
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Fig. 3. Relationship between the static magnetic forcing c=d2 and Tm, both with unit of Pascal. The solid line is the calculation result and

the dashed line is the quadratic curve fitting given in Eq. (25).
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actually very close to that of the second in vacuo mode, while the second peak to that of the first in vacuo
mode. In other words, the cavity effect reversed the order of the in vacuo modes of the membrane, which is
quite understandable. In fact, a shallow cavity will impose significant stiffness effect on the membrane mainly due
to the air incompressibility [15,16]. The first in vacuo mode is significantly prohibited by the air motion inside the
cavity, resulting in a significant shift to higher frequencies. This effect is, however, absent on the second in vacuo
mode since the motion of the second in vacuo mode does not change the volume of the cavity. It is clear that
controlling the frequency response of the first two modes is very important to ensure the effectiveness of the
silencer. In practical implementation, however, the number of magnets inside is limited by the physical size of the
cavity. Should too many magnets be put into the cavity, the cavity effect on the membrane will increase due to a
reduction of the cavity volume. This is detrimental to the performance of the silencer at low frequencies.
Therefore, it is important to optimize the placement of the magnets to promote the vibration of the first and the
second modes of the membrane, while limiting the added stiffness effect of the cavity.

Actually, the low-frequency performance of this drum-like silencer can be enhanced by reducing the tension
of the membrane, increasing the surface density of the membrane, or both without changing the geometry of
the drum-like silencer. It has been shown, however, that these measures will also reduce the transmission loss
level of the spectrum at the frequency ‘T1’ and consequently the bandwidth of the spectrum is dramatically
reduced [4]. It is because the response of the membrane is mainly dominated by the cavity for the first mode,
and by the structural properties for the second mode. The transmission loss level at the frequency ‘T1’ is
caused by the intersection between the first and second modes. Reducing the tension of the membrane as
mentioned before will enlarge the separation between the peaks ‘P1’ and ‘P2’, such reducing TL around the
intersection area.

The theoretical analysis carried out above is based on the assumption that the magnetic force applied on the
ferromagnetic membrane is uniform so that the membrane tension can be approximated by a cosine function.
In order to provide a sufficiently high and uniform magnetic force on the ferromagnetic membrane, a very
large magnet should be used. In the present case, the required static magnetic forcing is 809 Pa for a duct with
a height of 50mm and a ferromagnetic magnetic membrane with a thickness less than 0.05mm. This can
hardly be achieved using a single magnet. To tackle this problem, a pair of laminated rectangular magnets
with alternative polar arrangement is employed to yield the required magnetic force. In total, three pairs of
magnets are needed in the cavity to control the vibration of the membrane. Such arrangement helps yield
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Fig. 4. Comparison of transmission loss spectra (a) without and (b) with magnetic forcing of c=d2
¼ 809Pa. Other parameters are given

in Eq. (24).
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a strong enough magnetic force and reduce the space occupied by a large single magnet. The magnetic force
applied on the membrane becomes, however, non-uniform. It is also observed that, using this arrangement,
the static effect of the magnets is usually larger than the dynamic effect, which is detrimental to the
performance of the silencer at low frequencies. To overcome this problem, a balancing cavity pressure is
introduced inside the cavity to balance the static magnetic force applied on the membrane. The cavity pressure
should be adjusted to minimize the static deflection of the membrane.
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With all these measures, the magnetic force applied to the membrane is certainly non-uniform and the
membrane tension is governed by a nonlinear differential equation (Eq. (4)). Although the 2D analysis carried
out above gives a general understanding about the system, a more sophisticated model needs to be developed
in order to optimize the performance of the silencer.

3. Finite element analysis

In order to predict the performance of the proposed silencer with multiple magnets and to optimize the design,
an FE model is developed. This FE model considers the full coupling among the membrane vibration, acoustics
pressure and the non-uniform magnetic field, and is experimentally validated. The FE model described in this
section is coded in FemLabs and executed under the Matlabs environment. FemLabs is chosen to develop the
program because of its open PDEs platform which allows the integration of multiphysics in a model like this.

The configuration under investigation is shown in Fig. 5 and the corresponding physical properties of the
silencer are shown in Table 1. After the convergence test, the number of elements used is listed in Table 2. Key
governing equations and the solution procedures are discussed in the following subsections.

3.1. Equations to be solved

The acoustic media inside the duct and cavity are modelled by Helmholtz equation using velocity potential, f,

r2fþ
o
co

� �2

f ¼ 0, (26)

where f, o and co are velocity potential, angular frequency, and speed of sound, respectively. It should be
noted that all variables defined in this section are dimensional rather than dimensionless.

The membrane response is modelled by an inhomogeneous Helmholtz equation with external force in terms
of vibration displacement Z,

q2Z
qx2
þ

o
cm

� �2

Z ¼
Fm þ pd � pc

T
, (27)

where

cm ¼

ffiffiffiffi
T

m

r
(28)
Fig. 5. Three-dimensional finite element model. Length unit (mm).
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Table 1

Dimensions and material properties of the FE model

Duct Cavity

Length (mm) 400 250

Width (mm) 50 50

Height (mm) 25 50

Magnet Membrane

Dimensions (mm) 50� 5� 35 250� 50� 0.05

Magnetic flux density (H) 1.13 NA

Relative permeability 1.3 15

Young’s module (GPa) NA 196

Poisson’s ratio NA 0.25

Table 2

Type of element and no. of element of the FE model

Finite element model Type of element No. of element

Magnetic field 2D 79,273

Membrane deflection 1D 500

Acoustics Duct 3D 809

Cavity 3D 3164

Membrane 2D 1660
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in which T, m, Fm, pd and pc are the membrane tension, the membrane surface density, magnetic force, the duct
pressure and the cavity pressures, respectively.

Maxwell’s equations are used to describe the magnetic field distribution inside the cavity:

r �H ¼ J; r � B ¼ 0 and B ¼ mðH þMÞ ¼ r � A, (29)

where B is the magnetic flux density, H the magnetic field intensity, J the current density, M the magnetic
moment density vector of a specified source, m the magnetic permeability of the membrane material and A the
magnetic potential. The combination of the above equations gives

r �
1

m
r � A�M

� �
¼ J. (30)

J is zero in the present case. Eq. (30) should be solved for finding A, which is further used to derive other
variables defined in Eq. (29). According to Ref. [16], the magnetic force on the ferromagnetic membrane is

F m ¼
mðmr � 1Þ

2
½H2ðt=2Þ �H2ð�t=2Þ�, (31)

where mr is the relative permeability of the membrane and t the thickness of the membrane.
For small deflection, the static deflection membrane can be described as

q
qx

Et
2ð1� vÞ

qZ0
qx

� �2

þ To

" #
qZ0
qx

( )
¼ Fm þ 2FmZ0 � Pgauge, (32)

where Z0 is the static displacement of the membrane, E the Young’s modulus, n the Poisson’s ratio, To the
applied pre-tension and Pgauge the cavity pressure. It is a highly nonlinear PDE. Once the static tension
of the membrane is solved by FEA, the dynamic tension of the membrane Tx can be found by the
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Determine the static magnetic force on a flat 
membrane by Eqs. (29) to (31) 

Determine the static deflection and 
tension of the membrane under magnetic 
force and the cavity pressure by Eqs. (32) 

to (33)

No

Yes

Determine the static deflection and the 
tension of the membrane again 

Determine the static magnetic force on 
the deflected membrane 

Whether the static deflection of the 
membrane converges? 

Coupling the membrane motion (Eq. 27) and the 
sound wave motion in the duct and the cavity 
(Eq.26) to determine the performance of the 

silencer. The tension of the membrane is determined 
in the pervious section. 

Fig. 6. Flow chart showing the procedure of the coupled FE analysis.
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following equation:

Tx ¼
Et

2ð1� vÞ

qZ0
qx

� �2

þ To. (33)

As the static magnetic force applied on the membrane and the deflection of the membrane are coupled,
iteration is needed to determine the magnetic force and the deflection of the membrane. A flow chart showing
the analysis procedure of the coupled FE analysis is given in Fig. 6.
3.2. Experimental validation

Experiments were carried out to verify the FE model. A schematic showing the experimental set-up is given
in Fig. 7. The transmission loss spectrum was measured using the four-microphone, two-load method [6]. The
function of each pair of microphones in upstream and downstream is to resolve the travelling wave and the
reflected wave. The combination of two sets of linearly independent experiments eliminates the downstream
reflection. By this method, the transmission loss can be measured even though there is a reflected wave at the
downstream. A random noise signal was generated by a function generator. Two pairs of 1

2
in microphones

(B&K type 4187) were used together with a conditioning amplifier (B&K’s Nexus 2691). The separation
between each pair of microphones was 8 cm. As the distance from the two nearest microphones to the silencer
was longer than the triple of the duct’s height, the tube attenuation could not be neglected.
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Function Generator
DAQ Card

Signal Conditioner

Loundspeaker

Unit: mm

Membrane
(Length: 250

Cross Section
50 x 25

30080250510 51080300

Magnetic Device

Mic.4Mic.3Mic.2Mic.1

Fig. 7. Experimental set-up for the four-microphone, two-load measurement system. Length unit (mm). A function generator drives the

loudspeaker for incident wave, and two pairs of microphones resolve the standing wave pattern in regions upstream and downstream of

the membrane section of the duct. All signals are acquired simultaneously by a computer equipped with AD card.
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Three pairs of magnets were placed at 1
4
, 1
2
and 3

4
length of the cavity. The lengths of the upstream and the

downstream ducts are 1m. The separation between the membrane and the magnets was adjusted by screws
and springs which are shown in Fig. 8. By loosing or fastening the screws, the movable cylinders pushed the
magnets towards or retreating from the cavity. The connection regions between the cylinders and the
cavity were sealed by O-rings. The cavity pressure was supplied by a continuous air supply system and
the cavity pressure was controlled by a pressure regulator. Signals from the four microphones were digitized
by a DAQ card. The digital signal processing was carried out in Labviews. The initial membrane tension was
measured by strain gauge which was connected to the stain gauge indicator (VISHAY P-3500). Fig. 9 shows a
photo of the set-up.

When the separation between the membrane and the magnets is set at 2mm, the predicted static magnetic
force on the steel membrane is shown in Fig. 10. It can be seen that a maximum magnetic forcing of about
12300 Pa can be achieved at locations where magnets are placed.

According to Refs. [4,5], the optimal tension for the drum-like silencer without magnet is 2300N. Therefore,
the tension is kept at this value during the experiments. The variation of transmission loss spectrum with
respect to the cavity pressure is shown in Fig. 11. Fig. 11(a) shows the theoretical prediction of the drum-like
silencer without magnet and cavity pressure. Figs. 11(b)–(d) show the FE predictions (thick lines) and the
experimental results (thin lines) for the same silencer geometry but with magnets and different cavity
pressures. Fig. 11(a) shows that the stopband of the silencer without magnets and cavity pressure is
f 2 ½237; 370�Hz. With the deployment of the magnets and a cavity pressure of 1600 Pa, Fig. 11(b) clearly
shows a shift of the effective region of the silencer towards lower frequencies. Numerical predictions using the
FE model agree reasonably well with experiments apart from an obvious overestimation of the third peak.
Although the low-frequency shift of the transmission loss spectrum can be achieved by using the magnetic
force and a balancing cavity pressure, the overall transmission level is reduced as compared with Fig. 11(a).
With a further increase of the cavity pressure to 1800 Pa, Fig. 11(c) still shows an acceptable agreement
between the numerical prediction and measurement. However, this pressure increase results in an increase in
the effective frequency region and a decrease in the overall transmission loss. This tendency is further
enhanced when the cavity pressure is further increased to 1900 Pa. In this case, the FE model does not seem to
be very accurate due to the fact that the static deflection of the membrane starts to be very large with the
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Fig. 9. A photo of the test rig.

Duct Channel

Cavity Channel

Carbon Steel

Membrane

Movable
Cylinder

SpringScrew Nut

Magnets

Screw

Fig. 8. A schematic design of the screws and springs mechanism which is used to control the separation between the magnets and the

membrane.
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increasing cavity pressure and the proposed FE model only applies to small deflection. Moreover, both
simulations and experimental result indicate that the performance of the proposed silencer is very sensitive to
the cavity pressure. The range of cavity pressure for achieving the low-frequency shift is quite narrow, which
needs judicious tuning.
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Fig. 10. Magnetic forcing distribution on a steel membrane using three pairs of laminated magnets.
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3.3. Region of static stability and the influence of the cavity pressure and initial tension

The FE analysis predicted the best result can be obtained when the cavity pressure was 1350 Pa. This
configuration, however, was not experimentally achieved. It was found that the membrane slammed into the
magnets when the cavity pressure was less than 1400 Pa. This phenomenon is due to the instability of the
ferromagnetic membrane under magnetic field. The situation is quite similar to putting a ferromagnetic body
below a permanent magnet without any structural restoring forces. Although an equilibrium position can be
found where the magnetic force balances the force of gravity, given small departures from that equilibrium
point, the object either slams into the magnet or falls to the floor. In this case, the membrane tension serves as
the structural restoring force to prevent the membrane from slamming into the magnets. This force increases
when the cavity pressure decreases because a lower cavity pressure reduces the separation between the
membrane and the magnet. Therefore, finding the minimum cavity pressure to maintain the stability of
the membrane is crucial. The region of stability of the membrane under magnetic field can be found once the
criteria of the small deflection of the membrane are defined.

Using the FE analysis, the region of stability of the membrane under magnetic field is obtained and shown
in Fig. 12. In the figure, the solid line represents the separating line between the small deflection region and the
large deflection region of the membrane. This line also represents the stability boundary of the membrane
under magnetic effect. The points above this boundary keep the membrane in a stable situation, otherwise
the membrane is unstable. This figure indeed shows that the membrane is unstable when the tension
of the membrane is 2300N with a cavity pressure of 1350 Pa. On the contrary, when the cavity pressures are
1600, 1800 and 1900 Pa, the three tested configurations all fall into the stable region (Marked as c1, c2 and c3
in Fig. 12, respectively).

Actually, Fig. 12 also shows that the region of static stability increases with the initial tension. This is
understandable since increasing the initial tension enhances the restoring force on the membrane to prevent
the static deflection of the membrane. This needs a lower cavity pressure to keep static balance of the
membrane, but pushes the effective region of the silencer to higher frequencies.

Provided that the optimal configuration is defined by the lowest frequency of the first peak in the
transmission loss spectrum, it can be seen that the best results of the drum-like silencer lay on the boundary of
static stability curve for a given initial membrane tension. It is because the membrane deflection along the
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Fig. 11. Spectra of transmission loss for (a) the optimal drum-like silencer without magnets and cavity pressure; and the proposed silencer

with cavity pressure of (b) 1600, (c) 1800 and (d) 1900Pa. The experimental results (thin lines) and the predictions (thick lines) were

obtained for the thin steel membrane under a tension of 2300N.
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boundary is maximized and hence the dynamic magnetic effect is also maximized. This phenomenon can be
better seen in Fig. 13(a), in which the best performance for a proposed silencer with membrane tension of
1100N can be achieved when the cavity pressure is 1710 Pa (corresponding to point a1 in Fig. 12). The
frequency of the first peak in the spectrum retreats to 145Hz. When the cavity pressure increases to 2050 Pa
(corresponding to point a2 in Fig. 12), the lowest resonance frequency increases to 200Hz. This observation
suggests that the performance of the proposed silencer is very sensitive to the cavity pressure. A 20% increase
in the cavity pressure leads to a 38% increase in the value of the frequency of the first peak in the transmission
loss spectrum. When the cavity pressure is further increased to 2390 Pa, the frequency of the first peak of the
spectrum is increased to 260Hz. Along with the high-frequency shift of the spectrum when the cavity pressure
increases, the overall transmission loss level is also increased. If the overall performance of the silencer is
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Fig. 12. Region of stability of a steel membrane under magnetic field. Points c1, c2 and c3 correspond to the parametric setting of Figs.

11(b)–(d), respectively. Points a1, a2, and a3 correspond to Fig. 13(a) and b1, b2, and b3 for Fig. 13(b).
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assessed based on the transmission loss level at the first trough of the spectrum, the transmission loss levels are
3.5, 4.7 and 5.9 dB when the cavity pressures are 1710, 2050 and 2390 Pa, respectively.

In order to reveal the effect of the initial tension, Fig. 13(b) presents another group of comparisons when the
initial tension of the membrane is maintained at 1700N. Similar phenomenon as shown in Fig. 13(a) can be
observed. However, this group of silencers is less sensitive to the cavity pressure and the increase in the overall
transmission loss level due to the increase of the cavity pressure is less significant. In fact, Fig. 13(b) shows that
the best performance can be achieved when the cavity pressure is 1500 Pa, for which the frequency of the first
peak of the spectrum is 170Hz with an overall transmission loss level of 6 dB. When the cavity pressure is
increased to 1795 Pa, the first peak of the spectrum is increased to 205Hz. In this case, the same 20% increase
in the cavity pressure results in a 21% increase in the frequency of the first peak of the spectrum, to a less
degree compared with the result shown in Fig. 13(a). When the cavity pressure is further increased to 2100 Pa,
the first peak of the spectrum increases to 255Hz.

Comparing the curves (a1) in Fig. 13 and (b1) in Fig. 13(b), it can be seen that while the spectrum is shifted
to higher frequencies, the overall transmission level is increased when the membrane tension increases. The
high-frequency shift of the spectrum is mainly due to the dominant increase of the structural stiffness caused
by the increase of the tension over that of the magnetically induced stiffness. The reason for the overall
transmission level increase with the initial tension can be explained by the theoretical analysis carried out in
Section 2. In fact, the transmission loss level of the first trough of the spectrum is mainly affected by the
separation between the first and second modes. A close proximity of the two modes helps maintain the
transmission loss level of the first trough in the spectrum. Considering the characteristics of the first two modes
discussed in Section 2, the dominant increase in the structural stiffness affects more the first mode than the
second. This narrows down the separation between the first and second modes.

In summary, the optimal performance of the proposed silencer can be calculated when the criterion of the
transmission loss level is defined. The cavity pressure and the initial tension of the membrane are two
important parameters to be considered in the design of the silencer. Although the optimal combination of both
lies along the boundary of the static stability curve, a compromise between the effective frequency range and
the minimum TL level needs to be made in order to determine the individual value for each parameter. Upon
defining the targeted TL level, minimum initial tension should be used to determine the appropriate cavity



ARTICLE IN PRESS

Fig. 13. TL spectra of proposed silencer under the initial tension of (a) 1100N, and (b) 1700N. In sub-figure (a), curves a1, a2, and a3 are

for cavity gauge pressures of 1710, 2050, and 2390Pa, respectively. In sub-figure (b), curves b1, b2, and b3 are for the cavity gauge

pressures of 1500, 1795, and 2100Pa, respectively.
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pressure according to the stability curve to lower down the effective frequency range of the silencer. For
comparison purposes, the TLX10 dB criterion as defined in Ref. [17] is used here as an example. This criterion
is defined as the range of frequency where the transmission loss is everywhere higher than the peak value of
that in an expansion chamber which occupies three times as much cavity volume as does the proposed silencer.
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Fig. 14. Optimal TL spectra for the drum-like silencer (thin solid line), the proposed silencer (thick solid line), and duct lining by filling

two cavities by glassfibre (dashed line).
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When the cavity pressure is 1395 Pa, and the membrane tension is 2100N, the optimal performance of the
proposed silencer can be obtained and the result is shown in Fig. 14. The stopband of the proposed silencer is
f 2 ½181; 272�Hz. For benchmarking, the TL curves of the same drum-like silencer without magnet and cavity
pressure and a traditional duct lining with the glassfibre falling in an equal volume expansion chamber are also
shown in Fig. 14. For the latter, the flow-resistance of the glassfibre is 11.5 kN s/m4. Comparing the three
curves, it can be seen that the two drum-like silencers generally out-perform the duct lining chamber in low
frequency region. The use of magnets and cavity pressure in the drum-like silencer significantly increases the
TL between 170 and 225Hz at the expense of higher frequency performance.

4. Conclusions

The feasibility of using magnetic force to enhance the low-frequency performance of drum-like silencers is
explored using numerical and experimental means, leading to the following conclusions:
(1)
 The low-frequency performance of the drum-like silencer is mainly dominated by the first and the second
in vacuo vibration modes of the membrane. Magnets should therefore be placed at appropriate locations
to promote the responses of these two modes on one hand and to minimize the space occupied by the
magnets and subsequently the cavity stiffness on the other.
(2)
 The magnetic effects are twofold: a dynamic effect and a static effect. The former introduces a
magnetically-induced negative stiffness into the system, allowing a shift of the effective region of the
silencer towards lower frequencies. The former effect, however, increases the tension of the membrane
which tends to increase the natural frequency of the cavity backed membrane, which is detrimental to
the low frequency performance of the silencer and needs to be suppressed. This can be done by controlling
the static pressure inside the cavity.
(3)
 An FE model was developed and validated by experimental data. This model, considering the full coupling
among the membrane vibration, the sound in fluid, and the magnetic field, provides a useful tool for
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silencer design. The cavity pressure and the initial tension of the membrane are two important parameters
to be considered. The optimal combination of both lies along the boundary of the static stability curve,
and a compromise between the effective frequency range and the minimum TL level needs to be made in
order to determine the individual value for each parameter.
(4)
 The performance of the silencer found to be very sensitive to the cavity pressure. The positioning of the
magnets and the tuning of the cavity pressure turn out to be a delicate task in the practical implementation.
Appendix A

Assume that the tension on the membrane is a function of space, and express the vertical equilibrium of all
forces acting on an element of area dx dy (Fig. A1), the summation of the forces in the y direction yields

T þ
qT

qx
dx

� �
qZ0
qx
þ

q2Z0
qx2

dx

� �
dy� T

qZ0
qx

dy

þ T þ
qT

qy
dy

� �
qZ0
qy
þ

q2Z0
qy2

dy

� �
dx� T

qZ0
qy

dxþ Pmðx; yÞdxdy ¼ 0, ðA:1Þ

which after neglecting small quantities of higher order, reduces to

T
q2Z0
qx2
þ

qT

qx

qZ0
qx

� �
þ T

q2Z0
qy2
þ

qT

qy

qZ0
qy

� �
þ Pmðx; yÞ ¼ 0. (A.2)
Fig. A1. Static forces equilibrium on an element: (a) plan view, (b) section view A-A.
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Using the 2D Laplacian operator, Eq. (A.2) can be written as

r � ðTrZ0Þ ¼ �Pm. (A.3)

As the magnetic force per unit area on the membrane is defined as

Pm ¼ �
c

ðd þ Z0Þ
2
, (A.4)

where d is the separation between the ferromagnetic membrane and the magnet and C is a constant magnetic
function.

Therefore, Eq. (A.3) can be written as

r � ðTrZ0Þ ¼
c

ðd þ Z0Þ
2
. (A.5)
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