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Abstract

In this paper, a fully coupled vibro-acoustic model is developed to characterize the structural and
acoustic coupling of a flexible panel backed by a rectangular-like cavity with a slight geometrical dis-
tortion, which is introduced through a tilted wall. The combined integro-modal approach is used to
handle the acoustic pressure inside the irregular-shaped cavity. Based on the model proposed, the
distortion effect on the vibro-acoustic behavior of the coupled system is investigated using the aver-
aged sound pressure level inside the enclosure and the averaged quadratic velocity of the vibrating
plate. Simulations are conducted to examine the distortion effect on acoustic natural frequencies,
acoustic pressures and structural responses. Effects of the wall inclination on coupling coefficients
are also assessed, and an index is proposed to quantify the degree of variation of coupling strength.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The noise radiated by a vibrating structure into an enclosed cavity is of particular inter-
est for many industrial applications. Typical examples include cabin noise inside vehicles
and aircraft fuselages, which are usually modeled by a cavity enclosed by a flexible
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vibrating structure. The coupled structural vibration and acoustic field form a so-called
vibro-acoustic system. Vibro-acoustic analyses of these systems have been extensively car-
ried out using various analytical and experimental methods in the past. Early researches in
this field were presented by Junger and Feit [1] and Dowell et al. [2,3], who developed a
comprehensive modal-based theoretical framework for interior sound field prediction.
Since then, a large amount of efforts has been devoted to investigating the vibro-acoustic
behavior of such systems, such as analysis of structural–acoustic modal interaction [4–7]
and sound radiation prediction [8–11].

In general, structural vibration radiates sound into the enclosure through its coupling
with acoustic modes. Therefore, an accurate characterization of the sound–structural
interaction is essential for the prediction of acoustic field. Since conventional modal-based
methods heavily rely on the availability of the acoustic modes, which are not analytically
known in the presence of geometry irregularity, most of previous investigations focused on
systems with perfect geometry and homogeneous structural properties [7–10]. In practice,
imperfections (geometrical distortion or structural parameter uncertainty) always exist to
a certain extent, which may lead to significant discrepancy from results obtained using ide-
alized models, in terms of both eigen-frequencies and responses of the system. In most
cases, this problem is not critical since the induced discrepancy is usually gentle and small
so that numerical simulations using perfect system can still be applicable to some extent.
However, there are circumstances under which the discrepancy becomes very subtle and
large. One indication is that in some vibro-acoustic systems, numerical results cannot
match the experimental ones [12].

Some techniques and methods have been developed so far to address the increasing
interest in the distortion effect on sound–structure interactions [13,14]. Using the acou-
sto-elastic theory, acoustic modal properties of irregular-shaped cavities were computed
by approximating the cavity geometry with a set of rectangular subcavities [15]. Based on
the Green theorem, Succi calculated the interior acoustic field in an automobile cabin,
and the effects of arbitrary shape on the eigenvalues of the system were investigated
[16]. In our previous work, a ‘‘combined integro-modal approach’’ was proposed to pre-
dict acoustic properties of irregular-shaped cavities [17]. The development of these tech-
niques makes it possible to handle the cavities with irregular shapes in a semi-analytical
way. All aforementioned works, however, mainly focused on the prediction of the natu-
ral frequencies of cavities and seldom addressed the coupling issue and the possible
effects of the geometrical irregularity on system responses. A first attempt was made
by extending the combined integro-modal approach to analyze the coupling characteris-
tics between a vibrating panel and an irregular-shaped cavity with a tilted wall [18].
Using the coupling coefficients, effects on the coupling between acoustic modes and struc-
tural modes were examined, and it was found that the geometric distortion may dramat-
ically change the coupling nature to thwart the prediction using perfect model. Again, no
attention was paid to the effect of wall inclination on the vibro-acoustic behavior of the
whole system.

This paper is a continuation of that work [18] and attempts to provide some answers to
this problem. A model is first developed to handle the full vibro-acoustic coupling of a
vibrating plate backed by an acoustically hard-walled enclosure with a tilted wall, which
is introduced to represent the geometrical distortion. The averaged sound pressure level
inside the enclosure and the averaged quadratic velocity of the panel are used, respectively,
to examine the distortion effect on the acoustic field inside the enclosure and the vibration of
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plate. Since the coupling is the key to control the energy conversion from vibrating plate to
acoustic cavity, investigations on the distortion effect on modal couplings are then carried
out. The relationship between the coupling coefficients with and without wall inclination is
investigated. Numerical simulations are conducted leading to some useful conclusions.

2. Formulation

2.1. Vibro-acoustic modeling

The structure under investigation is a rectangular-like enclosure with one tilted wall (a
trapezoidal enclosure) covered with a homogeneous and isotropic vibrating panel, as
shown in Fig. 1. The enclosure has a volume V (cavity with solid lines) surrounded by
a surface Sori = S1 [ S2 [ � � � . A slightly inclined surface S1 characterized by an inclination
angle a, is introduced to represent the geometrical distortion from the standard rectangu-
lar geometry. Apart from the surface S2 occupied by the panel which is simply-supported,
all other surrounding walls are assumed to be acoustically rigid.

The vibration of the panel under a plane wave excitation eP ðx; y; tÞ is governed by the
following equation [3]

Dr4wþ qht

o2w
ot2
¼ eP ðx; y; tÞ � P cðz ¼ hÞ; ð1Þ

where w, D, q and ht are the transverse displacement (positive downwards), the flexible
rigidity, the density and the thickness of the panel, respectively. Pc is the acoustic pressure
inside the cavity.

In general, the total pressure acting on the panel, eP ðx; y; tÞ, can be decomposed into
three parts, i.e. the incident pressure, the reflected pressure when the panel is assumed rigid
and the radiated pressure due to the panel vibration. It is generally accepted that the
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Fig. 1. Schematic diagram of a rectangular-like enclosure with a tilted wall covered with a vibrating panel.
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radiated pressure is rather low compared to the other two components. Therefore, by
neglecting the radiated pressure towards outside and assuming equal magnitudes for the
incident and reflected pressure waves, the excitation pressure on the panel is twice the mag-
nitude of the incident wave, known as blocked pressure [19]

~P ðx; y; tÞ ¼ 2P o expð~jxt �~jkoz cos /�~jkox sin / cos h�~jkoy sin / sin hÞ

¼ eP oð/; hÞe~jxt ð2Þ

in which Po is the amplitude of the incident pressure, / and h are the elevation angle and
azimuth angle, respectively. ko = x/c is the wave number with c being the sound speed.

Following the conventional modal superposition theory, w is decomposed over the
mode shape functions uij(x,y) of the panel under the modal coordinate qij(t), i.e.,

wðx; y; tÞ ¼
XI

i¼1

XJ

j¼1

uijðx; yÞqijðtÞ; uijðx; yÞ ¼ sin
ipx
a

sin
jpy
b
: ð3a; bÞ

Substituting Eqs. (3a,b) into (1) and taking into account the viscous damping terms fij, one
has

mijð€qijðtÞ þ 2fijxij _qijðtÞ þ x2
ijqijðtÞÞ ¼

Z
S2

ðeP ðx; y; tÞ � P cðz ¼ hÞÞuij ds;

i ¼ 1; . . . ; I ; j ¼ 1; . . . ; J : ð4Þ

where xij and mij are the ijth natural angular frequency and the generalized mass of the ijth
mode of the panel, respectively.

The acoustic pressure Pc inside the enclosure satisfies the wave equation

r2P c �
1

c2

o2P c

ot2
¼ 0 ð5Þ

with boundary conditions

oP c

on
¼

qc €w on the panel;

0 on the rigid wall;

�
ð6Þ

where qc is the equilibrium fluid density and n the normal direction towards outside.
For the trapezoidal enclosure V, Pc cannot be decomposed on the basis of acoustic

modes, which are difficult to be known analytically. We therefore used the ‘‘combined inte-
gro-modal approach’’ to handle the acoustic pressure inside the enclosure V [17]. In the
present case, a rectangular bounding cavity enclosing V and occupying a volume Vc

((a + h Æ tga)bh) with a surface Sc (Sc = S1c [ (S2c + S2) [ � � �) is constructed. The natural
modes of the bounding cavity are adopted for sound pressure decomposition. Therefore,
Pc is decomposed on modal basis wlmn of the bounding cavity Vc as

P c ¼
XL

l¼0

XM

m¼0

XN

n¼0

wlmnP c;lmnðtÞ; wlmn ¼ cos
lpx

aþ h � tga

� �
cos

mpy
b

� �
cos

npz
h

� �
;

ð7a; bÞ
where (L,M,N) are the numbers of the terms to be kept after the truncation of the series.

Using the Green’s theorem [3] and introducing a modal loss factor flmn, Eq. (5) can be
transformed into a set of acoustic equations as



Y.Y. Li, L. Cheng / Applied Acoustics 68 (2007) 739–751 743
XL

r¼0

XM

s¼0

XN

t¼0

mlmn;rstð€P c;rstðtÞ þ 2flmnxlmn
_P c;rstðtÞ þ x2

lmnP c;rstðtÞÞ þ
c2

V
nlmn;rstP c;rstðtÞ

� �

¼ qcS2c2

V

XI

i¼1

XJ

j¼1

Llmn;ij€qijðtÞ; l ¼ 0; . . . ;L; m ¼ 0; . . . ;M; n ¼ 0; . . . ;N: ð8Þ

where

mlmn;rst ¼
1

V

Z
V

wlmnwrst dt; x2
lmn ¼ c2 lp

aþ h � tga

� �2

þ mp
b

� �2

þ np
h

� �2
( )

;

nlmn;rst ¼
Z

S1

wrst

owlmn

on
ds ðrefer to ½18� for detailÞ;

Llmn;ij ¼
1

S2

Z
S2

wlmnuij ds:

ð9Þ

In the case of harmonic excitation, qijðtÞ ¼ Bije
~jxt and P c;rstðtÞ ¼ Crste

~jxt, Eqs. (4) and (8)
can be rewritten as

mijð�x2 þ 2~jfijxijxþ x2
ijÞBij þ S2

XL

l¼0

XM

m¼0

XN

n¼0

Llmn;ijClmn ¼
Z

S2

eP oð/; hÞuij ds;

i ¼ 1; . . . ; I ; J ¼ 1; . . . ; J : ð10ÞXL

r¼0

XM

s¼0

XN

t¼0

mlmn;rstð�x2 þ 2~jflmnxlmnxþ x2
lmnÞ þ

c2

V
nlmn;rst

� �
Crst

¼ � qcS2c2x2

V

XI

i¼1

XJ

j¼1

Llmn;ijBij; l ¼ 0; . . . ; L; m ¼ 0; . . . ;M ; n ¼ 0; . . . ;N : ð11Þ

Rearranging Eqs. (10) and (11) in the matrix form gives

H11 S2L

jS2LT H22

� �
B11

. . .

BIJ

C000

. . .

CLMN

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
¼

R
S2

eP ou11 ds
. . .R

S2

eP ouIJ ds
0

. . .

0

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
; ð12Þ

where H11, L and H22 are matrices related to the structural dynamics, the structure–acous-
tic coupling and the enclosure acoustic behavior, respectively,

H11 ¼

. .
.

mijðx2
ij þ 2~jfijxijx�x2Þ

. .
.

26664
37775; L¼

L000;11 . . . LLMN ;11

. . . . . . . . .

L000;IJ . . . LLMN ;IJ

24 35; j¼ qcc
2x2

V
;

H22 ¼
c2

V

. . . . . . . . .

. . . nlmn;rst . . .

. . . . . . . . .

24 35þ . .
.

ðx2
lmnþ 2~jflmnxlmnx�x2Þ

. .
.

26664
37775 �

. . . . . . . . .

. . . mlmn;rst . . .

. . . . . . . . .

24 35:
ð13Þ
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Eq. (12) describes the vibro-acoustic behavior of the system, taking into account the
effect of wall inclination and the full coupling between the panel and the enclosure. It is
used to calculate various coefficients for constructing the acoustic pressure inside the
enclosure and the vibration of the panel, which are usually examined by the averaged
sound pressure level

LP ¼ 10 logðhP 2
ci=P 2

refÞ; ð14aÞ
and the averaged quadratic velocity

Lw ¼
x2

2S2

Z
S2

ww� ds; ð14bÞ

where hP 2
ci ¼ 1

2V

R
V P cP �c dt, pref = 20 lPa. Lw is expressed in dB referenced to

2.5 · 10�15 m2/s2 and the asterisk denotes complex conjugate.

2.2. Coupling analysis

In light of Eq. (12), the structure–acoustic coupling plays an important role in deter-
mining the vibro-acoustic behavior of the whole system. It is clear that, in order to avoid
excessive noise and vibration transfer into the enclosure, relevant structural and acoustic
modes need to be decoupled from each other. Therefore, a suitable quantification of the
distortion effect on structure–acoustic coupling is very useful to gain a basic understanding
on the sound–structure interaction and noise generation.

In general, the coupling between the lmnth acoustic mode ~wlmnðaÞ of the cavity with a
tilted wall and the ijth structural mode uij can be expressed by the coupling coefficient
~Llmn;ijðaÞ defined aseLlmn;ijðaÞ ¼

1

S2

Z
S2

~wlmnðaÞ � uij ds: ð15Þ

It should be mentioned that in the following discussions, the terms ‘‘acoustic mode
(l,m,n)’’ and ‘‘structural mode (i, j)’’ will be used to represent the modes of the coupled
system dominated by the enclosure and the panel, respectively. Although the notation
has clear physical meaning for acoustic modes when a = 0, it is loosely used for the cavity
with a tilted wall for the sake of convenience. In the latter case, it simply stands for a mode
evolving from the lmnth acoustic mode (a = 0) due to the wall inclination.

Considering that ~wlmnðaÞ cannot be analytically known for the irregular-shaped cavity,
an approximate expression using the combination of basic modes (a = 0) is hence adopted,

~wlmnðaÞ ¼
X
r;s;t

Clmn;rstwrst: ð16Þ

Substituting (16) and (3b) into Eq. (15) yields

eLlmn;ijðaÞ ¼
X
r;s;t

Clmn;rstð�1Þt ij½ð�1Þsþj � 1� � cirðaÞ
p2ðs2 � j2Þ

; s 6¼ j; ð17Þ

where

cirðaÞ ¼ ð�1Þi cos
rp

1þ ðh=aÞtga
� 1

� �
r

1þ ðh=aÞtga

� �2

� i2

 !,
: ð18Þ
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In the case a = 0, ~wlmnðaÞ ¼ wlmn and eLlmn;ijða ¼ 0Þ ¼ Llmn;ij defined in Eq. (9), i.e., one has
[20],

eLlmn;ijða ¼ 0Þ ¼ Llmn;ij ¼
ð�1Þn ij½ð�1Þmþj�1�ðð�1Þlþi�1Þ

p2ðl2�i2Þðm2�j2Þ ;
l 6¼ i; ðlþ iÞ=2 6¼ integer

m 6¼ j; ðmþ jÞ=2 6¼ integer

0 otherwise

8<:
ð19Þ

In the general case, it can be shown that

eLlmn;ijðaÞ ¼
X
r;s;t

ðiþrÞ
2 6¼integer

Clmn;rstLrst;ij
ði2 � r2ÞcirðaÞ

2

þ
X
r;s;t

ðiþrÞ
2 ¼integer

Clmn;rstð�1Þt ij½ð�1Þsþj � 1�cirðaÞ
p2ðs2 � j2Þ

; s 6¼ j: ð20Þ

Eq. (20) describes the variation of coupling coefficients under the geometrical distortion
a. Different from Lrst,ij which only depends on the orders of modes (Eq. (19)), eLlmn;ijðaÞ
comprises a combination of Lrst,ij, which includes the contribution of additionally evoked
modes due to the distortion, as reflected by the second part of Eq. (20). Obviously, the
existence of distortion also alters the coupling coefficients through introducing the variable
cir(a), and therefore resulting in an alteration of vibro-acoustic behavior of the system.

3. Results and discussions

Numerical analyses are conducted using the configuration shown in Fig. 1 with a
dimension of a · b · h = 0.92 · 0.15 · 0.6 m3. The thickness of the aluminum panel is
set as ht = 0.002 m, and the modal loss factor is assigned to be 0.005 for the panel while
0.001 for the cavity. a is varied from 0� to 10� to simulate the geometrical distortion.

The number of modes used for structural displacement and sound pressure decompo-
sition is the main factor affecting the accuracy of the solution. In general, the accuracy
can be satisfied by increasing the number of modes until convergence is achieved in the
frequency range of interest. In the present case, a careful convergence study was carried
out by increasing the number for each variable involved in the modal expansion series,
leading to the following selection: (60,3,10) for the enclosure and (10,10) for the panel.

The validation of the model was verified by examining a system with a slight inclination
angle a = 0.001�. Comparison between the averaged sound pressure level for this config-
uration with that for a perfect one (a = 0, verified in [21] using an enclosure covered with
a single panel) shows a good agreement (not shown here).

3.1. Distortion effect on vibro-acoustic responses of the coupled system

Fig. 2(a) shows the averaged sound pressure levels Lp inside the enclosure when a = 0�,
5� and 10� under an oblique plane wave excitation. Peaks marked with symbols ‘n’ and ‘m’
stand for resonances dominated by the enclosure and the panel, respectively. Apparent
effects of the wall inclination on Lp can be noticed especially with a larger a value. These
effects are reflected by an alteration in the level of responses in several frequency regions,
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especially in those dominated by the acoustic resonances. Focusing on those cavity modes,
it can be seen that within the analyzed frequency range [0 600]Hz, the left-shift of peaks
occurs except for modes (0,0,1) and (0,0,2), and the variation is getting larger when a
increases. The reason is that an increased a alters the dimension of the cavity in x-direc-
tion, leading to an increase of wavelengths klmn and a corresponding decrease of acoustic
natural frequencies flmn(l 6¼ 0, c/flmn = klmn) [18]. However, the effect of the wall inclination
on the structural modes is trivial.

A further confirmation comes from Fig. 2(b), in which a normal plane wave excitation
is applied to the panel. In addition, compared with the case when a = 0, the wall inclina-
tion provokes the excitation of additional acoustic modes (denoted by ‘‘d’’) due to the
destruction of the symmetry of enclosure geometry. In such circumstance, the effects of
the distortion become significant.
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The effect of distortion on the distribution of the acoustic pressure at different frequen-
cies is then examined. Two particular frequencies are chosen for this purpose, one is the res-
onance frequency (f(a = 0) = 468 Hz), and the other is a frequency (f(a = 0) = 400 Hz) at
which the wall inclination has no apparent effect on the overall sound pressure level. The
acoustic pressure distributions along the cross-section y = b/4 at the frequency 468 Hz
for a = 0� and 10� are shown in Fig. 3(a) and (b), respectively. Since f(a = 0) = 468 Hz cor-
responds to the resonant frequency of the mode (2, 0,1) (as clearly shown by Fig. 2(a)), the
acoustic pressure distribution of this mode is significantly modified with the introduction of
the inclination angle a = 10�, e.g., the maximal pressure amplitude reduces to 0.3%
(Fig. 3(b)) of its counterpart at a = 0, which is quite understandable. Another frequency
of interest is f = 400 Hz, at which the Lp curves for different a are overlapped. Fig. 3(c)
and (d) illustrate the pressure distribution for a = 0� and 10�, respectively. It can be
observed that, even though no significant changes are observed from the overall sound pres-
sure level, the acoustic pattern, especially in the vicinity of the tilted wall, is altered to some
extent due to the inclination of the wall.

As far as the vibration of the panel is concerned, Fig. 4 illustrates the averaged quadratic
velocity Lw for a = 0�, 5� and 10�. Generally speaking, structural modes, especially the low
frequency mode (1, 1), dominate the vibration response of the panel. The acoustic mode
(0,0,1) is also well evoked due to the closeness between the natural frequency of this mode
(f001 = 291 Hz) and that of the structural mode (4, 1) (f41 = 308 Hz). However, those acous-
tic modes which are affected by the wall inclination create weak impact on the structural
Fig. 3. Acoustic pressure distribution at the cross-section y = b/4 of the enclosure.
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responses. Obviously, the vibration of panel is not so sensitive to distortion compared with
the acoustic field inside the enclosure.

3.2. Distortion effect on modal coupling

Theoretically speaking, if a particular acoustic mode is not coupled with any struc-
tural mode, no energy will be converted into the cavity from that mode. Obviously, it
is not possible to find such a a so that the coupling coefficients eLlmn;ijðaÞ ¼ 0
(i = 1, . . . , I; j = 1, . . . ,J). As mentioned in Section 2.2, the effect of a on structure–acous-
tic coupling can be assessed by investigating the variation of eLlmn;ijðaÞ. Fig. 5(a) and (b)
illustrate the histogram of eLlmn;ijðaÞ for a = 0� and 10�, respectively. It can be seen that
for a = 0�, due to the orthogonality of the modal functions of the cavity, any symmetric
structural mode is decoupled with an acoustic mode which is anti-symmetrical in one of
the two directions parallel to the panel edges, leading to a relatively simple and selective
coupling pattern. When a = 10�, however, the very selective property of the coupling for
a = 0 is no longer valid. Instead, more modes are evoked resulting in a complicated cou-
pling behavior. This can be clearly seen by comparing Fig. 5(a) with (b). For example,
among the analyzed structural modes ((1,1), . . . , (2,4)), two more, i.e., (2, 1) and (2,3),
are coupled to the acoustic mode (2, 0,0) for a = 10� compared with the case of a = 0,
in which only (1, 1) and (1,3) are involved. In addition, observing the amplitude ofeLlmn;ijðaÞ shows that, although the maximal Llmn,ij(a) keeps almost unchanged, the effect
of the evoked structural modes on the coupling is significant for some acoustic modes,
e.g., for mode (2,1,2), the variation of eL212;22ða ¼ 10�Þ reaches 29% of the maximal one.
This observation implies that a slight geometrical imperfection of the cavity can drasti-
cally change the coupling nature to thwart the prediction using perfect model. This is a
plausible reason to explain the inconsistency between numerical results and experimental
ones for some vibro-acoustic systems, in which the existence of slight geometrical
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imperfection in experiments introduces uncertainties into the system through changing
structure–acoustic coupling strength.

A quantitative analysis on the effect of a on one particular acoustic mode is carried out
by defining the degree of variation in coupling strength as follows:

vlmnðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

IJ
�
X

i;j

ððeLlmn;ijðaÞ � eLlmn;ijða ¼ 0ÞÞ=max
i;j
ðeLlmn;ijða ¼ 0ÞÞÞ2

s
;

i ¼ 1; . . . ; I ; j ¼ 1; . . . ; J : ð21Þ

In a sense, the above definition reflects the degree of changes in the coupling coefficients
relative to the ideal case when a = 0. Fig. 6 illustrates the tendency plot of vlmn(a) with a
varying from 0� to 10�. It can be seen that vlmn (a) increases remarkably with the increase
of distortion, showing a strong effect of evoked structural modes on the coupling. For
example, with a = 10�, the two evoked structural modes (2, 1) and (2,3), lead to more than
20% variation in vlmn(a) for the acoustic mode (2, 0,0). Another observation is that the
coupling nature is altered with the increase of a. As an example, when a = 2�, the mode
(2,0,1) dominates vlmn(a), followed by (2,0,0), (1, 0,0), (1, 0,2) and (0,0,2). The situation
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is different when a increases. The effect of mode (2,0,1) on vlmn(a) is significantly weak-
ened. Instead, the mode (2,0,0) becomes the most dominant, followed by the modes
(1,0,2), and leads to a vary large extent when a = 10�. One should expect this change in
coupling strength to subsequently alter the noise generation.

4. Conclusions

This paper presents a vibro-acoustic modeling and analysis of a rectangular-like cavity
with a tilted wall coupled to a vibrating plate. Different from previous studies, emphasis is
put on analyzing the distortion effect on the vibro-acoustic behavior and the coupling
mechanism of the system, leading to the following conclusions.

(1) Characterized by the averaged sound pressure level Lp, changes in the acoustic nat-
ural frequencies and acoustic pressure distribution inside the cavity are clearly iden-
tified even for a small distortion. Given the normal plane wave excitation, more
effective structural–acoustic coupling takes place due to geometrical distortion.
However, the distortion effect on the vibration of panel is trivial, suggesting that
the feedback effect of slight distortion of the cavity can be neglected during vibration
analysis of the panel so as to simplify the calculation.

(2) A slight distortion of the enclosure can lead to a noticeable alteration in the struc-
ture–acoustic coupling, and subsequently the acoustic field inside the enclosure. This
is probably the reason why some predictions using idealized models fail to match
experimental results.
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