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Abstract

This paper presents a general model for dealing with acoustic coupling between an enclosure and a Helmholtz resonator

array, which leads to a special model when the array retreats to one resonator. The general model considers a significant

number of enclosure modes, resonators, and sources, and gives more accurate prediction results without suffering from the

singularity problem met before. The development of the special model results in a rigorous analytical solutions, which

allows us to reexamine some of the previous studies reported in literatures. Based on the special model, a frequency

equation to predict the frequency variation at both the targeted and off-target modes due to inserting a resonator into the

enclosure is provided, and a method to constrain the worsened noise level at off-target modes is also discussed.

Comparisons are made among computed data using the present model, previously published models, and measured results,

and generally favorable agreement between prediction and measurement is observed. The present model is helpful to

numerically evaluate the noise control performance of a resonator array installed in an enclosure, and also useful to semi-

analytically determine the optimal location for resonators, which currently still involves heavy experimental measurements

on a trial-and-error basis.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Helmholtz resonators are often used as a narrowband sound absorption device in the noise control of a
reverberant enclosure. When a well designed and tuned resonator is put in the enclosure at a location not too
near the node of targeted mode, the force produced by the incident sound pressure over the aperture of the
resonator drives the lumped air-mass inside the resonator neck to vibrate. Due to the natural frequency
matching between the resonator and the targeted enclosure mode, the resonance occurs in the resonator, such
trapping most of the input energy in a relative narrowband between two coupled frequencies [1]. The volume
velocity out of the resonator aperture forms an effective secondary source inside the enclosure. The results of
acoustic interaction between the primary and secondary sound field in the enclosure and the energy dissipated
in the resonator itself provide attenuation of the unwanted sound in the enclosure.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Several authors have investigated the acoustic interaction when introducing Helmholtz resonators into
rooms [1–4]. Van Leeuwen [2] examined the coupling between a room mode and a Helmholtz resonator using
electrical analog method. Fahy and Schofield [1] conducted theoretical and experimental research to improve
the work in Ref. [2]. In Ref. [1], it was assumed that the average separation between resonance frequencies of
the room was sufficiently large to exceed the average modal bandwidth. In that sense, only the targeted
particular room mode (single-mode) was taken into account in the coupling analysis and all other room modes
were negligible due to their remoteness in frequency from that of the resonator. Based on this assumption,
formulas and charts were presented, which were very helpful to understand the absorptive mechanism of the
resonator and to optimally design a single Helmholtz resonator. However, in most of cases, acoustic modes of
a room may not be well separated in frequency due to a relatively high modal-density. Moreover, a resonator
array consisting of multiple resonators may be required in some practical applications to control one or
several different room modes simultaneously. Therefore, an acoustic coupling model considering the
interaction between multiple enclosure modes and multiple resonators is desired. In this regard, Cummings [4]
presented a multimode theory to replace the single-mode treatment for the interaction between an array of
resonators and the sound field generated by an arbitrary source distribution in the room. In his work, the
resonator was assumed to behave like a point source. The volume velocity of each acoustic resonator was
solved from a series of linear equations obtained from balancing pressures at each resonator aperture.
Cummings pointed out that since the resonator was taken as a continuous point source, the sound pressure at
the resonator aperture was singular if the pressure was calculated from its own volume velocity. Thus, he used
an average sound pressure at the surface of a small equivalent pulsating sphere to replace the singular sound
pressure directly radiated from the point source of the resonator at its own location [4]. It is found out in the
present paper that the coupled frequencies obtained from the equivalent sphere model led to a relatively large
discrepancy with the measurement.

In the present study, a multimode theory for describing the acoustic interaction between an enclosure and a
Helmholtz resonator array is developed. It is a direct expansion of Fahy and Scholfield’s work to the case of
multiple room modes coupled with multiple acoustic resonators and multiple sound sources. This model does
not suffer from the ‘‘pitfall’’ of the singularity problem encountered in Ref. [4]. As a special case, the coupling
problem between one enclosure and only one resonator is further investigated to reveal the underlying physics
in complex mathematical equations in the general model. Analytical solutions of the pressure field in the
enclosure and the volume velocity source strength out of the resonator are derived without any extra
hypotheses but just by means of mathematical manipulation. Comparisons among predictions based on the
current theory and Cummings’s theory [4] as well as the measured data presented by Fahy and Schofield [1]
have been carried out, and certain features peculiar to the present models have been examined.

2. Theory

A general model comprising an enclosure coupled with an acoustic resonator array is presented before
investigating a special case of the enclosure coupled with only one resonator. Both classical Helmholtz
resonators and quarter wavelength resonators can be used. For a classical Helmholtz resonator, its effective
neck length includes both exterior [5] and interior [6] end corrections to consider the local reactive effects [1]
and to release the pressure in the aperture [7]. However, the resistance of the resonator only accounts for the
interior resistance in its neck whilst excluding the external radiation resistance because it has been taken into
account in the enclosure sound field [1]. For a quarter wavelength resonator without porous material installed
in the tube, the effective length only includes the exterior end correction.

2.1. General coupling model of an enclosure with an acoustic resonator array

It is assumed that M acoustic resonators are located at the points rR
1 ; r

R
2 ; . . . ; r

R
M (centers of the resonator

apertures) in an enclosure, in which a set of N harmonic point sources with volume velocity source strength
density qS

1 ; q
S
2 ; . . . ; q

S
N , centered at the points rR

1 ; r
R
2 ; . . . ; r

R
N are arbitrarily distributed. Here, the superscripts R

and S indicate the variables associated with ‘‘Resonator’’ and ‘‘Source’’, respectively. For the resonator m in
the array, the air inside its neck is simplified as a lumped mass and its motion follows the Newton’s second law
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provided that the geometric dimensions of the resonator aperture is very small compared with the targeted
sound wavelength:

r0L
R
mSR

m €x
R
mðtÞ þ SR

mRim _x
R
mðtÞ þ

r0c
2 SR

m

� �2
VR

m

xR
mðtÞ ¼ �pðrR

m; tÞS
R
m, (1)

where x(t) is the particle displacement, which is assumed positive when it points to the enclosure, SR
m the cross

sectional area of the aperture, VR
m the volume of the resonator body, LR

m the effective length, Rim the internal
resistance of the resonator neck, and pðrR

m; tÞ the average sound pressure over the aperture area. Eq. (1) can be
simplified as

€xR
mðtÞ þ cRm _x

R
mðtÞ þ oR

m

� �2
xR

mðtÞ ¼ �
1

r0L
R
m

pðrR
m; tÞ, (2)

where oR
m

� �2
¼ c2SR

m=LR
mV R

m, o
R
m is the radian natural frequency of the resonator m, Rm ¼ Rim=z0LR

m and
z0 ¼ cr0, z0 the characteristic impedance of the air.

Each vibrating resonator creates an effective sound source (secondary sound source) with a volume velocity
source strength density qR

mðtÞ ¼ SR
m _x

R
mðtÞdðr� rR

mÞ directed out of the resonator aperture into the enclosure [1].
Therefore, the sound field in the enclosure is the superposition of the primary and the secondary sound fields.
Thus, an inhomogeneous wave equation which governs the behavior of the air in the enclosure is

r2fðr; tÞ �
1

c2
€fðr; tÞ ¼

XM
m¼1

SR
m _x

R
mðtÞdðr� rR

mÞ þ
XN

n¼1

qS
n ðtÞdðr� rS

n Þ; (3)

where f(r, t) is the acoustic velocity potential, d(r�r0) the three dimensional Dirac delta function. f(r, t) can
be expanded on the basis of eigenfunctions of the enclosure fðr; tÞ ¼

PJ
j cjðtÞjjðrÞ, where J is the maximum

mode number of the enclosure under consideration, cj(t) is the jth modal response, and jj(r) is the jth
eigenfunction. Applying orthogonality properties of the acoustic modes to the wave Eq. (3) yields a discretized
equation

€cjðtÞ þ gE
j

� �2
cjðtÞ ¼ �

c2

V E

XM
m¼1

jjðr
R
mÞ

LE
j

SR
m _x

R
mðtÞ �

c2

VE

XN

n¼1

~jjðr
S
n Þ

LE
j

qS
n ðtÞ, (4)

where VE is the volume of enclosure, LE
j the mode normalization factor, given by LE

j ¼
R

VE ½jjðrÞ�
2 dV=VE ,

~jjðr
S
n Þ the average of jjðr

S
n Þ over the volume of the nth source, and gE

j the jth complex eigenvalue of the

enclosure, expressed as gE
j ¼ oE

j þ iCE
j , in which the real part is the radian natural frequency and the

imaginary part is an equivalent ad hoc damping coefficient.
Using pðrR

m; tÞ ¼ �r0 _fðr; tÞdðr� rR
mÞ and fðr; tÞ ¼

P
cjðtÞjjðrÞ, Eq. (2) can be expressed as

€xR
mðtÞ þ cRm _x

R
mðtÞ þ oR

m

� �2
xR

mðtÞ ¼
1

LR
m

XJ

h¼1

_chðtÞjhðr
R
mÞ. (5)

Assuming the time harmonic variables are cjðtÞ ¼ Pje
iot, xR

mðtÞ ¼ X R
me

iot, and qS
n ðtÞ ¼ QS

n e
iot, Eqs. (4) and

(5) become, respectively,

o2 � gE
j

� �2� �
Pj ¼

c2

V E

XM
m¼1

ioSmjjðr
R
mÞ

Lj

X R
m þ

c2

VE

XN

n¼1

~jjðr
S
n Þ

Lj

QS
n (6)

and

oR
m

� �2
� o2 þ icRmo

h i
X R

m ¼
io
LR

m

XJ

h¼1

jhðr
R
mÞPh. (7)
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Solving Eq. (7) yields

X R
m ¼

io

oR
m

� �2
� o2 þ icRmo

h i 1

LR
m

XJ

h¼1

jhðr
R
mÞPh. (8)

Substituting Eq. (8) into Eq. (6) gives

o2 � lE
j

� �2
o2

�
XM
m¼1

AR
m

V R
m

VE

jjðr
R
mÞ

h i2
Lj

8><
>:

9>=
>; Pj

QS

k2V E

,

�
XJ

haj

XM
m¼1

AR
m

V R
m

VE

jjðr
R
mÞjhðr

R
mÞ

Lj

" #
Ph

QS

k2V E

¼
XN

n¼1

~jjðr
S
n Þ

Lj

QS
n

QS
, ð9Þ

where

AR
m ¼

oR
m

� �2
o2 � icRmo� oR

m

� �2 , (10)

where AR
m is defined as the acoustic parameter of the mth Helmholtz resonator, and QS the volume velocity

source strength of one primary point source. Eq. (9) is a set of linear equations when only J enclosure modes
are considered. The modal response Pj can be numerically solved when the eigenvalues and eigenfunctions of
the enclosure are known and the installed resonators and the distributed primary point sources are also given.
The sound pressure p(r) can be computed from pðrÞ ¼ �r0 _fðrÞ:

pðrÞ

ior0Q
S

k2VE

¼ �
XJ

j¼1

jjðrÞ
Pj

QS

V Ek2

0
BB@

1
CCA

2
664

3
775. (11)

In the absence of the resonators, i.e., AR
m ¼ 0, the modal response Pj can be analytically solved from Eq. (9)

as

Pj

QS

k2VE

¼
o2

o2 � gE
j

� �2XN

n¼1

~jjðr
S
n Þ

Lj

QS
n

QS

" #
ðj ¼ 1; 2; 3; . . . ; JÞ. (12)

As an example, a special case involving identical resonators to target the enclosure mode H is examined.
Assuming that the average separation of the natural frequencies of the enclosure mode greatly exceeds the
average modal bandwidth, only mode H is kept in the acoustic coupling. Expressing oR

m ¼ oR, V R
m ¼ VR,

LR
m ¼ LR and Rm ¼ R, the modal response PH can be approximately obtained from Eq. (9) as

PH

QS

k2VE

¼

PN
n¼1

~jH ðr
S
n Þ

LH

QS
n

QS

o2 � gE
H

� �2
o2

� ARV R

V E

XM
m¼1

j2
H ðr

R
mÞ

LH|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
contribution from resonators

. (13)

Comparing Eq. (12) with Eq. (13) it can be seen that the effect of the resonators is reflected by an additional
term appearing in the denominator in Eq. (13). At the targeted enclosure natural frequency (i.e.,
o ¼ oH ¼ oR), the term ½o2 � ðgE

H Þ
2=o2� vanishes due to the lightly damped enclosure. By the same token,

the term ARVR
PM

m¼1

½j2
H ðr

R
mÞ�=VELH dominates, controlling the behavior of the enclosure at the targeted
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resonance. More specifically, the term
PM

m¼1

j2
H ðr

R
mÞ=LH , which is location dependent, conveys two important

messages: (1) The most effective control occurs when the resonator apertures are located in anti-nodes of the
targeted enclosure mode where the strongest coupling happens; (2) increasing the number of the resonators
can improve modal response of PH around the targeted resonance frequency provided the center distance of
any two resonators is larger than a quarter wavelength of interesting sound leading to a negligible interaction
among the resonator themselves [8,9].
2.2. Acoustic coupling model of an enclosure with only one acoustic resonator

It has been reported that when introducing a resonator or a resonator array into an enclosure, the targeted
mode can be well controlled but other off-target modes may either be improved or deteriorated [10]. This
phenomenon cannot be analytically explained using Fahy and Schofield’s model [1] because only the targeted
mode was considered in their solution. From Cummings’s general model, one can obtain a solution for the
volume velocity source strength of the resonator and then solve the sound pressure inside the enclosure.
However, in order to solve the singularity problem in Cumming’s model, an equivalent sphere was used to
approximate the resonator radiation, which resulted in a relatively large discrepancy in the prediction of
coupled frequencies when comparing with experimental results as we will show later. Any coupled system,
such as the present one with multiple resonators, behaves like the general structural and acoustic interaction
model presented by Dowell et al. [11] and Fahy [12]. The discretized modal equations generally involve
integral operations over the interface surface between the structure and acoustic system. In that case, no
analytical solution can be obtained without further hypotheses and simplifications. However, the coupling
between a single-degree-of-freedom (sdof) Helmholtz resonator and a multidegree freedom (mdof) enclosure
shows a very special feature. In fact, for a given resonator at one fixed location, no integral operation is
involved in its discretized modal equation, which warrants an analytical solution by means of mathematical
manipulation without any extra hypotheses. Therefore, the classical acoustic coupling problem between an
enclosure and only one resonator is revisited using the present model. It differs from the previous work [1] in
several aspects: (1) The present model considers a significant number of enclosure modes and uses point source
to model the resonator radiation without suffering from the singularity problem; (2) it leads to a rigorous
analytical solution for the sound pressure inside the enclosure as well as the volume velocity source strength
out of the resonator aperture; (3) it provides a frequency equation to predict the frequency variation at the
targeted mode as well as off-target ones shown in Part 3; (4) it presents a method to constrain the worsened
noise level at off-target modes also shown in Part 3.

With only one resonator and N distributed point sources in the enclosure, the coupling equation is obtained
from Eq. (9) after eliminating the subscribe m:

o2 � lE
j

� �2
o2

� ARV R

V E

jjðr
RÞ

h i2
Lj

8><
>:

9>=
>; Pj

QS

k2V E

�
XJ

haj

ARVR

VE

jjðr
RÞjhðr

RÞ

Lj

" #
Ph

QS

k2VE

¼
XN

n¼1

~jjðr
S
n Þ

Lj

QS
n

QS
. (14)

Note that if the targeted mode j is well separated with other modes, the summation term on the left-hand
side of Eq. (14) can be ignored, leading to the approximate expression of modal response obtained by
Fahy and Schofield [1]. In order to get an exact solution without this additional hypothesis, Eq. (14) is re-
written as

o2 � gE
j

� �2
o2

Pj

QS

k2V E

� ARV R

VE

jjðr
RÞ

Lj

XJ

h¼1

jhðr
RÞ

Ph

QS

k2VE

¼
XN

n¼1

~jjðr
S
n Þ

Lj

QS
n

QS
, (15)
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where j ¼ 1; 2; 3; . . . When jjðr
RÞa0, we divide jjðr

RÞ=Lj over the two sides of Eq. (15) and obtain

o2 � gE
j

� �2
o2

jjðr
RÞ

Lj

Pj

QS

k2VE

� ARV R

V E

XJ

h¼1

jhðr
RÞ

Ph

QS

k2VE

¼
XN

n¼1

~jjðr
S
n Þ

jjðr
RÞ

QS
n

QS
. (16)

The physical meaning of jjðr
RÞa0 is that the resonator is not located at any nodes of the enclosure modes.

If jjðr
RÞ ¼ 0, Eq. (15) becomes

o2 � gE
j

� �2
o2

Pj

QS

k2V E

¼
XN

n¼1

~jjðr
S
n Þ

Lj

QS
n

QS
. (17)

Eq. (17) shows that any resonator located at any nodes of the enclosure mode j provides no control actions
to the mode.

Eq. (16) shows that the second term (summation term) on the left-hand side of the equation is a
constant as the running modal index j varies. Applying the running indices to two arbitrary integers j and h,
yields

o2 � gE
j

� �2
o2

jjðr
RÞ

Lj

Pj

QS

k2VE

� ARVR

V E

XJ

i¼1

jiðr
RÞ

Pi

QS

k2V E

¼
XN

n¼1

~jjðr
S
n Þ

jjðr
RÞ

QS
n

QS
, (18)

o2 � gE
h

� �2
o2

jhðr
RÞ

Lh

Ph

QS

k2V E

� ARVR

VE

XJ

i¼1

jiðr
RÞ

Pi

QS

k2VE

¼
XN

n¼1

~jhðr
S
n Þ

jhðr
RÞ

QS
n

QS
. (19)

The subtraction of Eqs. (19) and (18) allows the elimination of the constant terms, as follows:

o2 � gE
h

� �2
o2

jhðr
RÞ

Lh

Ph

QS

k2V E

�
o2 � gE

j

� �2
o2

jjðr
RÞ

Lj

Pj

QS

k2VE

¼
XN

n¼1

~jhðr
S
n Þ

jhðr
RÞ
�
~jjðr

S
n Þ

jjðr
RÞ

" #
QS

n

QS
. (20)

The above equation establishes a direct relationship between any two arbitrary enclosure modes, j and h.
From Eq. (20), the modal response of Ph can be expressed in terms of Pj. Substituting Ph into Eq. (14), an
analytical solution of Pj can be solved as

Pj

QS

k2VE

¼
o2

o2 � gE
j

� �2XN

n¼1

~jjðr
S
n Þ

Lj

QS
n

QS

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Contribution of the primary sound field

þ

o2

o2 � gE
j

� �2 jjðr
RÞ

Lj

2
64

3
75ARV R

V E

PJ
h¼1

o2

o2 � gE
h

� �2 jhðr
RÞ

Lh

PN
n¼1

~jhðr
S
n Þ

QS
n

QS

� �( )

1� ARVR

VE

PJ
h¼1

o2

o2 � gE
h

� �2 j2
hðr

RÞ

Lh

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Contribution from the resonator

.

(21a)
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Using Eqs. (8), (21a), and qRðtÞ ¼ SR _xRðtÞdðr� rRÞ, the volume velocity source strength directed outward of
the resonator into the enclosure can be found as

QR

QS
¼

ARV R

V E

PJ
h¼1

o2

o2 � gE
h

� �2 jh rR
� �
Lh

PN
n¼1

~jh rS
n

� �QS
n

QS

� �( )

1� ARVR

V E

PJ
h¼1

o2

o2 � gE
h

� �2 j2
h rR
� �
Lh

" # . (22)

From Eq. (22), it is known that the volume velocity source strength out of the resonator depends on its own
acoustic parameters hidden in AR, the source strength and the geometric dimensions of the primary sound
source, the eigenvalues and mode shapes of the enclosure, and the volume ratio of the resonator and enclosure.
It is also clear that when the resonator is put in the node of the jth enclosure mode, i.e., jhðr

RÞ ¼ 0, the volume
velocity induced by this mode is neutralized.

In terms of volume velocity source strengths, the modal pressure response shown in Eq. (21a) can be rewritten as

Pj

QS

k2VE

¼
o2

o2 � gE
j

� �2XN

n¼1

~jjðr
S
n Þ

Lj

QS
n

QS

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Contribution of the primary sound field

þ
o2

o2 � gE
j

� �2 jjðr
RÞ

Lj

QR

QS

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Contribution from the resonator

(21b)

and the pressure p(r) can be derived based on Eqs. (11) and (21b) as

pðrÞ

ior0Q
S

V Ek2

¼ �
XJ

h¼1

o2

o2 � gE
h

� �2jhðrÞ

Lh

XN

n¼1

~jhðr
S
n Þ

QS
n

QS

� �( )
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Contribution of the primary sound field

�
QR

QS

XJ

h¼1

o2

o2 � gE
h

� �2 jhðrÞjhðr
RÞ

Lh

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Contribution from the resonator

. (23)

The above two analytical expressions for the modal response and for the pressure in the enclosure in terms of the
volume velocity source strengths provide a more intuitionistic way to understand the result of the acoustic
interaction inside the enclosure. They all include two parts: one induced by the primary sound field and the other
contributed from the secondary sound field created due to the insertion of the resonator. Eq. (23) together with
Eq. (22) also provide a useful analytical tool to optimally design the acoustic coupling system for desired noise
attenuation inside the enclosure.

It should be stressed that the above mathematical manipulation only applies to the case of one single resonator
coupled with an enclosure. When two or more resonators are present, Eq. (9) describing the fully coupled linear
system should be solved using a numerical inversion method. It has been proved that the analytical result
obtained from Eq. (23) is identical as the numerical one calculated from a fully coupled model using the matrix
inversion. It is also noticed that, during the above derivation, because the modal response is solved before
calculating the sound pressure inside the enclosure and the volume velocity of the resonator, the present model
does not suffer from the singularity problem as encountered in Ref. [4].

In order to compare the results obtained in this study with those presented in Refs. [1,4], a sound pressure
level (SPL) presented in Ref. [4] is used to determine the pressure distribution inside the enclosure

LpðrÞ ¼ 20 log
pðrÞ

ior0Q
S

VEk2

								

								. (24)

3. Simulations

Numerical simulations were designed to examine the present model and to compare with the past
experimental and theoretical results. In the calculations, a series of classical Helmholtz resonators and one
right parallepiped reverberant enclosure were used. The directions along width, height, and length were
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defined as x-, y- and z-direction, respectively. The geometric dimensions of the enclosure were lx ¼ 2.1m,
ly ¼ 2.52m, and lz ¼ 2.5m, which were also used by Fahy and Schofield [1] and Cummings [4]. Helmholtz
resonators, having a 306mm internal diameter cylindrical body with a variable depth and a 102mm internal
diameter neck with a 150mm physical neck length, were inserted in the enclosure at places not too near the
node of the enclosure mode under consideration [1,4]. In Ref. [1], one or two sheets of loudspeaker grill cloth
were introduced to the base of the neck to improve the resonator’s internal resistance. One square source
(loudspeaker) with dimensions of 158mm in the x and y directions and zero in z direction was installed at (79,
79, 10)mm to drive the primary sound field [4]. One Brüel and Kjær Type 41351/4’’ microphone located at
(1.94, 0.16, 0.16)m was used to measure SPL inside the enclosure [1]. Relevant information about the
geometry and positions associated with the enclosure, resonators, and measurement devices is tabulated in
Table 1.
Table 1

Geometric dimensions and location information

Device Parameter Data

Enclosure Dimensions (m)

lex 2.10

ley 2.52

lez 2.50

Neck radius, r1 (mm) 51

Neck length, l1 (mm) 105

Body radius, r2 (mm) 153

Body length, l2 (mm) 100.1

Resonators Internal resistance, Ri (mks Rayls)

Empty necked 2.7

One sheet of cloth 12.6

Two sheets of cloth 20.8

Loudspeaker Dimensions (mm)

lsx 158

lsy 158

lsz 0

Location, (xs, ys, zs) (mm) (79, 79, 10)

Microphone Location, (xm, ym, zm) (m) (1.94, 0.16, 0.16)

Table 2

Computed natural frequencies and measured Q-factors for enclosure modes

Index Mode number (l m n) Natural frequency (Hz) Q-factor

1 000 0 56

2 010 69.6 56

3 001 70.2 56

4 100 83.6 56

5 011 98.9 56

6 110 108.8 56

7 101 109.1 56

8 111 129.5 35

9 020 139.3 32

10 002 140.4 32

11 021 156.0 41

12 012 156.7 41

13 120 162.4 46

— — 4160.0 46
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Table 3

Physical parameters

Physical parameter Used value

Ambient temperature, T ( 1C) 33

Speed of sound, c (m/s) 351

Density of air, r0 (kg/m
3) 1.2

Specific heat ratio of air, g 1.402

Thermal conductivity of air, k (W/mK) 0.0263

Specific heat at constant pressure of the air, Cp (J/kgK) 1.01� 103

Coefficient of shear viscosity, m (Pa s) 1.85� 10�5
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The thermal-viscous boundary conditions were considered for the enclosure, and the eigenfunctions of the
enclosure jj(r

R) corresponding to the eigenvalues gE
j ¼ oE

j þ iCE
j were well presented in Ref. [4], where oE

j was
the natural frequency of the jth enclosure mode in the absence of damping and CE

j was the jth ad hoc damping
coefficient obtained from measured Q-factors using CE

j ¼ oE
j =2QE

j . A total of 216 enclosure modes
[(l,m,n) ¼ (0�5,0�5,0�5), where l, m, n are the node number in x-, y-, and z-direction, respectively] were
considered in the calculation. The Q-factors of the enclosure modes were shown in Table 2, which were
measured by Fahy and Schofield [1] and also used by Cummings [4]. The ambient temperature inside the
enclosure was 33 1C and the sound speed at this temperature was c ¼ 351m/s [4]. All physical parameters used
in computation are listed in Table 3.
3.1. Comparison between experiment and theory

In the configuration used for comparisons, a resonator was put in the right parallelepiped enclosure at (1.94,
2.0, 0.16)m. Experimental data reported by Fahy and Schofield [1] were used as benchmark results. In that
work, three unflanged resonators (empty necked, with one or two sheet of cloth) were designed and tuned
under anechoic conditions to target the enclosure mode (1 1 1) at 129.5Hz. The Q-factors of the three
resonators were experimentally determined in Ref. [1], giving QR ¼ 75, 16, and 9.7, respectively. It is known
that the internal resistance of the resonator can be estimated by Ri ¼ oRr0L

R/QR [1]. It therefore depends on
the resonance frequency, the Q-factor, and the effective neck length of the resonator. The effective neck length
used by Fahy and Schofield [1] only considers the exterior end correction, giving Ri ¼ 2.4, 11.1, and 18.2mks
Rayls. When considering both the exterior and interior end corrections in the calculation of the effective neck
length, the internal resistance becomes Ri ¼ 2.7, 12.6, and 20.8mks Rayls, which were used in this study. Note
that Cummings [4] used 2.98 and 14mks Rayls for a resonator with an empty neck and with one sheet of cloth
in the neck, respectively.

The SPL at the microphone position was measured by Fahy and Schofield [1] as the excitation frequency of
loudspeaker was varied. The measured SPL curves are shown in Fig. 1(a), in which the solid-line, dashed-line,
and dotted-line correspond to the measured SPL without resonator, with an empty-necked resonator
Ri ¼ 2.7mks Rayls, and with a damped resonator Ri ¼ 12.6mks Rayls, respectively. Each peak of the
measured SPL curve without resonator is associated with one enclosure mode. After the empty-necked
resonator is inserted, the peak at 129.5Hz is split to two (127.0 and 133.0Hz) unequally located on each side
of the original resonance frequency (129.5Hz) due to a strong coupling between the lightly damped resonator
(Ri ¼ 2.7mks Rayls) and the targeted enclosure mode (1 1 1). The separation between the two coupled
frequencies is determined by the volume ratio of the resonator to the enclosure [1]. When increasing the
damping of the resonator from Ri ¼ 2.7 to 12.6mks Rayls, the two peaks are damped with a smooth
amplitude variation.

Based on the same configurations, calculations using the present model and Cummings’s model were carried
out, resulting in two sets of figures: Figs. 1(b) and (c), respectively. In comparison with Fig. (1a), it can be
observed that, around the targeted region, the overall shape of the predicted SPL curve using the present
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Fig. 1. SPL curves at (1.94, 0.16, 0.16)m: (a) Fahy and Schofield’s measurements: —, without resonator; — —, with an empty-necked

resonator, r ¼ 2.7mks Rayls; � � � � , with a damped resonator, r ¼ 12.6mks Rayls. (b) Present model: —, without resonator; — —, with

an empty-necked resonator, r ¼ 2.7mks Rayls; � � � � , with a damped resonator, r ¼ 12.6mks Rayls, — � —, with a damped resonator,

r ¼ 20.8mks Rayls. (c) Cummings’s model: —, without resonator; — —, with an empty-necked resonator, r ¼ 2.7mks Rayls; � � � � , with

a damped resonator, r ¼ 12.6mks Rayls.
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model (Fig. (1b)) is quite similar to that of the measured data (Fig. (1a)), although the predicted dip near
129.5Hz with an empty-necked resonator is deeper than the measured one and the predicted SPL data
between the two coupled frequencies are also slightly lower than the measured values. From Fig. (1b), it can be
also noticed that an increase in the internal damping of the resonator does not always warrant a systematic
improvement of the control at the targeted frequency, e.g. at 129.5Hz. When internal resistance increases from
2.7 to 12.6mks Rayls, the control performance of the resonator is significantly improved. However, if the
resistance further increases to 20.8mks Rayls, the control performance deteriorates at 129.5Hz when
compared with 12.6 Rayls case. This observation suggests that the damping of the resonator cannot be
excessively large because the energy dissipation mechanism of the resonator depends on both damping and
vibrating velocity. Actually, Ri ¼ 12.6mks Rayls was experimentally determined as a ‘‘near optimum’’
damping by Fahy and Schofield [1].
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When comparing Figs. 1(b) and (c), a significant discrepancy is observed between the present model and
Cummings’s model. A plausible reason is that when Cummings calculated pressure at the resonator aperture,
an equivalent small pulsating sphere was used to approximate the resonator radiation in order to avoid the
singularity induced by directly using the volume velocity out of the resonator. Such an approximation results
in a relatively large error in terms of the coupled frequencies: 121.4 and 130.9Hz as predicted by Cummings’s
model vs. 127.0 and 133.0Hz as measured by Fahy and Schofield [1] (the coupled frequencies are 125.6 and
132.3Hz predicted by the present model). This error impacts on the accuracy of the prediction at the targeted
mode at 129.5Hz.

The volume velocity source strength out of the resonator computed from the analytical solution shown in
Eq. (22) was compared with that obtained from Cummings’s model (Fig. 2). When the resonator was lightly
damped, two coupled frequencies can be clearly identified in the curves. Obviously, the difference in terms of
coupled frequencies between the two models leads to different profiles of the secondary source in frequency
domain, such resulting in different acoustic coupling between the resonator and enclosure and different
response in the enclosure (see Figs. 1(b) and (c)). From Fig. 2, it is also found that as the damping of the
resonator increases, the peak of the volume velocity source strength is smoothed into a plateau with a reduced
magnitude. It can be concluded that the secondary sound field produced by the resonator behaves like a
narrowband speaker, whose bandwidth depends on the coupled frequencies, and whose strength is associated
with the internal resistance of the resonator and the primary sound source strength. Notice that the two
coupled frequencies (125.9 and 131.3Hz) obtained from the volume velocity sound strength curve computed
by present model are slightly different with those identified from the SPL curve (125.6 and 132.3Hz), which is
caused with the term io=ðoRÞ

2
� o2 þ icRo shown in Eq. (8).

It is pertinent to mention that during the calculations using both models, the effects of the number of
enclosure modes being taken into account were also investigated. When the number of the enclosure modes
was varied from 216 (l ¼ m ¼ n ¼ 0�5) to 1000 (l ¼ m ¼ n ¼ 0�9), the volume velocity of the resonator and
the SPL in the enclosure predicted with Cummings’s model and present model underwent no changes (not
shown). It implied that (1) 216 enclosure modes were sufficient to ensure the convergence of the solution, and
(2) the scattering of an equivalent pulsating sphere used in Cummings’s model did not converge to the
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radiation of a point source even thought the number of the enclosure modes used in computation was
considerably large.

3.2. Coupled and shifted frequencies

The above simulations have shown the importance of the coupled frequencies in the acoustic interaction
between the enclosure and resonator and in the prediction of the performance of resonators. Therefore, using
the established model, the variation of the enclosure resonance frequencies after inserting one resonator into
the enclosure is investigated hereafter.

In the absence of the primary sound field in the enclosure, Eq. (15) describes the free vibration behavior of
the coupled system as follows:

o2 � gE
j

� �2� �
Pj � o2AR VR

VE

jjðr
RÞ

Lj

XJ

h¼1

jhðr
RÞPh ¼ 0. (25)

This leads to a frequency equation expressed as

oR
� �2

o2 � icRo� oRð Þ
2

XJ

h¼1

�2h
o2

o2 � gE
h

� �2
" #

� 1 ¼ 0, (26)

where �2h ¼ j2
hðr

RÞV R=LhV E ; eh is a coupling parameter between the hth enclosure mode and the resonator [1].
From Eqs. (15) or (25), it is found that, after inserting a resonator into the enclosure, the resonator is coupled
with all acoustic modes of the enclosure. If a significant coupling occurs at only the targeted mode hj while
neglecting all others, two coupled frequencies can be obtained, which are approximately equally located at
either side of the original frequency with Do ¼ �hj

oR [1]. Unfortunately, most enclosure modes are not well
separated in frequency due to a relatively high modal-density of the enclosure. Thus, when a resonator is put
to the enclosure near the anti-node of the targeted mode, significant acoustic coupling occurs not only at the
targeted mode but also occurs at other modes bordering upon the targeted mode. Assuming that the acoustic
coupling occurring at H enclosure modes h ¼ {h1,h2,y,hj,y,hH}, including the targeted mode hj, is
significant, after ignoring the damping effects in both the enclosure and resonator, the frequency Eq. (26)
becomes

oR
� �2

� o2
h i2 Y

i2h;iahj

o2 � oE
i

� �2h i
� oR
� �2X

i2h

�2io
2
Y

m2h;mai

o2 � oE
m

� �2h i( )
¼ 0. (27)

Mathematically speaking, there exist (H+1) positive real frequencies satisfying Eq. (27) for a practical
coupling system: two coupled frequencies and other (H�1) new frequencies different from the original off-
target resonance frequencies, which can be characterized by a frequency shift after inserting the resonator. For
an example, in order to better examine this phenomenon, the above problem is simplified to keep only two
coupled enclosure modes A at oR and B at oE

B , in which mode A is the targeted mode by the resonator. In such
case, Eq. (27) becomes

oR
� �2

� o2
h i2

o2 � oE
B

� �2h i
� �2A oR

� �2
o2 o2 � oE

B

� �2h i
� �2B oR

� �2
o2 o2 � oR

� �2h i
¼ 0.

It can be proved that (1) three positive real frequencies can be obtained from above equation, (2) acoustic
coupling gives rise to new resonances: for the targeted mode A, two coupled frequencies occurring at each side
of the targeted resonance frequency to replace the original frequency (oR); for the off-target mode B, acoustic
coupling results in a frequency shift to create a new frequency to replace the off-target resonance frequency
(oE

B), and (3) both the coupled and shifted frequencies depend on the coupling parameters eh.
In the following simulation, one empty-necked Helmholtz resonator for controlling the enclosure mode

(0 1 0) at 69.6Hz was designed and put at (0.2, 0.16, 0.2)m inside the enclosure to demonstrate the coupled
frequencies at the targeted frequency and shifted frequency at other off-target modes. The Q-factor of the
resonator was assumed to be Qr ¼ 75. The computed SPLs at the microphone position (1.94, 0.16, 0.16)m
without resonator and with the empty-necked resonator are shown in Fig. 3. The natural frequencies of the
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Fig. 3. Predicted SPL curves at (1.94, 0.16, 0.16)m: — , without resonator; � � � � , with a 69.6Hz empty-necked Helmholtz resonator at
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Table 4

Coupled and shifted frequencies of an enclosure with a resonator inserted at (0.2, 0.16, 0.2)m

Natural frequencies with no resonator (Hz) Natural frequencies with one resonator at (Hz) Frequency shift (Hz)

69.6 66.3 Coupled

Targeted 69.9 Frequencies

70.2 72.3 2.1

83.6 83.9 0.3

98.9 99.2 0.3

108.8 108.9 0.1

109.1 109.5 0.4

129.5 129.8 0.3

139.3 139.4 0.1

140.4 140.5 0.1
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enclosure are also marked in the figure to visualize the frequency change before and after the insertion of the
resonator. It can be observed that, after introducing the 69.6Hz Helmholtz resonator into the enclosure, two
peaks at 65.7 and 72.1Hz are generated to replace the original peak at 70.1Hz and other off-target natural
frequencies have obvious shift when comparing with their counterparts without resonator. The predicted
coupled and shifted frequencies using Eq. (27) when all ten modes in 0�150Hz were taken into account in the
coupling are listed in Table 4. The maximum frequency shift of 2.1Hz occurs at mode (0 0 1) at 70.2Hz
because this mode is near the targeted mode (0 1 0) in frequency, and frequency shift at other off-target modes
is no larger than 0.4Hz.

3.3. Constraint on the worsened SPL at off-target resonances

At some off-target resonances, the frequency shift at off-target modes may be accompanied by a worsened
SPL. Two methods can be used to vary the acoustic coupling to constrain or improve this deterioration:
(1) relocating resonators in the enclosure, and (2) changing the number of the resonator in an array. It is
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evident that locations of the resonators impact on the way they are coupled to the enclosure. As an extreme
case, when putting a resonator close to the node of an off-target enclosure mode M, the zero value of jM(rR)
disables the acoustic coupling between the resonator and this enclosure mode, causing no effect on it. In a
more likely scenario where jM(rR) 6¼0 (off-target mode M), assuming that the frequency shift is very small after
inserting a resonator, and only mode M dominates the response of the enclosure at its resonance frequency
oM, the insertion of the resonator may not reduce or even amplify the SPL at oM inside the enclosure, which
can be expressed as P1 oMð Þ

		 		X P0 oMð Þ
		 		, where P0 and P1 represent the Mth modal response of the enclosure

at oM without and with a resonator, respectively. From Eqs. (21a) and (12) we have
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Based on a triangle inequality Aj j � Bj jj jp A� Bj j, if Aj jX Bj j and if we can find a position for the resonator
so that |A�B| ¼ 0, we will have |A| ¼ |B|. This implies that through adjusting the resonator location inside the
enclosure in such a way that P1 oMð Þ � P0 oMð Þ

		 		 ¼ 0, we have P1 oMð Þ
		 		 ¼ P0 oMð Þ

		 		 which leads to
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� �( )					
					 ¼ 0. (29)

Eq. (29) ensures that after inserting a resonator into the enclosure, the SPL at the off-target mode M can be
constrained at the value before the resonator is installed. We use the left-hand side term over the Mth modal
response P0(o) to define a new variable as follows:

sðo; rRÞ ¼
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Through adjusting rR inside the enclosure to minimize the value of s(oM, rR), the worsened SPL can be
minimized. It should be noted that an improvement at a specific mode at a specific location does not
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necessarily mean an overall improvement. Otherwise, a spatially and temporally averaged SPL must be
considered [4].

A numerical test was conducted using Eq. (30) to determine the position for the resonator to minimize the
worsened SPL at 83.6Hz after inserting a 98.9Hz Helmholtz resonator at (0.16, 0.16, 0.16)m in the enclosure.
The 98.9Hz resonator with Qr ¼ 75 was designed to target the enclosure mode (0 1 1). The predicted SPL
curves without and with the resonator are shown in Fig. (4a). It can be seen that, after inserting the resonator,
the SPLs at around 98.9Hz (targeted frequency), 108.8 and 109.1Hz (off-target frequencies) are significantly
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attenuated. However, the SPL at 83.6Hz (off-target frequency) is increased by 2 dB. Location optimization
using Eq. (30) yields a new location at (0.4, 0.2, 0.15)m for resonator installation, with SPL results shown in
Fig. (4b). It can be seen that, after installing the resonator, the SPL at 83.6Hz is maintained along with
acceptable reduction at other major frequencies. Curves showing the variation of s(o, rR) before and after
changing the resonator location are plotted in Fig. 5. It can be seen that the optimization process reduces s
from 5 to 0.5 at 83.6Hz.

Although the change of location proposed in the above optimization process can minimize the deteriorated
SPL at an off-targeted mode, this effort is accompanied by a degraded control performance at 98.9, 108.8 and
109.1Hz shown in Fig. 4. As an alternative, by using a resonator array consisting of several different
resonators, the acoustic coupling between the enclosure and resonators can be adjusted to further improve the
sound reduction in a large frequency band. This method can also overcome the inherent narrowband property
of a single Helmholtz resonator and provide significant control over a relatively broad frequency band. The
general model, which was shown as a set of linear equations Eq. (9), was applied to show this possibility. As an
example, a resonator array consisting of five Helmholtz resonators located at (0.5, 0.16, 0.2)m, (0.16, 0.5,
0.5)m, (0.16, 0.16, 0.16)m, (1.7, 0.16, 0.16)m, and (1.94, 2.0, 0.16)m was designed to target the enclosure
mode (0 1 0) at 69.6Hz, (1 0 0) at 83.6Hz, (0 1 1) at 98.9, (1 1 0) at 108.8, and (1 1 1) at 129.5Hz, respectively.
All resonators were damped by one piece of material in their necks, and the Q-factor of the resonators at their
resonance frequencies was assumed as Qr ¼ 16. Again, 216 enclosure modes were considered in the
simulations. The predicted SPLs at (1.94, 0.16, 0.16)m in the frequency band of [50,160]Hz were shown in
Fig. 6. It can be seen that obvious sound reduction was achieved at all targeted modes, with reduction levels
ranging from 2.4 to 12.7 dB.
4. Conclusions

This paper presents a general model to deal with the acoustic coupling between an enclosure and an acoustic
resonator array, which leads to a simplified model when the array retreats to one resonator. Analytical
solutions for sound pressure in the enclosure and volume velocity out of the resonator aperture were derived in
the case of an enclosure coupled with only one resonator. This allowed us to reexamine some of the previous
studies reported in the literature. Data obtained from the present model showed a remarkable agreement with
those measured by Fahy and Schofield and an obvious difference with those computed from Cummings’s
theory. An optimal equation for determining the location of a resonator to constrain the worsened SPL at an
off-target resonance was provided. Computed volume velocity source strength out of the resonator aperture
showed that the resonator behaves like a narrowband speaker, with its bandwidth depending on the
coupled frequencies of the enclosure and the resonator, and its strength associated with the primary sound
source strength and the internal resistance of the resonator. It was shown that the insertion of a lightly
damped resonator splits the targeted resonance frequency into two new coupled frequencies, together with a
shift of other off-target resonance frequencies. These frequency variations can be accurately predicted
using the present model. It was also shown that the position of resonators significantly affects the acoustic
coupling, and therefore the noise control performance. The presented model can be used to determine the
optimal location of the resonator to constrain the SPL at an off-target resonance on the one hand,
and to optimally design a resonator array to achieve a better control over a relatively broad frequency band
on the other hand. The proposed model provides a useful tool for the design of an acoustic resonator array
in interior noise control applications, which currently still involves heavy experimental measurements on a
trial-and-error basis.
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