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The effect of internal resistance of a Helmholtz resonator on acoustic energy reduction in an
enclosure and the multimodal coupling-based Helmholtz resonator design are investigated. Using
the analytical solution of a resonator-enclosure interaction model, an energy reduction index is
defined in a frequency band to optimize the resonator resistance. The dual process of energy
dissipation and radiation of the resonator is quantified. Optimal resistance of the resonator and its
physical effect on the resonator-enclosure interaction are numerically evaluated and categorized in
terms of frequency bandwidths. Predictions on the resonator performance are confirmed by
experiments. Comparisons with existing models based on different optimization criteria are also
performed. It is shown that the proposed model serves as an effective design tool to determine the
internal resistance of the resonator in order to achieve sound reduction in the frequency band
enclosing acoustic resonances. © 2008 Acoustical Society of America. �DOI: 10.1121/1.2996328�
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I. INTRODUCTION

Studies on Helmholtz resonators �HRs� have been arous-
ing persistent interest for many decades as evidenced by a
large body of existing literature. On one hand, HRs have
been extensively used to control noise transmissions in vari-
ous systems such as ducts, cylindrical shells,1 ducts,2 and
double panels.3 On the other hand, they have also been used
as sound amplifying devices to perform energy conversion of
different types as shown by some very recent work.4–6 Irre-
spective of applications, the design of HRs with suitable
characteristics has always been a key issue. Effort has been
made not only on the development of prediction models7,8

but also on the design and realization of HRs.9

Early work concerning HR coupled to an enclosure can
be traced back to Van Leeuwen who proposed a design chart
based on electrical circuit analogy.10 Due to the simplicity of
the HR, its use was found in controlling the interior noise
inside an enclosure. It was also observed, however, that the
proposed design chart in Ref. 10 might lead to an apparent
discrepancy with experiments at enclosure resonances.11

Subsequently, Fahy and Schofield proposed another model to
improve the work in Ref. 10 by taking into account the cou-
pling between a single resonator and a single enclosure mode
of interest.11 By maximizing the energy dissipation of the
resonator at the targeted frequency, a formula was proposed
to determine the Q-factor of the resonator. They cautioned,
however, that the resonator designed using their formula
might not lead to the maximum reduction in sound pressure
level �SPL� inside the enclosure around the targeted fre-
quency. To cover the small frequency range around the tar-
geted frequency, which can be loosely called “broad band,”
they equalized the dominant peaks inside the band and pro-
vided an equation to determine the Q-factor of the resonator.
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Also in that work, three different types of damping materials
were used in the resonator to improve the dissipation and to
broaden the working bandwidth. Experimental results
showed that the performance of the resonator was reduced by
either excessive or insufficient damping of the resonator.
Proper damping materials were experimentally determined to
achieve an optimal reduction in SPL around the targeted
resonance inside the enclosure. Recently, similar observa-
tions were made by Slaton and Zeegers in their experimental
work on a flow-duct system with a damped HR.12 The exis-
tence of an optimal value of the resonator resistance has been
clearly shown in their experiments. Fahy and Schofield’s
work is important in that it provides insightful information to
guide the resonator design. It also sets an important mile-
stone in the HR design that, even nowadays, is still being
used.1,13 Meanwhile, their work also shows the need for a
general model to count for the acoustic interaction among
resonators and multiple acoustic modes of the enclosure.
With a view to further increase the control performance,
Cummings14 extended Fahy and Schofield’s model to mul-
tiple resonators, along with the consideration of multiple
modes of the enclosure. By considering resonators as pseudo
pulsating sphere sources, characterized by the averaged
sound pressure over the surface of the sphere, the singularity
problem in the equation set was avoided. However, this treat-
ment of the equivalent sphere induced a large discrepancy
between the predicted coupled frequencies and the measured
ones.15 Recently, a new model was proposed by Li and
Cheng15 to analyze the interaction between an acoustic reso-
nator array and an enclosure with multiple modes. Different
from Ref. 14, they solved the interaction equation inside the
enclosure to obtain the modal responses and employed these
modal responses to find the sound pressures at the resonator
apertures. This avoided the singularity problem encountered
in Ref. 14 when calculating the sound pressure at the center

of a point source radiated by its own. Comparisons between
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theoretical and experimental results showed that the model
provides a good approximation to real multimode setup.

Despite the persistent effort made in the past, research-
ers still need ways and tools to achieve optimal design of
HRs, which right now still involves extensive experimental
measurements on a trial-and-error basis. It is known that
resonators interact with the enclosure through dissipating en-
ergy on one hand and radiating energy back to the enclosure
on the other hand. A clear demarcation and quantification of
these two effects may be one of the key elements to explain
the way in which an optimally designed resonator works. On
the other hand, insertions of acoustic resonators create new
peaks around the original targeted peak, which are referred to
as coupled or newly emerged peaks hereafter.11,13 An ideal
resonator design should target a frequency band including
both targeted and coupled resonance peaks. Upon enlarging
the frequency band of interest, the possible multimodal cou-
pling effect on the resonator design needs to be qualified and
somehow be taken into account in the design process. Unfor-
tunately, these issues have not been fully investigated even
up to now, mainly due to the lack of reliable, yet simple
enough model.

The model proposed by Li and Cheng15 admits analyti-
cal solutions when only one HR is involved, such providing
an opportunity for the aforementioned issues to be addressed.
This paper attempts to explore this unique feature of the
model and makes contributions in the following aspects: �1�
a systematic demarcation and quantification of the energy
radiation and dissipation effect of the resonator when
coupled to a multimodal enclosure; �2� determination of the
internal resistance of the resonator to ensure the maximum
sound energy reduction �ER� inside the enclosure within a
frequency band around a targeted resonance frequency, along
with experimental validations; �3� qualification of the impact
of the frequency band and the modal coupling on resonator
design; and �4� reassessment of the existing models through
comparisons with the present one. These analyses are be-
lieved to shed light on the underlying physics of the HRs
coupled to an acoustic enclosure and bring significant im-
provement on the existing knowledge on HR design for
acoustic ER in enclosures.

II. THEORY

The system under investigation comprises a rigid-walled
acoustic enclosure with a classical HR. The resonator con-
sists of a cavity of volume VR with a neck of area SR and
effective length LR, as shown in Fig. 1. Throughout the pa-
per, the superscripts and subscripts E, R, and S indicate vari-
ables associated with “enclosure,” “resonator,” and “source,”
respectively. In this section, an ER index is established based
on the analytical solutions. Formulas for calculating dissipa-
tion energy and radiation energy from an HR are derived,
which depend on the internal resistance of the resonator.

A. Energy radiation and dissipation of HR

When installing a resonator in an enclosure having a
primary sound source, the vibration of the lumped mass in

the resonator neck radiates sound back to the enclosure, re-
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sulting in an acoustic interaction with the enclosure. Mean-
while, energy dissipation also takes place inside the resona-
tor neck. This dual process occurs simultaneously and
depends on the property of the resonator, particularly the
particle velocity strength in the resonator neck and the inter-
nal resistance of the resonator. The lumped mass inside the
resonator neck follows Newton’s second law and the sound
pressure inside the enclosure is governed by the wave equa-
tion. Assuming that all time dependent variables are har-
monic, after expending the sound pressure p inside the en-
closure over a basis of enclosure eigenfunctions � j�r� as p
=� j=1

J Pj� j�r� �J is the maximum number of the truncated
mode series� and applying orthogonality properties, analyti-

cal solutions of the volume velocity source strength Q̃R di-
rected outward of the resonator into the enclosure and the jth
modal pressure response Pj of the enclosure are, respec-
tively, obtained as15

Q̃R =

ARVR

VE �
h=1

J � �2

�2 − ��h
E�2

�h�rR�
�h

�̃h�rS�Q̃S�
1 − ARVR

VE �
h=1

J � �2

�2 − ��h
E�2

�h
2�rR�
�h

� , �1�

�2�

where

AR =
��R�2

�2 − icR� − ��R�2 ,

Q̃S is the volume velocity source strength of the primary
source located at rS; rR is the location of the resonator; VE is
the volume of the enclosure; � j

E is the jth eigenvalue of the
enclosure expressed as � j

E=� j
E+ iCj

E, in which the real part is

FIG. 1. A damped classical Helmholtz resonator.
the angular frequency and the imaginary part is an equivalent
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ad hoc damping coefficient; � j =�VE�� j�r��2dV /VE; �̃ j�rS� is
the averaged � j�rS� over the volume of the primary source;14

z0 is the characteristic impedance of the air ��0c�; R
=Ri /z0LR, with Ri being the specific acoustic resistance of
the resonator; and �R=c�SR /LRVR�1/2, which is the un-
coupled resonance frequency of the HR.

Equation �2� provides an analytical solution in terms of
modal pressure response inside the enclosure under the effect
of the resonator. It also provides insightful information about
the interaction between the resonator and the enclosure. The
first term on the right hand side of Eq. �2� represents the
effect of the primary sound source and the second term char-
acterizes the effect of inserting an acoustic resonator. As ex-
pected, the resonator is coupled with all acoustic modes of
the enclosure. If a targeted enclosure mode is well separated
from other enclosure modes, the interaction among these
modes and the resonator can be neglected.11 On the contrary,
high modal density or a larger frequency band of interest
may necessitate the consideration of the interaction among
the resonator and multiple modes of the enclosure. Same
applies if the control performance of the resonator should be
evaluated in a broad band. Equation �2� also shows that,
when the resonator location is fixed, the internal resistance of
the resonator, through AR, plays an important role in deter-
mining the effect of the resonator. An excessively high inter-
nal resistance renders AR approach to zero, such annulling
the effect of the resonator. On the contrary, if the internal
resistance is too low, AR tends toward infinity at the reso-
nance frequency, which causes unacceptable high amplitude
Pj at the two newly emerged frequencies �coupled peaks�
after the resonator is installed.13 None of the two above sce-
narios is desirable. Therefore, the internal resistance of the
resonator needs to be investigated and properly chosen.

1. Energy radiation from resonator aperture

The sound energy radiated from the resonator is deter-
mined by shutting down the primary source in the enclosure.
In this circumstance, only the vibration of the mass inside the
resonator neck acts as the sound source, which has been
previously determined under the presence of the primary

source. Setting Q̃S to zero in Eq. �2�, the modal response Pj
R

caused by the resonator radiation alone is calculated as

Pj
R =

�2

�2 − �� j
E�2ARVR

VE

� j�rR�
� j

�
h=1

J

�h�rR�Ph, �3�

where Ph is computed from Eq. �2� when keeping Q̃S, which
is used to calculate the initial displacement and velocity of
the lumped mass inside the resonator neck. The acoustic
pressure purely created by the resonator radiation is ex-
pressed as

p̂�r� = �
j=1

J

Pj
R� j�r� . �4�

In a typical sound field, the fluctuation of the entropy is

usually small compared with that of the pressure. Therefore,
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the influence of entropy deviation can be neglected, and the
energy radiated from the resonator in a period T can be cal-
culated as16

Eradi
R = w + wd, �5a�

where w is the time-averaged acoustic energy inside the en-
closure, including kinetic and potential energy, and wd is the
time-averaged energy dissipation inside the enclosure, which
can be determined using the measured Q-factor of the enclo-
sure QE as16

wd =
�SE

4QE

w

VE , �5b�

where SE is the surface area of the enclosure. Alternatively,
wd can also be evaluated by adding the energy loss at the
boundaries of the enclosure and inside the enclosure caused
by thermal conduction and viscosity:

�5c�

where � is the shear viscosity, v is the particle velocity, v̂T is
the tangential component of the amplitude of velocity v on
the enclosure boundary, � is the specific heat ratio, � is the
coefficient of thermal conductivity, cp is the specific heat
coefficient at constant pressure, T0 is the ambient tempera-
ture, T� is the temperature perturbation given by
p	T0��−1� /cp /�0c, �B is the bulk viscosity, and 	ij is the
rate of shear tensor, which is computed from the particle
velocity v as16

	ij =
�vi

�xj
+

�v j

�xi
−

2

3
� · v
ij �i, j = 1,2,3� ,

where xi apply to x, y, and z and vi to the component of v in
x, y, and z directions when i equals to 1, 2, 3, respectively.

The time-averaged acoustic energy w over a volume V is
calculated by

w = 

V

1

4�0c2�� c

�
�2

� p̂ · �p̂* + 
p̂
2�dV . �6�

The first item in Eq. �6� is the time-averaged kinetic energy
and the second item is the time-averaged potential energy.
When the volume is the volume of the whole enclosure VE,
Eq. �6� yields

w =
VE

4�0c2� 1

�2�
j=1

J

�� j
E�2�Pj

R�2� j + �
j=1

J

�Pj
R�2� j� . �7�

2. Energy dissipation by resonator

The energy dissipated by the resonator in a period T is

computed by
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Ed
R = −

1

2



0

T 

SR

Re�p�rR�v*�rR��dSdt , �8�

where v is the amplitude of particle speed.
Substituting p�rR�=ZSRv�rR� into Eq. �8� yields

Ed
R = −

1

2
SR


SR
T
v�rR�
2Re�Z�dS , �9�

where Z is the acoustic impedance of the HR �Ref. 14�

Z = −
Ri

SR − i�LR�0�

SR −
�0c2

VR�
� . �10�

Under the lumped mass assumption, the dissipated en-
ergy is calculated from

Ed
R = 1

2SRRiT
v�rR�
2, �11�

where 
v�rR�
2 is computed as


v�rR�
2 =
1

��0LR�2

�2
�h=1
J �h�rR�Ph
2

���R�2 − �2�2 + �cR��2 . �12�

Substituting Eq. �12� into Eq. �11� and replacing T by
2� /� yield

Ed
R =

�SR

�0LR

cR�

���R�2 − �2�2 + �cR��2��
h=1

J

�h�rR�Ph�2

. �13�

If only jth mode of the enclosure is considered, the dis-
sipated power by the resonator at the targeted resonance fre-
quency ��=� j =�R� is simplified from Eq. �13� as

PWd
R =

Ed
R

T
=

SR

2�0LR

1

cR

�i�rR�Pj��R�
2. �14�

From Eq. �2�, the modal response at this natural fre-
quency can be expressed as

Pj

�̃ j�rS�Q̃S
=

cz0Qj
E

�RVE� j
E

1

1 + QRQj
E�2 , �15�

where �2 is the coupling parameter which equals to
� j

2�rR�VR /� jV
E, QR is the Q-factor of the resonator without

its radiation resistance, which is calculated by QR=�R /cR,
and Qj

E is the Q-factor of the jth enclosure mode given by
Qj

E=�R /2Cj
E, in which Cj

E is the jth equivalent ad hoc damp-
ing coefficient of the enclosure. Without resonator, the modal
response of the enclosure at the resonator location is

Pj
0

�̃ j�rS�Q̃S
=

cz0Qj
E

�RVE� j
E . �16�

Substituting Eqs. �15� and �16� into Eq. �14�, the power
dissipated by the resonator at the resonance frequency of the

jth enclosure mode is determined as
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PWd
R =

SR

2�0LR

QR

�R� 1

1 + QRQE�2�2


Pj
0��rR�
2

=
SR

2�0ckjL
R� QR

1 + QRQE�2�2


pR0
2, �17�

where kj is the wave number at the natural frequency of the
jth mode and pR0 is the pressure at the resonator location.
When only one targeted mode is considered, the above equa-
tion leads to the same expression given in Ref. 11.

B. Quantification of band-averaged performance of
HR

In order to achieve a good control performance in the
vicinity of the targeted frequency, an “energy reduction in-
dex” was defined in a frequency band around the targeted
frequency, which was used as the object parameter to opti-
mally determine the internal resistance of the resonator.
Upon obtaining the modal response from Eq. �2�, the acous-
tic energy inside the enclosure can be directly computed
from Eq. �6�. The averaged energy within a frequency band
��1 ,�2� is defined as

ER =
1

�2 − �1



�1

�2

wd� . �18�

The frequency band ��1 ,�2� is chosen to include major
frequency components in the vicinity of the targeted original
resonance peak �such as the coupled resonance frequencies
due to the insertion of the resonator�. When computing w
using Eq. �6�, volume V can either be the local volume or the
whole enclosure, depending on whether a local or global
sound attenuation is expected. The ER index is defined as

ER = − 10 log10
ER

E0 , �19�

where ER and E0 are energy terms with and without a reso-
nator, respectively.

III. SIMULATIONS AND EXPERIMENTAL VALIDATION

A right parallelepiped enclosure �Fig. 2� with dimen-
sions lx=0.976 m, ly =0.695 m, and lz=1.188 m was used in
both numerical simulations and experiments. The enclosure
was composed of six plywood boards, 2 in. thick each. Five
of them were bolted together to form a cavity and one of
them was made removable as a cover. To prevent any pos-
sible leakage, sound-proof strips were used in the connecting
surfaces between the bolted boards and the removable board,
and silicon gel was also used at the connection corners of
bolted boards. A square hole of 100�100 mm2 was cut at
�100,59� mm in the cover through which a loudspeaker was
installed to create a primary sound field in the enclosure. The
Q-factors of the enclosure modes were obtained from mea-
sured frequency response function before installing the reso-
nator �see Table I�. For each mode, its Q-factor is defined as
the resonance frequency divided by the bandwidth between
its half-power points. Because of the increasing modal den-
sity at higher frequencies, the Q-factors for higher-order

modes were assumed to be 45, which is the same as the
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measured Q-factor for mode �2, 0, 1�. Given an ambient
temperature of 20 °C and the humidity of 90%, the sound
speed was determined as 344.5 m /s. The air density �0 was
1.205 kg /m3.

The enclosure mode �1, 0, 1� at the predicted natural
frequency of 228.4 Hz was chosen as the targeted mode in
simulations. A HR having the same frequency of 228.4 Hz
was designed. The internal neck diameter of the resonator is
21 mm and the physical neck length is 52 mm. The body of
the resonator is a circular tube having a 73.5 mm internal
diameter and a 74.1 mm depth. The resonator was installed
at �100,300,0� mm.

In simulations, 216 enclosure modes were used, as de-
termined by a convergence study. The eigenfunctions � j�rR�
of the enclosure, having thermalviscous boundary condi-
tions, were given in Ref. 14. The calculated natural frequen-
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FIG. 2. �Color online� Enclosure used in simulations and experiments.

TABLE I. Computed natural frequencies and measured Q-factors of the
enclosure.

Index
Mode number

�lmn�
Natural frequency

�Hz� Q-factor

1 000 0 ¯

2 001 145 32
3 100 176.5 42
4 101 228.4 44
5 010 247.8 46
6 011 287.1 84
7 002 290 42
8 110 304.3 51
9 111 337 79

10 102 339.5 60
11 200 353 80
12 012 381.5 60
13 201 381.6 45
¯ ¯ 
400.0 45
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cies of the first 13 modes are tabulated in Table I. The SPL
inside the enclosure was evaluated at one arbitrary point
�816,70,1028� mm. The predicted baseline SPL at the same
location without the resonator is shown in Fig. 3, in which
four major peaks correspond to the first four enclosure
modes.

A. Experimental validation

The effect of the internal resistance of the resonator is
first demonstrated and experimentally validated for a chosen
frequency bandwidth of 20 Hz centered at 228.4 Hz. By
choosing three typical Ri values �2.25, 3.82, and 9.62 mks
Rayls�, the SPL variations are shown and compared to the
case without resonator in Fig. 4. Note that the case corre-
sponding to Ri=3.82 mks Rayls was obtained as a result of
optimization, which will be detailed later in Sec. III B. Fig-
ure 4 shows that a 5.8 dB reduction in SPL is achieved when
the resonator takes the optimal resistance value of 3.82 mks
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FIG. 3. �Color online� Predicted baseline SPL at �816,70,1028� mm.
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FIG. 4. �Color online� Predicted SPL curves at
�0.816,0.07,1.028� m:—without resonator;—·—with a damped resonator,
Ri=3.82 mks Rayls; – – with an empty-neck resonator, Ri=2.25 mks Rayls;

and —··— with a damped resonator, Ri=9.62 mks Rayls.
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Rayls. When Ri is increased to 9.62 mks Rayls, the perfor-
mance of the resonator deteriorates, resulting in a 4.5 dB
reduction in SPL. With a lightly damped resonator �Ri

=2.25 mks Rayls�, two sharp peaks appear. This is not ac-
ceptable since usually an overall reduction in the frequency
band of interest is required.

Experimental measurements were conducted to validate
the above predicted results. Similar to the simulation, the
enclosure mode �1, 0, 1� was chosen as the targeted mode at
the measured natural frequency of 225 Hz. Three resonators,
all having a resonance frequency of 225 Hz but different
internal resistances, were designed, fabricated, tuned, and in-
stalled at �100,300,0� mm, respectively. Thin layers of
damping material �loudspeaker grill� were inserted in the
resonator’s neck to produce different internal resistances. For
each case, the Q-factor of the resonator was first determined
from its measured frequency response curves, which were
then used to compute the internal resistance of the
resonator.11 Since it was difficult to fabricate a resonator hav-
ing exactly the same optimal internal-resistance value as that
used in the simulation, the optimal configuration being tested
slightly differs from the one used in the simulation. The first
resonator has an empty neck, with Ri=2.25 mks Rayls, lower
than the theoretically determined optimal value Ropt

=3.82 mks Rayls. For the second resonator, Ri=3.59 mks
Rayls, close to Ropt. The third resonator has a Ri=9.62 mks
Rayls, which is higher than Ropt.

A Brüel & Kjær type 4189 1
2 in. microphone was in-

stalled at �816,70,1028� mm to collect the SPL inside the
enclosure. Figure 5 shows the measured SPL curves. Similar
to prediction, the resonator with Ri close to the optimal re-
sistance outperforms the other two resonators, resulting in a
7.4 dB reduction in SPL. The other two resonators with ei-
ther lower or higher Ri than Ropt produce changes in the SPL
in a very similar manner as numerically predicted. Compar-
ing the predicted SPL curves shown in Fig. 4 with the mea-
sured results shown in Fig. 5, the same tendency is found.
When the resistance of the resonator is the optimal value or
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FIG. 5. �Color online� Measured SPL curves at
�0.816,0.07,1.028� m:—without resonator; —·— with a damped resonator,
Ri=3.59 mks Rayls; – – with an empty-neck resonator, Ri=2.25 mks Rayls;
and —··— with a damped resonator, Ri=9.62 mks Rayls.
approximates the optimal value, the noise reduction is maxi-
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mum and the peaks at the coupled frequencies are relatively
flat, such resulting in an overall sound reduction within the
frequency band. When the internal resistance of the resonator
is much lower than the optimal value, the insertion of the
resonator produces two pronounced peaks, such affecting the
sound attenuation ability of the resonator within the chosen
band. In this case, most of energy is radiated back to the
enclosure with little amount of energy dissipated by the reso-
nator. Excessive Ri also jeopardizes the effect of the resona-
tor. This attributes to the low mobility of the resonator aper-
ture so that the resonator and the enclosure cannot be
effectively coupled. Generally speaking, numerical predic-
tions agree well with measured data. Therefore, the model
shows its reliability to guide the resonator design.

B. Analyses

1. Effect of the internal resistance on ER

A 20 Hz bandwidth centered at 228.4 Hz is first chosen
as the frequency band of interest for optimization. The inter-
nal resistance of the resonator was varied from
0.55 to 50 mks Rayls in the simulation. With the variation in
the resonator resistance, the ER was calculated by Eq. �19�
and the radiated energy and dissipated energy were also cal-
culated using Eqs. �5a�–�5c� and �13� based on the measured
Q-factors of the enclosure, respectively. Notice that the
acoustic energy w was computed using Eq. �7�. Figures
6�a�–6�c� show the ER inside the enclosure, band-averaged
dissipated energy by the resonator, and band-averaged en-
ergy radiated from the resonator versus the internal resis-
tance Ri respectively. A maximum reduction of 3.0 dB in ER
is observed from Fig. 6�a� when Ri=3.82 mks Rayls, which
can be referred to as the optimal value. A similar variation
trend as that in Fig. 6�a� is observed in Fig. 6�b�, except that
the maximum energy dissipation occurs at Ri=3.99 mks
Rayls, which is 4% higher than the optimal value determined
in Fig. 6�a�. This confirms that the effect of the resonator on
the ER in the enclosure is mainly dominated by the dissipa-
tion ability of the resonator for the frequency band consid-
ered here. Figures 6�b� and 6�c� also show that a strong cou-
pling between the resonator and the enclosure takes place
with lower Ri value, as evidenced by the efficient sound ra-
diation from the resonator aperture. It means that more en-
ergy is returned back to the enclosure from the resonator
aperture. As Ri increases, however, more energy was dissi-
pated by the resonator and the radiated energy drastically
decreases. Excessive Ri significantly reduces the vibration of
the aperture and consequently energy transmission to the
resonator so that both energy dissipation inside the resonator
and energy radiation from resonator are compromised.

2. Effect of bandwidth

The 20 Hz bandwidth which was previously used covers
both the original resonance peak and the newly emerged
peaks due to the insertion of the resonator. Should a narrower
frequency band be used, it was observed that it has signifi-
cant impact on the physical effect of the HR as well as the
optimal values of its internal resistance. This issue is system-

atically investigated in this section.
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The frequency bandwidth was varied from 0.2 to 30 Hz
and centered at the targeted resonance of 228.4 Hz. For each
frequency band, the internal resistance of the resonator was
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FIG. 6. �Color online� Energy computed in the frequency band of 20 Hz: �a�
ER in the enclosure, �b� dissipated energy by the resonator, and �c� radiated
energy from the resonator.
obtained in two different ways. First, it was determined by
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maximizing ER within each frequency band, resulting in the
so-called optimal resistance Ropt. Second, it was determined
by maximizing the energy dissipation by the resonator, giv-
ing a resistance value denoted by Rdis. Ropt and Rdis are com-
pared in Fig. 7 with respect to the bandwidth. In order to
better quantify the effect of the bandwidth on Ropt, Fig. 7 is
divided into three different zones, with reference to the half-
power frequency bandwidths �denoted by f2− f1 and f4− f3 in
the figure� of the two newly emerged peaks. Zone 3 is fea-
tured by a relatively large frequency band completely cover-
ing the two new peaks, such as the 20 Hz case which was
investigated previously. Within this zone, Ropt undergoes
slight changes and is relatively close to Rdis. This observation
is consistent with the analyses carried out in Sec. III B 1,
which suggests a dominance of the energy dissipation effect
of the resonator. It should be cautioned, however, that even
in this case, an accurate determination of Ropt cannot be sim-
plified as a problem of maximizing energy dissipation of the
resonator, as demonstrated previously in Fig. 6. As opposed
to zone 3, zone 1 corresponds to a very narrow band, which
only covers the original resonance peak and its very close
vicinity. It can be seen that Ropt is relatively low, correspond-
ing to lightly damped resonator, and differs significantly
from Rdis. The low Ropt and the apparent difference with Rdis

indicate that the dissipation of the resonator becomes weak,
while the radiation of the resonator becomes strong, resulting
in a strong interaction between the resonator and the enclo-
sure. In this case, the targeted resonance peak is sharply split
into two new and closely spaced peaks, as illustrated previ-
ously in Fig. 4. Meanwhile, the response level inside the
enclosure at the targeted resonance is significantly reduced at
the expense of creating two high level peaks. Zone 2, which
confines the frequency region between the two coupled
peaks generated by the insertion of the resonator, is a transi-
tion region from narrow band to broad band. Within this
zone, Ropt undergoes drastic changes, rapidly approaching
Rdis as the frequency bandwidth increases, suggesting the
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FIG. 7. �Color online� Effect of the chosen frequency band on the resonator
resistance: — optimal internal resistance from maximum ER and – – the
internal resistance having maximum energy dissipation.
increasing importance of the energy dissipation.

Yu et al.: Internal resistance of Helmholtz resonator



3. Effect of the modal coupling

As mentioned before, the current model takes into ac-
count the multiple modes of the enclosure for HR design. To
show this necessity, the effect of modal coupling is investi-
gated.

Figure 8�a� shows the variation in the Ropt for 20 Hz
bandwidth centered at 228.4 Hz, with the number of the en-
closure modes used in the calculation. Enclosure modes used
for the sound pressure decomposition are determined accord-
ing to their closeness to the targeted central frequency to
truncate the decomposition series. It can be seen that Ropt

converges only when a sufficient number of enclosure modes
are considered. This suggests that reliable Ropt cannot be ob-
tained by only considering the targeted mode or a very lim-
ited number of enclosure modes. This phenomenon is appar-
ently due to the choice of a frequency band as performance
optimization target instead of one particular frequency,
which inevitably enhances the effect of more distant modes.
Another plausible explanation may lie in the fact that modal
coupling is enhanced due to the insertion of the resonator.
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FIG. 8. �Color online� Effect of the modal coupling on �a� optimal resis-
tance of the resonator and �b� band-averaged EV: – – without resonator and
— with a resonator, Ri=3.82 mks Rayls.
This surmise can be ascertained by examining the acoustic
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energy variation �EV� within the enclosure before and after
the resonator is deployed. To this end, a band-averaged EV
term is defined as

EV =
1

�2 − �1



�1

�2


w − w0
d� , �20�

where w and w0 are the acoustic energies inside the enclosure
when a certain number of enclosure modes and 216 enclo-
sure modes are used, respectively. The EV reflects the devia-
tion of the predicted pressure field to the converged state
both in frequency and the spatial domains because of the
integration in the frequency band and the enclosure volume.
The EV was calculated before and after the resonator was
used, with comparison given in Fig. 8�b� with respect to the
number of enclosure modes. It is seen that when the resona-
tor is absent, the EV inside the enclosure converges rapidly,
suggesting that only a small number of enclosure modes ac-
tively contribute to system response. Upon insertion of the
resonator, however, more modes are activated. This indicates
that the insertion of the resonator enhances the modal cou-
pling strength among the enclosure modes through effective
interactions with the resonator, as reflected by the second
item of Eq. �2�.

It is therefore concluded that the consideration of multi-
modal coupling is necessary in the resonator design when a
band performance is expected. One can surmise that this cou-
pling effect will be less apparent if the frequency band of
interest becomes narrower.

C. Comparison with Fahy and Schofield’s model

It is relevant to compare the present model proposed in
this paper and the ones suggested by Fahy and Schofield.11

Under the assumption of modal separation, Fahy and
Schofield proposed two methods to determine the internal
resistance of the resonator. �A� For resonance control, the
dissipated power at the targeted resonance frequency by the
resonator was maximized, leading to

QRQE�2 = 1 �21�

and a design chart to choose QR. �B� For band control, modal
responses at the new coupled frequencies and the original
resonance frequency were equalized, leading to an equation

�QE =
2��QR�3

1 − ��QR�2 − ��QR�4 . �22�

The present work differs from Fahy and Schofield’s ones
mainly in two aspects: one is the consideration of multiple
modal coupling and the other one is the use of a different
optimization objective function. It is therefore important to
assess and compare the band-control ability of these models.

To this end, the optimal internal resistances of resonators
were determined using the current model and Fahy and
Schofield’s methods, respectively. The ER levels were then
computed and compared for four resonant frequencies of the
enclosure. Each enclosure mode was targeted by one resona-
tor. By varying the neck length, the body volume of the
resonator was kept constant of 0.0009 m3. Parameters used

in the calculation are listed in Table II. Ri values determined
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by above three models and the corresponding ER values are
listed in Table III. Figure 9 shows the ER levels at each
targeted mode. It can be seen that the present model leads to
the best sound reduction performance among three cases.

The SPL curves corresponding to the frequency band
around 228.4 Hz were chosen for deeper analyses in Fig. 10.
It can be seen that Fahy and Schofield’s resonance-control
method maximizes the dissipated power at the targeted fre-
quency and results in a large resistance and a 5.9 dB peak
reduction in SPL. On the contrary, Fahy and Schofield’s
band-control approach results in a low resistance and conse-
quently produces two pronounced peaks with similar ampli-
tudes. The optimal resistance from the current model pro-
vides a 7.9 dB reduction in the frequency band of interest,
and a broad band behavior is also observed.

It is also observed that the resistances predicted by Fahy
and Schofield’s resonance-control model and band-control
model give, respectively, the upper and lower bounds for the
optimal resistance. In the former case, the resistance is inde-
pendent of the resonator volume since QRQE�2=1, �2

=� j
2�rR�VR /� jV

E and Ri=�0c2QESR� j
2�rR� /� jV

E�R. Other
models, including the present one, are volume dependent.
Figure 11 shows the variation in the optimal resistances, de-
termined using the current model and Fahy and Schofield’s
models, versus the body volume of the resonator for the tar-
geted enclosure mode �1, 0, 1� at 228.4 Hz. The optimal
resistance generally decreases when the volume of the reso-
nator increases, as suggested by the present model. Fahy and
Schofield’s resonance-control model seems to better apply to
the cases where very small resonators are used. With large
resonators, Fahy and Schofield’s band-control model seems
to better approach the true optimal resistance value.

TABLE II. Frequency bands and resonator paramete

Natural
frequency

�Hz�

Frequency band
�Hz�

Lower
limit

Upper
limit

Diameter of
neck �mm�

D
b

145 135 155 36
176.5 166.5 186.5
224.8 214.8 234.8
247.8 237.8 257.8

TABLE III. Optimal Ri and ER of three different mo

Natural
frequency

�Hz�

Current model

Optimal
Ri �mks
Rayls� ER �dB�

O
R

145 10 2
176.5 6.4 3.9
224.8 5.93 5.4
247.8 3.52 5.5
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IV. CONCLUSIONS

Based on the analytical solution of a resonator-enclosure
interaction model, the effects of internal resistance of a HR
on acoustic ER within an enclosure and on the resonator
design are investigated. Main conclusions are summarized as
follows:

�1� The model and design methodology proposed in this pa-
per allow maximization of the acoustic ER inside an
enclosure within a frequency band around a resonance
frequency. It provides a good cutoff between the peak
reduction and the resonator working bandwidth. Numeri-
cal predictions are in fair agreement with experiments.

�2� When the frequency band of interest is wide enough
�zone 3�, which covers both the original resonance peak
and the newly emerged peaks caused by the insertion of
the resonator, the dissipation ability of the resonator
dominates its control performance, which greatly de-
pends on both the internal resistance of the resonator
neck and the vibrating velocity of the lumped mass in
the neck. While acknowledging the importance of energy
dissipation, the determination of the optimal internal re-
sistance of the resonator cannot simply be trimmed down
to the maximization of energy dissipation. A narrow
band of interest �zone 1�, however, requires a lightly
damped resonator, which promotes more energetic inter-
action with the enclosure.

�3� The insertion of the resonator in an acoustic enclosure
enhances the modal coupling strength among the acous-
tic modes of the cavity. It is therefore necessary to con-
sider a sufficient number of acoustic modes to achieve an

the first four nonzero modes of the enclosure.

Resonator parameters

ter of
�mm�

Body volume
�m3�

Location �m�

x y z

0 0.0009 0.964 0.013 1.188
0 0.013 0.1
0.1 0.3 0
0.1 0 0.1

for the first four nonzero modes of the enclosure.

Fahy and Schofield’s model

onance control Band control

al
s
� ER �dB�

Optimal
Ri �mks
Rayls� ER �dB�

2 1.25 0.9
3.2 0.95 1.3
3.4 1.1 2.9
3.7 0.65 3.6
rs for

iame
ody

10
dels

Res

ptim

i �mk
Rayls

12.7
13.7
19.94
11.39
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optimal design of the resonator. This becomes increas-
ingly important when the frequency band of interest is
large.

�4� Compared with the model proposed in this paper, the
two models provided by Fahy and Schofield are found to
provide the upper and lower bounds of the optimal resis-
tance. The applicability of the two models depends on
the volume of the resonators.
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FIG. 11. �Color online� Variation in optimal resonator resistance with re-
spect to the body volume of the resonator for the targeted enclosure mode
�1, 0, 1� at 228.4 Hz.
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