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ural frequencies, the active component of the power flow becomes zero while the reactive
component is of modal pattern, whose characteristic frequency is twice of the natural fre-
quency. The power flow in this case can thus be termed as modal power flow. The instan-
taneous energy density associated with the vibration mode consists of a static component
and a dynamic component, related to the mean total and Lagrangian energy densities,
respectively. The modal power flow is relevant to the latter but independent of the former.
Potential application of modal power flow to structural damage detection is investigated.
Two typical damages, transverse cracks and delaminations, are considered. A damage index
based on the modal power flow is proposed, and compared with the damage indices based
on the slope, the bending strain, and the strain energy through numerical examples. The
imperfection of boundary conditions is also considered. It is shown that the proposed dam-
age index is sensitive to both types of damage, thus can be used as an universal damage
indicator.
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1. Introduction

The concept of structural intensity has been extensively used to understand the transmission of mechanical energy
through an elastic body undergoing oscillatory motion. For a three-dimensional elastic body in the Cartesian coordinate sys-
tem, the structural intensity of a particle located at the position {x, y, z} is expressed as [1]

I(x,y.2.t) = L(x,y,2, 0 + I, (x.y,2, 0] + L,(x,y.2, 0k, (1)
where

Iy = —Oxlly — Tuylly — Tally, (2a)

Iy = —Tydly — Gyylly — Ty, (2b)

I, = —Tully — Tyylly — Ol (20)

In the above expression, ¢ and 7 are dynamic normal and shear stresses, respectively, and u is the particle displacements at
the observation point, their subscripts representing component orientation. From the definition, it can be seen that the com-
ponents of structural intensity are the products of stresses and particle velocities, having dimensions of power per unit area.

For practical structural members such as beams, structural intensity is usually expressed as the integration of Eq. (1)
across the cross-sectional area of the member, then structural intensity actually describes the energy transmitted through
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the area, and its unit becomes that of the power. Hence, the term ‘power flow’ is more suitable for the description of struc-
tural intensity in practical structural members.

Since the introduction of the concept of power flow, its computation and measurement have received great attention due
to its importance in locating vibration sources and sinks and identifying vibration propagating paths [2]. In the computa-
tional aspect, the formulae for simple structural members are available as summarized by Pavic [1]. For structures of com-
plex geometries, finite element method (FEM) can be used [3]. The concept of power flow has also been used in vibro-
acoustic analysis of complex structures in the mid- and the high-frequency ranges [4,5], as an alternative approach to the
classical statistical energy method (SEM). The measurement of power flow was firstly addressed by Noiseux [6] for uniform
beams and plates, by analogy with acoustic intensity. The key problem is to determine spatial derivatives of structural mo-
tions obtained by either contacting or non-contacting techniques, in order to evaluate the power flow. A commonly used
method is the finite difference scheme introduced by Pavic [7]. However, the error induced by the finite difference approx-
imation becomes large for high-order derivatives. Therefore, other methods have been proposed, e.g., the wave component
approach [8], the wave number processing technique [9], etc.

Since power flow is a direct measure of energy transmission through the structure, it has also been used as a cost function
in active control. Schwenk et al. [10] demonstrated that the effectiveness of controlling power flow depends on the relative
location of the error sensor and the control actuator, and it is also limited by the accuracy of the measurement. By taking the
evanescent waves into the control algorithm, Audrain et al. [11] showed that controlling power flow is particularly effective
when the distance between the sensor and the actuator is smaller than a structural wavelength.

In recent years, the concept of power flow has also been applied to structural damage detection. Using the finite element
method, Khun et al. [12] studied the power flow pattern of a plate with single or multiple cutouts. It was found that the mag-
nitude of power flow experiences significant change near the cutout boundary. Lee et al. [13] further showed that this feature
can be used to locate the crack. For beam and shell structures, Zhu et al. [14,15] showed that the characteristics of the power
flow passing through a crack are relevant to its location and its depth, thus can be used to identify the crack.

In all these studies, the power flow was studied from the point of view of propagating wave. For the purpose of damage
detection, however, the vibration mode shape and its relevant entities, e.g., its curvature (bending strain) [16,17], and the
strain energy associated with the mode [18], have been commonly used as the indicators of damage. For a comprehensive
review of these mode-relevant damage indicators, the readers are referred to Refs. [19,20].

In the present study, the features of power flow associated with a vibration mode of both intact and damaged beams
are investigated, in attempt to develop a novel damage indicator and the associated damage index. In the present paper,
the damage indicator refers to the physical damage-sensitive entity, while the damage index is a function of the damage
indicator which gives a quantitative measure of the variation of the damage indicator with the damage. The damage
index can be simply a nondimensionalization or a normalization of the damage indicator, or a complex function of
the damage indicator obtained from advanced signal processing. It will be shown that, when the damping is assumed
small hence negligible, the reactive component of power flow is relevant to the mean Lagrangian energy density asso-
ciated with the corresponding vibration mode, while the active component is zero. The effect of damage on the reactive
power flow associated with a vibration mode is demonstrated by several numerical examples, and its potential as a uni-
versal damage indicator is shown. Beams are used in the examples, but the approach can be extended to plates and
shells. The imperfection of boundary conditions is taken into account by considering that the beam is elastically sup-
ported at two ends.

2. Reactive power flow of a beam at resonance

Consider an undamped beam shown in Fig. 1. According to Timoshenko beam theory, the stress field at a cross section of
the beam is given by

Fig. 1. Illustration of a beam and its stress field in cross section.
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O =E - &x, (3a)
Tx = KGYy,, (3b)
where ¢ and 7 are normal and shear stresses, ¢ and y are normal and shear strains, and E and G are Young’s modulus and

shear modulus, respectively. x is the shear coefficient.
The strain-displacement relationship is given by

L (4b)

where w and ¢ are translational displacement and bending rotation of the beam element, respectively.
For a beam, the expression of structural intensity is reduced to one dimensional, written as

1=1Id, ()
where

Iy = Ol — T W. (6)
Substituting Egs. (3a), (3b), (4a), and (4b) into Eq. (6), and integrating across the cross section, A, one obtains,

P, = /IXdA / — Ol — Ty, W)dA = —EI d) - — KGA (— — qb) (7)

where [ is the second moment of area of the cross section about the neutral line.
Eq. (7) can be applied to either a propagating wave or a standing wave (a mode of vibration). For the nth mode of the
beam, its motion can be described by

{‘:/)V((;;;))} = {gn(s;)}sinwnt, n=1,2,3,..., (8)

where w, = 27tf,; f; the natural frequency of the mode and { ‘g"(%) } the vector of corresponding mode shapes.
For this mode, the power flow is written as "

P(x,t) = Py(x, )i, 9)
where
Py(x,t) = — {KGA (%—2/ - d)) W+ El 2(/) }
1 dw, do, . .
= *jwn{KGA dx(X) - @n(x)} -Wh(x) +EI (IZIX(X) . @n(x)} -Sin2@,t = —Py(x) sin 2wnpt. (10)

It can be seen that the active component of the power flow is zero for an undamped beam vibrating at one of its natural
frequencies, hence the power flow associated with a mode actually represents the reactive energy, which is expressed in
the form of a mode at a characteristic frequency 2w,,. P,(x) can thus be defined as the modal power flow of the beam cor-
responding to the natural frequency w,, expressed as

1
2

dWa(x)

Pu(x) = i dﬁ,,(x)} Wa(x) + Ezddz)f") : di,,(x)}. 1)

Wy { KGA

3. Features of modal power flow

Structural intensity represents the instantaneous power (rate of energy) transmission at an infinitesimal volume of a gen-
eral elastic body. For practical structural members, structural intensity is in the form of power flow, which consists of two
components in general; one is called the active component representing the power passing through without returning, and
the other is called the reactive component representing the power fluctuating back and forth with zero mean value.

When an undamped structural member is finite, it has an infinite number of vibration modes; the active component of its
power flow associated with one of these modes becomes zero, and the reactive component appears in the modal form whose
characteristic frequency is the double of the modal frequency. This modal power flow represents a pattern of reactive power
distribution across the structural member for the corresponding mode of vibration. It is thus expected that the modal power
flow is relevant to the energy distribution of the structural member vibrating at that mode. This is studied in the following in
favor of further physical understanding.
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According to Timoshenko beam theory, the kinetic and the potential energies are expressed as, respectively,

1M qowx, 0] [0g(x,0)]°
T(t)_i/o{m{ - }H[ = ] dx, (12a)
L 2 2 2
V(t):%/o {151{a ‘fa’i’z‘t)} +KGA{%—¢(XJ)} }dx. (12b)

where m = pA, and ] = pl, p is the density of beam material.
For an infinitesimal beam element of length Ax located at the position x, the instantaneous total energy is given by

AE(x,t) = AT(x, ) + AV(x, t)

1 awx,t)]*  [0¢(x,1)]? 1 op(x, 1)1 ow(x, t) 2
—j{m{ o ] +]{ o } }Ax+§{51{ o } -HCGA{T—QS(XJ)} Ax. (13)
The energy density of a beam is defined as
2 2 2 2
e(x,1) = lim % - % { (m {awg;, t)} + J{a"’gz’ t)} ) + (EI [%} + KGA {% —p(x, t)} ) } (14)

The time derivative of the energy density reads

ae(axt, b_ {mv’v(x, WX, E) + (X, )b, £) + EI {8‘7’("’ t)] F‘Z’é’;’ t)} +KGA ng’ D _ px, r)} [M — b, t)} }

ox ox
(15)
Noting that
miv(x, t) = KGA szgg b_ ad’é’; t)} , (16a)
. L0k, t) ow(x, t)
Jo(x,t) =EI v + KGA[ x o(x, t)} (16b)
one obtains,
de(x,t Pw(x,t) 0p(x,t)| . w(x, t dw(x, t
eg‘t ) {KGA{ "gf{’z‘ ) ‘/’é’; )} WX, t) + xGA[ WE(; ) px, t)} WE(; )}
) .
e R oo a ] )
- KGA% { [a""éz’ D _ px, t)} W(x, t)} + EI% { [a(pg;, t)] (x, t)}
0 0 . 0 .
= &{KGA [%— o(x, t)}w(x., t) +El[%}¢(x, t)} (17)
Compared with the expression of the power mode, Eq. (10), it can be seen that
oe(x,t) _ OPx(x,t) (18)

ot X

Eq. (18) gives the relationship between power flow and energy density of the beam. Physically, this represents the energy
balance of a beam element under free vibration, as illustrated in Fig. 2. In Fig. 2, an infinitesimal beam element located at
x =x; and of the length Ax = x;.; — x; is highlighted. The energy of this element is AE = e(x;,t) - Ax. The terms Py(x;,t) and Py(X;+1,

P(x;t) P(xipt)
Vo Ax
V=2l

Fig. 2. Illustration of the relationship between power flow and energy density for an infinitesimal beam element under free vibration.
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t) represent the power passing through its two ends at x = x; and x = x;.1, respectively. The energy balance of the element,
within a infinitesimal period of time, At, is written as
Py(xi,t) - At = [e(X;, t + At) — e(x, t)] - AX + Py(Xi11,t) - At. (19)
After some mathematical manipulation, one obtains,
e(X,‘, t+ At) — e(xi7 t) — _ PX(Xi+17 t) - Px(Xj, t) (20)
At Ax ’

Taking the limit of Eq. (20) for Ax — 0 and At — 0, one obtains Eq. (18).
Eq. (18) is applicable to both a propagating wave and a vibration mode (standing wave), while the latter is concerned in

the present study. When a beam vibrates at one of its natural frequencies, its motion is given by {‘;V((;tf))} =
{ Wa(X) } sin w,t where n is the mode number, and the energy density is expressed as

D (x)
a(2%50) - on (V- a0 ]

+ }1 {wﬁ [mwﬁ (x) + Jqsﬁ(x)] — |E <%)2 + KGA <dv‘cfl’;(") - qsn(x))z} }(cos 20,t)

= Ep(x) + Ly (X) cOs 20,t (21)

EI (dd;”}fx)y + KGA <dV\é,;((x) - <pn(x)>2} }

2 2
El (df&(")> + KGA (dv‘é’;{(x) ~ 9, (x)) } }
From Eq. (21), it can be seen that the energy density for a mode of the beam consists of two components. One is a static com-
ponent, E,(x), and the other is a dynamic component, L,(x)cos 2w,t. At any instant, the energy density of the beam is the
superposition of these two components.

The static component, E,(x), is actually the mean total energy density, whose integration along the beam gives the total
energy of the beam corresponding to the mode. The amplitude of the dynamic component, L,(x), on the other hand, repre-
sents the mean Lagrangian energy density associated with the mode.

The dynamic component, L,(x)cos 2m,t, implies that there exists instantaneous energy exchange between adjacent beam
elements during one period of vibration. The static component, E,(x), is not involved in this energy exchange. The power
mode, P,(x), is related to the dynamic component only, and the relationship can be obtained by substituting Eq. (21) into
Eq. (18), yielding

dPn(x)
dx
In practice, modal power flow of a structure can be determined by the spatial distribution of the amplitude of the steady

reactive power flow in the structure when it is excited at this natural frequency. Various techniques proposed for the mea-
surement of power flow, e.g., the finite difference scheme [7] and the wave component approach [8], can be used.

enix.) = {wi [mW30 -+ J03 )] +

B = {wﬁ (W2 + 020 +

L) = {wﬁ (Wi x) +Jh0)] -

= —(20n)Ln(x). (22)

4. Application of modal power flow to damage detection

From the expression of the modal power flow, it can be seen that it is a combination of several other modal parameters
including the natural frequency, the displacement, the slope, the curvature (bending strain), and the shear strain mode
shapes. It is well known that the damage in the structure would alter these modal parameters, locally or globally. Some
of these modal parameters, such as the natural frequency, the displacement and the strain mode shapes, have been used
in damage detection. However, the individual mode shape may be sensitive to certain type of damage only, and the sensi-
tivity is low at nodal points of the mode shape. The modal power flow, as a combination of the modal parameters, is expected
to be an indicator of such damage. In the following, the sensitivity of the modal power flow to the damage will be analyzed.
The beam is considered in the analysis, but the conclusions drawn can be extended to the plate and the shell.

4.1. Damage index based on modal power flow
In many practical cases, the structures are slender or thin, thus the effects of rotary inertia and shear deformation are not

significant. Simplified formulae for the modal power flow are thus sufficient, and this would also simplify the measurement
of modal power flow.
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Table 1
List of the boundary conditions used in numerical examples

Ky T, Kr Tr
Cantilever 10%° 10%° 0 0
Simply-supported 10%° 0 10%° 0
Elastic support (a) 10%° 10%° 10%° 107
Elastic support (b) 10%° 10%° 107 10%°
Elastic support (c) 10%° 10%° 107 107

The expression of modal power flow for a beam, Eq. (11), can be rewritten as

1
Pp(x) = jwn[Qn(X) -Wi(X) + My (x) - @n(x)]. (23)
where Q,(x) and M,(x) are the shear force and the bending moment, respectively.
When the rotary inertia and shear deformation are negligible, according to Euler beam theory, ®,(x) = W, (x), M, (x) =
EIW;(x), and Q,(x) = —EIW}/(x), a simplified formula of the modal power flow can be written as

1 " ! "
Pn(x) = iwnDE [Wn (X)Wn(x) - Wn (X)Wn(x)}v (24)
where D = El is the bending stiffness. Using the simplified formulae, a damage index based on the modal power flow is
developed in the following.

v

L):::::::::::f ; 7 b

S;

|

|

|

|
NI_
|

|

|

|

]

v

v

Fig. 3. Examples of damaged structures. (a) Intact beam; (b) delaminated beam and (c) model of cracked beam.
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Consider the case that there is a damage of length Ax, at the location x = x,4 of a beam, while the beam is intact otherwise.
Usually, the damage induces a local change of the stiffness of the beam, which can be expressed as

Dg = Dg[1 + &eii(Axy)], (25)

where the overhead ‘~’ represents the quantity of a damaged beam, and ¢ represents the percentage change of Dg due to the
damage. The function @i(Ax,) is defined as

U(Axg) = u(x — xg) — u[(x — (Xg + Axq))], (26)

where u(x) is the unit step function.
For such a damaged beam, the modal power flow is expressed as

Py(x) = %@nﬁs{m%x) Walx) = Wh(x) - Wy(x) }. (27)

The change of natural frequency due to damage is global, thus does not contribute to the identification of damage location
directly. It is the combination of various mode shapes, W/ (x) - W, (x) — W’ (x) - W/ (x), that changes with the damage locally.
Therefore, a damage index based on the modal power flow can be defined as

(28)

b (x) = Pn®)/@De W) Walx) - Wix) - Wi
" max | Pa(0)/@nDe | max{Wy(x) - Wa(x) - Wi(x) - Wy(x)}

Compared with an arbitrary combination of a mode shape and its derivatives, the damage index defined by Eq. (28) has def-
inite and clear physical meaning, that is, it represents energy distribution along the structure for a given mode shape. Since
any damage will induce a local change of energy, it is expected that the proposed damage index is sensitive to various dam-
ages and would have higher sensitivity.

—o—P 1 b ! —@— Power
ower D
S 08 —8— Strain
—8— Strain an
—©— Strain energy| 0.6 —©—Strain energy ||

Damage Index
Damage Index

0o 01 02 03 04 05 06 07 08 09 1
x/L

—@— Power
—o— Slope
—&— Strain

—@—Power
—&— Slope
—8— Strain

—O— Strain energy| —O— Strain energy|

Damage Index
Damage Index

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
x/L x/L

Fig. 4. Comparison of various damage indices for the delaminated beam with different boundary conditions and damage locations. The length of
delaminated region is Axq=0.1L. (a) Simply-supported beam, x4/L = 0.3; (b) simply-supported beam, x4/L =0.5 and (c) cantilever beam, x4/L = 0.3; (d)
cantilever beam, x,4/L = 0.5.
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4.2. Numerical examples
Numerical examples are presented to compare the proposed damage index, fp,, with the damage indices based on the

slope, the bending strain, as well as the strain energy associated with the mode. For the bending strain, the damage index
proposed by Li et al. [17] is used, written as

Ben (X) = LN(XH) (29)

max | Wy (x) |
For the slope and the strain energy of the mode, similar damage indices can be defined as

By, (X) = L,(vx), and (30a)

max | W, (x) |
\7712

Be, (X) = _Wa® (30Db)

max | W'3(x) |

In the examples, the intact beam is assumed to be uniform with a span of length L =1 m and rectangular cross section, as
shown in Fig. 3a. The height and the width of the beam are h=0.1 m and b = 0.05 m, respectively. The density and Young’s
modulus of beam material are assumed to be p = 7800 kg/m>, and E = 200 GPa, respectively. In order to study the perfor-
mance of the proposed damage index for a beam with imperfect boundary conditions, the beam is assumed to be elastically
supported at each end by a translational spring and a rotational spring, whose spring constants are denoted by K;, T;, Kz, and
Tg, the subscripts ‘L’ and ‘R’ representing the left and the right ends, respectively. Classical boundary conditions can be re-
garded as special cases of this general boundary condition. In Table 1 are listed the boundary conditions considered in the
examples. Considering easy implementation in practical measurements, only the first mode is used to calculate all the four
damage indices in the present study.

a b
0.8
0
0.6 1
= 04 ] v
] <
£ 02 J =
& 0 -
< [ <
g 02 -
A [=)
-04 ]
-0.6 {—@—Power 1 -0.6 —0— Slope
08 —0— Slope —8B— Strain
Y. —& Strain \| -0.8 —©— Strain energy
1 —©— Strain energy 1
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
x/L x/L
c 14
0.8
0.6
x 04
3
£ 02
g 02
[a)

—@— Power
—O— Slope
-0.6 —H&— Strain

—©— Strain energy

0O 01 02 03 04 05 06 07 08 09 1
x/L

Fig. 5. Comparison of various damage indices for the delaminated beam with different elastic supports at the right-hand boundary. The crack is located at
X4/L=0.3. K, =10%, and T, = 10%°. (a) Kz = 10%°, Tz = 107; (b) Kz = 107, Tg = 10%° and (c) Kz = 107, Tr = 10.
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4.2.1. A delaminated beam

Firstly, consider a delaminated beam as illustrated in Fig. 3b. The effect of delamination can be modeled by the reduction
of bending stiffness EI. In the present example, a beam with a delaminated section of length Ax4/L = 0.1 is considered. The
damaged section is assumed to locate in x/L = {0.3, 0.4} and x/L = {0.5, 0.6}, corresponding to x; = 0.3 L and 0.5 L, respectively.
The reduction of stiffness is taken to be 20%, that is, the bending stiffness in the damaged section is 80% of that for the intact
beam.

A method developed by Chan and Wang [21] is used to calculate exact mode shapes of the beam, either intact or dam-
aged, and the four damage indices are evaluated for comparison. The damaged beam is divided into three uniform beam sec-
tions, whose displacement functions are given by corresponding wave solutions, written as

Wpi(x) = Api Sin KgniX + Bpi €OS Kanix + Cyi Sinh kppix + Dy cosh kppix (31)
where kg,; and kp,; are wave numbers associated with the propagating and the evanescent waves, respectively, i =1, 2, and 3,

representing the sections of x = {0,x4}, x = {X4, X4 + Axq}, and x = {xq + Axy, L}, respectively.
At the two ends of the damaged section, the conditions of continuity are expressed as

Wit (Xa) = Wiz (Xa), Wiy (xa) = Wi (Xa),
M (xd) = Mp2 (Xd)u Qn] (xd) = QHZ(Xd)
Wz (X4 + AXd) = Wiz (Xa + Axq), Wi, (Xa + Axg) = Wi (X + AXg), (32b)
an(Xd -+ AXd) = Mng(Xd + AXd), an (Xd + Axd) = Qn3 (Xd -+ AXd)

Substituting Eq. (31) into Egs. (32a) and (32b), one obtains

(32a)

Anl An2
Bnl Bn2
Tud| o | = {Ta}| (33a)
nl n2
Dnl Dn2
a ! —@—Power b 1 —@—Power
0.8 —o—Slope | 0.8 —o—Slope
—B—Strain : —8—Strain
0.6 —©—Strain energy 0.6 —6—Strain energyl|
% 0.4 % 0.4 1
E 02 E 02 ]
5 ° B 0
£ -02 E .02 1
A 04 A 04 1
0.6 -0.6 1
0.8 -0.8 1
-1 -1 . . . . . . . ;
0 01 02 03 04 05 06 07 08 09 1
x/L
c d
> =
3 <
= =]
=] =1
[ (9]
en &0
< <
= =
< <
A A
—o—Slope
04 —e—smp_e —E—Strain =
—E—Slra.m —O—Strain energ M |
—©— Strain energ ) - - ) ) ) ) ) )
0 01 02 03 04 05 06 07 08 09 1

0o 01 02 03 04 05 06 07 08 09 1

YL x/L

Fig. 6. Comparison of various damage indices for the cracked beam with different boundary conditions and damage locations. (a) Simply-supported beam,
xg4/L = 0.3; (b) simply-supported beam, x4/L = 0.5; (c) cantilever beam, x,4/L = 0.3; (d) cantilever beam, x4/L = 0.5.
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An2 An3
Bn2 Bn3
T ={T, 33b
Mg | o2 | = 1T} | (33b)
Dn2 Dn3

In the example, a cantilever beam and a simply-supported beam are considered, and their boundary conditions can be writ-
ten as

Anm 0
B 0
B = 34
Bt =10 | (34a)
D 0
Ans 0
Bus 0
B = 34b
Bt & =1 (34b)
D3 0
From Eqgs. (33a), (33b) and (34a), (34b), the following eigenvalue problem is obtained
Am 0
1 -1 Bnl 0
({Bnl} + {Bn3}{Tn3} {THZR}{THZL} {Tnl}) C = 0 ) (35)
nl
Dy 0

whose solutions give the natural frequency and the coefficients (An Bni Cui Dni),i = 1,2, 3. Once these coefficients and the
wave numbers (calculated from the dispersion relation for given natural frequency) are known, the displacement mode

a 1 b 1«
g —@—Power
0.8 +Slope 1 0.8 1
—B— Strain
0.6 —©— Strain energy 0.6
e 0.4 1 e 04 ]
ke 0.2 1 S 02 ]
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— —
@ 0 1 g 04 i
< r )
g 02 4 .02 ]
a a
-04 1 -04 —@— Power 1
N 1 _ —— Slope |
0.6 0.6 e st
08 S -0.8 | [~©—Strain energy 1
-1 . . . . . . . . . -1 . . . . . . . . . b
0 01 02 03 04 05 06 07 08 09 1 0O 01 02 03 04 05 06 07 08 09 1
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shape and its derivatives are directly calculated rather than doing numerical differentiation. Afterwards, the four damage
indices are evaluated using Eqgs.(28)-(30), at 21 points uniformly distributed along the beam. This would give a picture sim-
ilar to the result obtained from a practical measurement.

A comparison of the four damage indices for the delaminated beam with classical boundary conditions (cantilever and
simply-supported) is shown in Fig. 4. It can be seen that the strain, the strain energy, and the power damage indices are sen-
sitive to the delamination, while the slope damage index is not. Moreover, the sensitivity of the power damage index appears
to be higher, especially for the simply-supported beam.

In Fig. 5 is shown the comparison for the beam with imperfect boundary supports. The damaged section is assumed to
locate in x/L = {0.3, 0.4}. It can be seen that the power damage index is still sensitive to the damage, while the other damage
indices are not. For the imperfect boundary support case shown in Fig. 5a, the sensitivity is low, suggesting that the boundary
imperfection has a substantial effect in certain case.

4.2.2. A cracked beam

In the second example, a beam with a transverse crack at two locations, x4/L = 0.3 and 0.5, is considered. For this case, the
crack can be modeled by a rotational spring [22] as shown in Fig. 3¢, whose elastic constant, T, is relevant to the depth of the
crack. In the present example, the elastic constant is taken to be T, = 285D/L. This value corresponds to a crack of depth of
about 0.5 h.

The method developed by Chan and Wang [21] is also used to calculate the displacement mode shape of the cracked
beam, which is modeled as two beam sections connected by the rotational spring. A cantilever beam and a simply-supported
beam are considered.

A comparison of the four damage indices for the cracked beam with classical boundary conditions is shown in Fig. 6. For
the crack-type damage, both the slope and the power damage indices are sensitive, whereas the strain and the strain energy
damage indices are not. For the simply-supported beam, the sensitivity of the power damage index appears to be higher. For
the cantilever beam, however, its sensitivity is similar to that of the slope damage index. In Fig. 7 is shown the comparison
for the cracked beam with imperfect boundary supports. The crack is located at x4/L = 0.3. The power damage index is still
sensitive to the crack, although the slope damage index shows higher sensitivity. This suggests that a single damage indica-
tor is usually not sufficient. A practical approach would be using a combination of selected damage indicators.

5. Conclusions

Features of power flow associated with vibration modes of an undamped finite beam are studied based on its fundamen-
tal definition using a higher-order beam theory. When the undamped beam undergoes free vibration at one of its natural
frequencies, the reactive component of power flow is of modal behavior whose characteristic frequency is twice of the nat-
ural frequency, while the active component becomes zero. An energy analysis shows that the energy density associated with
a vibration mode consists of a static component and a dynamic component, representing the mean total and Lagrangian en-
ergy densities, respectively. The spatial derivative of the modal power flow is proportional to the latter, but is independent of
the former.

Potential application of the modal power flow to damage detection is studied. Two typical damages, the transverse crack
and the delamination, are considered. A damage index based on the modal power flow is proposed. It is compared with the
damage indices based on the slope, the strain, and the strain energy of the same mode through several numerical examples.
A beam with elastic boundary supports is used in the examples so that the performance of the power damage index in the
cases of imperfect boundary conditions can also be studied. It is shown that the damage index based on modal power flow is
sensitive to both types of damage, even though the boundary supports are imperfect. This demonstrates the potential of the
modal power flow as a universal damage indicator.
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