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a b s t r a c t

The use of dynamic vibration absorbers to control the vibration of a structure in both

narrow and broadbands is discussed in this paper. As a benchmark problem, a plate

incorporating multiple vibration absorbers is formulated, leading to an analytical solution

when the number of absorbers yields one. Using this analytical solution, control

the coupling properties due to the introduction of the absorber into the host structure are

analyzed; and the control performance of the absorber in different control bandwidths is

examined with respect to its damping and location. It is found that the interaction

between the plate and the absorber by means of the reaction force from the absorber plays

a dominant role in a narrow band control, while in a relatively broadband control the

dissipation by the absorber damping governs the control performance. When control

bandwidth further enlarges, the optimal locations of the absorbers are not only affected

by the targeted mode, but also by the other plate modes. These locations need to be

determined after establishing a trade-off between the targeted mode and other modes

involved in the coupling. Finally, numerical findings are assessed based on a simply-

supported plate and a fair agreement between the predicted and measured results is

obtained.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Dynamic vibration absorbers (DVA) are widely used for the control of structural vibration and noise radiation owing to
their simplicity, effectiveness, and inherent stability characteristics. The working principle of a DVA has long been
demonstrated by Ormondroyd and Den Hartog [1] using a single degree of freedom (sdof) system subject to harmonic
excitation. Historically, the DVA first found its utilization in the vibration control at a single frequency, predominantly at the
resonance frequency of the system [2,3]. Applications of DVA have then been extended to various applications such as
vibration control of machinery and structures, exemplified by a large number of works reported in literatures [4,5].
Alternatively, the absorber can be tuned to the excitation frequency [6]. In order to track the change of excitation frequency,
semi-active [7] and active vibration absorbers [8] have also been explored.

A DVA is also used to suppress vibration over a frequency band, generally in the vicinity of a targeted frequency. In this
circumstance, a good trade-off between the suppressed original peak and the two newly emerged coupled peaks induced by
the insertion of the absorber is crucial to obtain a global vibration reduction within the frequency band of interest. For sdof
systems, the well-known fixed-point method was presented [9], and the absorber was found to be most favorably tuned
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g).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2010.10.018
mailto:mmlcheng@polyu.edu.hk
dx.doi.org/10.1016/j.jsv.2010.10.018


C. Yang et al. / Journal of Sound and Vibration 330 (2011) 1582–1598 1583
when the two coupled peaks lying inside the frequency range have equal amplitude [10]. For multiple degrees of freedom
(mdof) or continuous systems, the tuning process becomes more delicate as the absorber is coupled with all structural modes
of the host systems. The vibration of a cantilever beam with attached absorbers was theoretically discussed in [2,3]. Free and
forced vibrations of a plate with embedded DVAs were also analytically investigated in [11–13]. It was observed that the
insertion of DVAs into the host structure reconstructs the contribution of modal response [14], which in turn affects the
characteristics of the system and thus appeals for a proper selection of absorber parameters, such as damping and location.
This brought up the issue of optimization of DVA parameters. A substructure technique for minimizing the vibration of a
continuous system over separate bands was proposed in [15], in which a DVA performance index defined in terms of the DVA
damping was examined. Later, the effect of the absorber damping on the control performance was investigated using a
simply-supported plate [16], but the effect of the absorber location was not discussed. An expression for optimal damping
was derived in [17], and therein the absorber location was studied as well. It was found that a properly positioned DVA can
provide a good global control over quite a wide frequency range. The optimal location for a cantilever beam subject to various
spatial excitations was examined by Jacquot [18]. More recently, Howard et al. [19] implemented a parallel genetic algorithm
to optimize the locations, stiffness, and damping of a large number of DVAs and Helmholtz resonators (HR) for a payload
vehicle. Deploying a distributed computing network of 150 computers, simulations showed an overall reduction of the
acoustic potential energy in a broad frequency band.

It is evident that the band control capability of DVAs aroused great interest due to its practical application value. Despite
the persistent effort made in the past, however, several key issues have not been fully understood. Two aspects are on the top
of the list. First, the working mechanism of DVA may differ as the frequency bandwidth changes. This will impact on the
tuning of the DVA parameters to achieve the optimal band control performance. Second, both the insertion of DVAs and
the enlargement of the frequency band may result in a more active coupling among structural modes, which in turn affects
the optimal location of the DVAs. A good understanding of these two issues can not only help reveal the physical insight on the
interaction between absorber and host system but also give guidance to the design of DVAs for practical engineering
applications. This study attempts to explore these fundamental issues using a simple plate system as the benchmark system.
More specifically, DVAs are used to control the resonant responses within different bandwidths. The underlying control
mechanisms of DVAs are examined through investigating the absorber parameters, such as damping and locations. This has
been achieved by establishing a general model consisting of a plate incorporating multiple DVAs. When the number of DVAs
retreats to one, an analytical expression for the displacement of the plate is derived. With this solution, the control
mechanism of a DVA is investigated. Two major effects of a DVA, reaction and dissipation, are shown to be dependent on the
control bandwidth. Then the optimal absorber locations for controlling well-separated modes or closely packed modes are
examined together with a method to suppress the adverse effect at those off-targeted resonances. Experiments are then
conducted to validate the numerical findings.

2. Theory

A plate is chosen as benchmark structure due to its simplicity in modeling. For the completeness of the paper, the modeling
procedure is briefly summarized in the following sections. The system under consideration consists of a homogeneous, orthotropic,
and thin rectangular plate with M DVAs, as shown in Fig. 1. The plate is subject to a harmonic point force of Feiot at (x0, y0).

2.1. General coupled model of a plate with DVAs

The motion of the nth absorber follows the Newton’s second law as

mn €znðtÞþcn _znðtÞþknznðtÞ ¼ cn _wðxn,yn,tÞþknwðxn,yn,tÞ, (1)
z

x

y

xn

y0

x0

F0

yn

Fig. 1. A plate incorporating multiple dynamic vibration absorbers.
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where zn(t), mn, cn, and kn represent the displacement, mass, damping constant, and stiffness of the nth absorber, respectively;
w(xn, yn, t) is the lateral displacement of the plate at the absorber location (xn, yn).

Under harmonic excitation at an angular frequency o, the equation of motion for the plate is expressed as [16]

Dr4wðx,yÞ�o2rwðx,yÞ ¼ Fdðx�x0Þdðy�y0Þ þ
XM
n ¼ 1

ðiocn½Zn�wðxn,ynÞ�þkn½Zn�wðxn,ynÞ�Þdðx�xnÞdðy�ynÞ, (2)

where D is the flexural rigidity of the plate, r the area density, d the Dirac delta function, and Zn the displacement amplitude
of zn(t).

Using modal expansion method, the displacement w(x, y) of the plate can be expanded on the basis of mode shapes of the
plate as wðx,yÞ ¼

PJ
j ¼ 1WjFjðx,yÞ, where Wj is the jth modal displacement,Fj(x, y) is the jth mode shape, and J is the maximum

mode number used in computation. Making use of the orthogonality property of the mode shapes, a set of decoupled
equations can be obtained from Eq. (2) as

b2
j Wj�o2Wjþ i2oxjbjWj ¼ F

Fjðx0,y0Þ

Mj
þo2

XM
n ¼ 1

mn

Mj
ZnFjðxn,ynÞ ðj¼ 1,2,. . .,JÞ, (3)

where bj is the jth natural angular frequency, Mj is the jth modal mass, represented as Mj ¼ r
R

S½Fjðx,yÞ�2 dxdy, xj is the jth
modal damping ratio, and S is the plate area. Notice that the term i2oxjbjWj on the left hand side has been introduced to
represent the damping effect of the plate.

Now substituting the modal expansion expression of the plate displacement into Eq. (1), the distance amplitude Zn of the
nth DVA is obtained as

Zn ¼ Tn

XH

h ¼ 1

WhFhðxn,ynÞ, (4)

where Tn is a dynamic parameter defined as

Tn ¼
o2

nþ i2xu

noon

o2
n�o2þ i2xu

noon
,

where xun and on are the damping ratio and the natural angular frequency of the nth DVA, respectively. Substituting Eq. (4)
into Eq. (3) yields

ðb2
j �o

2þ i2xjobjÞ�o2
XM
n ¼ 1

Tn
mn

Mj
F2

j ðxn,ynÞ

 !
Wj�o2

XH

haj

XM
n ¼ 1

Tn
mn

Mj
Fhðxn,ynÞFjðxn,ynÞWh ¼

Fjðx0,y0Þ

Mj
F (5)

The above equation involves J modes. It should be stated that, actually, Eq. (5) is a linear system of equations in terms of the
modal response Wj. Wj can be numerically solved provided the plate mode shapes are known and detailed information of the
DVAs and excitation force are given. In the absence of DVA, i.e. Tn=0, the modal amplitude is solved as

ðWjÞwithout DVA ¼
1

b2
j �o2þ i2xjobj

Fjðx0,y0Þ

Mj
F: (6)

2.2. Analytical solution with a single DVA

Assuming only the nth DVA is installed on the plate, Eq. (5) is simplified to

ðb2
j �o

2þ i2xjobjÞWj�o2Tn
mn

Mj
Fjðxn,ynÞ

XH

h ¼ 1

WhFhðxn,ynÞ ¼
Fjðx0,y0Þ

Mj
F: (7)

Dividing mn=MjFjðxn,ynÞ over all the terms in Eq. (7) gives

ðb2
j �o2þ i2xjobjÞWj

ðmn=MjÞFjðxn,ynÞ
�o2Tn

XH

h ¼ 1

WhFhðxn,ynÞ ¼
Fjðx0,y0Þ

Fjðxn,ynÞ

F

mn
: (8)

Notice that the second term on the left hand side of Eq. (8) is independent of index j. Changing the running index with integer g

gives another equation as

ðb2
g�o2þ i2xgobgÞWg

Fgðxn,ynÞðmn=MgÞ
�o2Tn

XH

h ¼ 1

WhFhðxn,ynÞ ¼
Fgðx0,y0Þ

Fgðxn,ynÞ

F

mn
: (9)

Subtracting Eqs. (8) and (9) yields

ðb2
j �o2þ i2xjobjÞWj

Fjðxn,ynÞðmn=MjÞ
�
ðb2

g�o2þ i2xgobgÞWg

Fgðxn,ynÞðmn=MgÞ
¼

Fjðx0,y0Þ

Fjðxn,ynÞ
�
Fgðx0,y0Þ

Fgðxn,ynÞ

� �
F

mn
: (10)
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Eq. (10) establishes a direct relationship between any two arbitrary plate modes, g and j. In this case, the modal response Wg

can be expressed in terms of Wj, and substituting the new Wg expression into the independent term in Eq. (8) gives

b2
j �o2þ i2xjobj

Fjðxn,ynÞðmn=MjÞ
1�mno2Tn

XH

h ¼ 1

F2
hðxn,ynÞ

ðb2
h�o2þ i2xhobhÞMh

 !
Wj

¼ 1�mno2Tn

XH

h ¼ 1

F2
hðxn,ynÞ

ðb2
h�o2þ i2xhobhÞMh

 !
Fjðx0,y0Þ

Fjðxn,ynÞ

F

mn
þo2Tn

XH

h ¼ 1

Fhðx0,y0ÞFhðxn,ynÞF

Mhðb
2
h�o2þ i2xhobhÞ

: (11)

Therefore, an analytical solution of Wj is obtained from Eq. (11) as

Wj ¼
1

b2
j �o2þ i2xjobj

Fjðx0,y0Þ

Mj
F

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Contribution from the primary force

þ
1

b2
j �o2þ i2xjobj

Fjðxn,ynÞ

Mj
Fsecond|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Contribution from the DVA

, (12)

where

Fsecond ¼

mno2Tn
PH

h ¼ 1
Fhðx0 ,y0ÞFhðxn ,ynÞF

Mhðb
2
h�o2þ i2xhobhÞ

1�mno2Tn
PH

h ¼ 1
F2

h ðxn ,ynÞ

Mhðb
2
h�o2þ i2xhobhÞ

: (13)

The above analytical expression provides insightful information about the jth modal amplitude when a single DVA is attached
on the plate. Eq. (12) clearly shows that the modal amplitude is composed of two parts: one is the effect induced by the primary
exciting force (first term) and the second part comes from the reaction force by the DVA (second term). It is also seen in Eq. (13)
that the absorber is coupled with all plate modes. This fully coupled term Fsecond represents the reaction force of the DVA on the
plate. It is noted that Eq. (7) and its analytical solution Eq. (12) can be applied to the situation in which there are M identical DVAs
attached at the same place (xn, yn), but each DVA has only 1/M mass of mn. It indicates that M identical DVAs installing in the
same place are equivalent to one DVA having the same resonance frequency and damping but a mass of overall.

Assuming only one targeted mode, i.e. the jth mode, dominates the response, Eq. (12) can be expressed in a dimensionless form as

Q ¼
Wj

ðWjÞwithout DVA

¼
1

1�
mnjo2TnF2

j ðxn ,ynÞ

b2
j �o2þ i2xjobj

, (14)

where mnj is the ratio of the nth absorber mass to the jth modal mass of plate. It can be seen from Eq. (14) that Q depends on its
dynamic parameter Tn and the absorber mass ratiomnj. As an extreme case, if the attachment is made at the node of the jth mode, i.e.
Fh(xn, yn)=0, the reacting force becomes ‘contributiveless’ to the modal displacement at this mode.
2.3. Qualification of the control performance

To assess the performance of the DVA, an ‘energy reduction index’ is defined as

Er ¼ 10log10

E0
b

E1
b

, (15)

where E1
b and E0

b are averaged kinetic energy of the plate within a chosen bandwidth [o1, o2] with and without DVAs,
respectively. The following expression can be used to calculate the averaged kinetic energy Eb:

Eb ¼

Z o2

o1

1

2
M/V2Sdo, (16)

where M is the mass of the plate and /V2S is the averaged quadratic velocity of the plate, which is computed by

/V2S¼
o2

S

Z
S

wðx,yÞw�ðx,yÞdxdy, (17)

where the asterisk denotes complex conjugate.
The energy dissipated by the DVA damping in one period T can be calculated by

Ed ¼
1

2

Z T

0
cno29znðtÞ�wðxn,yn,tÞ92

dt, (18)

where [zn(t)–w(xn, yn, t)] is the relative displacement between the plate and the DVA at the attaching point.
For the harmonic motion, Eq. (18) is simplified as

Ed ¼
1
4Tcno29Zn�wðxn,ynÞ9

2
: (19)
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The work done by the reacting force within the bandwidth is calculated by

Ef ¼

Z o2

o1

1

2
kn9Zn�wðxn,ynÞ9

2
do: (20)

3. Control mechanism and coupling analysis in different frequency bandwidths

In this section a simply-supported aluminum plate as shown in Fig. 2(a), having a dimension of 0.41�0.45�0.003 m3 is
used. The coordinate system used in the study is also indicated in the figure. A primary excitation point force is exerted at
(0.28 m, 0.38 m). A total of 20�20 modes are used in the simulation, which was found sufficient to ensure the accuracy of the
results in the frequency range of interest up to 400 Hz. The frequency response function (FRF) of the plate observed at (0.17 m,
0.20 m) is plotted in Fig. 2(b). It can be seen that the first mode (1, 1) at 85 Hz is well-separated from all other modes, while the
second mode (1, 2) at 200 Hz has a close neighboring mode (2, 1) at 224 Hz. Compared with the well-separated mode, the
second and the third modes close each other, they are denoted as a closely packed mode pair. Both of these two kinds of modes
(well-separated mode and closely packed mode) are examined in the following study.

As mentioned previously, the modal displacement of the plate can be calculated by Eq. (12) under the use of a single DVA in
vibration control. Obviously for the plate integrated with an absorber, Fsecond relates to the absorber location (xn, yn), the
lumped mass, and damping if traced back to Eq. (13). In practical engineering field, the lumped mass used by the DVA is
expected to be small since it is not desirable to influence the characteristic of the plate due to the additional mass. In this paper
the absorber damping and location are to be discussed but the effect of the absorber mass to the control performance is out of
concern of the current paper.

3.1. Control mechanism of DVA for different bandwidths

The FRF of the plate centered at 85 Hz with and without a DVA is calculated at an arbitrary point of (0.17 m, 0.20 m). The
absorber is tuned at the resonance 85 Hz and the mass is set as 1% of the plate, i.e. 0.015 kg. DVAs with three typical damping
o
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Fig. 2. (a) Coordinate system of the plate and (b) predicted FRF of the plate at (0.17 m, 0.20 m) without DVA.
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values (x=0.012, 0.041, and 0.088) are compared to show the effect of the damping on the control performance. Notice that
the case corresponding to x=0.041 was obtained as the result of optimization to achieve the best global control performance
within a frequency band of 20 Hz, which will be detailed later in this section. It can be seen from Fig. 3 that for the relatively
low damping, i.e. x=0.012, although the reduction is significant at the central frequency of 85 Hz, a pair of new peaks appear.
Judging from the peak values within the bandwidth, only a reduction of 4.2 dB is achieved. Increasing the damping ratio to the
optimal one, i.e. x=0.041, these two new peaks are smoothed down, leading to a reduction of 8.7 dB. By further increasing the
damping ratio to x=0.088, the two coupled peaks disappear to form a single peak, resulting in a vibration reduction of 7.8 dB.
Obviously, the lightly damped absorber can perfectly suppress the vibration only at the resonance frequency. The fierce
vibration at this frequency is pinned by the reaction force from the absorber. If a wide frequency band is considered, however,
the control mechanism would be different. In this case, a proper balance between the absorber damping and the selected
bandwidth is needed.

When attaching a DVA on a host structure, the DVA vibrates due to the excitation from the host structure. One part of the
input energy to the DVA is dissipated through its damping, and the remaining energy returns back to the host system by
means of the reacting force to form an interaction between the DVA and the structure. Therefore, the dual process of
dissipation and interaction co-exists and form the control mechanism of the DVA. This issue is first investigated by choosing a
relatively wide bandwidth of 20 Hz centered at 85 Hz. The energy reduction of the plate, the dissipation energy by the DVA,
and the work done by the reacting force are calculated using Eqs. (15), (19) and (20) for different DVA damping ratios. Results
are shown in Fig. 4(a–c). Fig. 4(a) shows that, at low damping, the increase of damping benefits the energy reduction Er of the
host structure, and a maximum reduction of 3.8 dB is reached when the damping ration is x=0.041. After that, the continuous
increase of damping weakens the energy reduction. Albeit slight differences in the peak position, a similar trend is observed in
the bandwidth energy dissipation Ed of the DVA, as illustrated in Fig. 4(b). The tendency match between Ed and Er suggests that
in a relatively large bandwidth, e.g. 20 Hz, the energy reduction of the host system is dominated by the dissipation of DVA, and
thus, the dissipation capability of the absorber determines the vibration reduction of the plate. But a threshold exists beyond
which no further energy reduction can be achieved. It is worth noting that the optimal damping for Er (x=0.041) and Ed

(x=0.039) are slightly different. This means although the control performance is governed by the dissipation mechanism of
the DVA in the case of a large bandwidth, the optimal damping for maximum vibration reduction cannot be simplified as the
maximization of the energy dissipation by the DVA. Fig. 4(c) also suggests a strong coupling between the absorber and plate at
low damping, as evidenced by the efficient energy feedback to the plate. Excessive damping, however, reduces the motion of
the absorber and therefore influences the energy transmission between the DVA and the plate, which consequently
constrains the energy dissipation as well.

It is expected that the aforementioned control mechanism only applies when the frequency band of interest is relatively
large to cover both the original resonance peak and the newly coupled peaks due to the insertion of the resonator. This issue is
investigated hereafter. The damping ratio of DVA is determined in two different ways: (1) the damping corresponding to the
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maximum energy reduction of the plate is defined as the optimal damping, indicated by xred and (2) the damping
corresponding to the maximum energy dissipation of the absorber is referred to as the maximum dissipation damping,
denoted by xdis. A bandwidth varying from 0.2 to 20 Hz is chosen as the observing range which covers from narrow band to a
relative wide band. The variations of xred and xdis against the frequency bandwidth are illustrated in Fig. 5. It is observed that
when the frequency bandwidth is very small, the damping ratios determined by the above two methods has a significant
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difference. As the bandwidth increase, the two damping ratios get closer. Finally, the two damping ratios are almost the same
(0.04) when the bandwidth is larger than 10 Hz.

This phenomenon can better be characterized based on half-power bandwidths, (f1� f2) and (f3� f4), corresponding to the
two newly emerged peaks due to the insertion of the DVA. The whole frequency bandwidth range shown in Fig. 5 can then be
divided into three different zones. Zone I corresponds to a narrow bandwidth (NB), in which the control bandwidth is so
narrow (r f3� f2) that the control region basically focuses on the resonance peak and excludes the newly emerged coupling
peaks. Zone II denotes moderate bandwidth (MB), i.e. the two coupling peaks are contained within the control band, but the
bandwidth is still smaller than or equal to the frequency bandwidth of (f1� f4). Zone III corresponds to a relatively
wide bandwidth (WB) containing the two newly created peaks (Z f1� f4) to cover the entire range where the DVA’s
performance remains. In zone I, the optimal damping xred is much lower than the maximum dissipation damping xdis. This
suggests that, for the narrow-band control, the optimal DVA damping is not the one that maximizes the energy dissipation of
the plate. Instead, an effective interaction between the plate and the DVA is the key element. Therefore, the control
mechanism of the DVA in a narrow band control is dominated by the reacting force, i.e., by the interaction between the plate
and the DVA. In zone II, as the bandwidth gradually increases, xdis decreases drastically and approaches to the gradually
increasing xred. This suggests a growing importance of energy dissipation from the absorber. In zone III, xred and xdis almost
coincide by undergoing only very smooth variation, which indicates that the energy dissipation has taken over as the
dominating effect in the vibration reduction.

3.2. Coupling analysis in terms of bandwidths and DVA locations

As can be seen from the second term on the left hand side of Eq. (5), all structural modes are coupled with the DVA. The
coupling strength obviously depends on various system parameters, among which the bandwidth of interest and the location
of the DVA are considered here. To qualify the coupling effect, a bandwidth energy variation parameter EV is defined as

EV¼ 10log10

Z o2

o1

E0
b

Ej
b

do
 !

(21)

where E0
b is the bandwidth averaged kinetic energies of the plate when a converged solution is obtained using 400 modes, and

Ej
b is the bandwidth averaged kinetic energies of the plate when the first j modes are considered in computation. In fact, EV

reflects how close the bandwidth energy of the plate can be approached by using a limited number of modes. For a 20 Hz
bandwidth centered at 200 Hz, the EVs before and after installing the DVA are shown in Fig. 6. It can be seen that, in the
absence of absorber, EV converges very rapidly since only a few modes contribute significantly to the response. After
installing the absorber, however, more modes come into play. This suggests that the presence of absorber excites more
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structural modes, and therefore enhances the modal coupling between them. Participation of each individual mode can
be better illustrated by decomposing the response of the plate into each mode. To that end, the normalized modal response of
the first 20 modes is shown in Fig. 7. It is obvious that the presence of DVA activates more plate modes such (2, 1), (2, 2) and
(2, 3). This increased modal coupling due to the band consideration also implies that the parameter tuning of the DVA as well
as its installation requires a model, which considers the multi-modal coupling feature of the system.

Eq. (5) also shows that the absorber location is another decisive parameter affecting the structural coupling. One
indication is the separation of the new coupled peaks due to the insertion of the DVA. From Eq. (14), the newly emerged
resonance frequencies due to the insertion of the DVA can be determined by setting the denominator to zero, in a way similar
to [17]. This results in a frequency separation between the two resonances

Doj ¼ bj9Fjðxn,ynÞ9
ffiffiffiffiffiffiffi
mnj

p
(22)

Eq. (22) shows that the separation of the resonant frequencies is proportional to the resonant frequency bj of the targeted
mode, the absorber locationFj(xn,yn), and the absorber mass ratio mnj. A change in absorber location modifies the separation,
so the coupling peaks can either be excluded or included in investigated band, within which vibration reduction is expected.

3.3. Optimal DVA locations

When the mode under control is well separated from others, weak modal coupling takes place. The conventional way of
locating the DVA in the anti-node region applies as evidenced by Fig. 8, in which the well-separated mode (1, 1) at 85 Hz is
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investigated. In the figure, pixels correspond to spatial points of the plate. The field value of a pixel stands for the energy
reduction calibrated by different grey-scales. The darkest area, marked by ‘‘J’’ corresponds to the optimal location for
installing the absorber. Fig. 8 shows the energy reduction Er within 2 and 10 Hz bandwidth when the DVA location varies in
the plate. It can be seen that for a narrow band of 2 Hz, the preferable locations (dark region) where the absorber produces
larger energy reduction (25 dB or above) occupy a large area around the center of the plate. While for 10 Hz bandwidth, the
better control area (dark region) is smaller and the maximum achievable reduction is only 18 dB, 7 dB less than the result in a
narrow band case. A larger variation in the magnitude of Er is found in narrow band control, indicating that the control
performance of the DVA is more sensitive to its location in the case of narrow band control.

Optimal locations of DVA for the control of closed-packed modes are then investigated. Mode (1, 2) and its neighboring
mode (2, 1) are taken as an example. The control results under different bandwidths vs. the DVA location are shown in Fig. 9(a)
and (b). The bandwidth vibration energy of the plate [Eq. (16)] without DVA is also given in Fig. 10 for comparisons.

It can be seen from Fig. 9 that, whilst the absorber performs well in a large region (dark region) for 2 Hz bandwidth, the
optimal region for 20 Hz bandwidth is significantly reduced. Most importantly, for the narrow band, the optimal locations
close to the nodal line of mode (1, 2), corresponding to the maximum vibration area as shown in Fig. 10(a). For the wide
bandwidth, however, the optimal locations (0.14 m, 0.11 m) and (0.27 m, 0.34 m) are away from the maximum vibration
locations, though the vibration within this band is still dominated by the mode (1, 2), as illustrated in Fig. 10(b). This shows
that, with the consideration of a larger bandwidth, the DVA cannot simply be placed at the maximum vibration region. An
optimization should be conducted based on a model, in which the multi-modal coupling feature of the system is considered,
like the one proposed in this paper.
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3.4. Effect of DVA on response at off-targeted modes

When the absorber is installed on the plate, it suppresses the resonance to which it is tuned. Adverse effects may however exist
at some off-targeted modes. One typical result is shown in Fig. 11, in which case when controlling the mode (1, 2), a 2 dB increase is
observed at the off-targeted mode (2, 1). This is due to the dynamical coupling between the absorber and the
off-targeted mode. In an extreme case, by placing the absorber on the anti-node of a certain off-targeted mode M, the zero
value of mode shapeFM(x, y) disables the coupling between the absorber and mode M. But in a more likely case whereFM(x, y)a0,
assuming only the M mode dominates in the response at its resonant frequency oM, the adverse effect can be suppressed as
jW0(oM)jojW1(oM)j, where W0 and W1 denote the modal displacement before and after the installation of absorber. From Eq. (6)
and (12), it gives

W1ðoMÞ�W0ðoMÞ ¼

Fjðxn ,ynÞ

Mj

b2
j �o2

Mþ i2xjoMbj

mno2
MTn

PH
h ¼ 1

Fhðx0 ,y0ÞFhðxn ,ynÞF

Mhðb
2
h�o2

M
þ i2xhoMbhÞ

1�mno2
MTn

PH
h ¼ 1

F2
hðxn ,ynÞ

Mhðb
2
h�o2

M
þ i2xhoMbhÞ

: (23)

By imposing jW1(on)–W0(on)j=0, an expression with respect to the absorber location is obtained as

XH

h ¼ 1

Fhðx0,y0ÞFhðxn,ynÞF

Mhðb
2
h�o2

Mþ i2xhoMbhÞ

�����
�����¼ 0: (24)

Apparently, the variation of absorber location affects the response at the off-targeted mode and the adverse effect can be
eliminated if placing the absorber properly. Expression (24) provides an additional criterion that can be used for determining the
optimal locations of the DVA coping with multi-range consideration. Upon applying this criterion, Fig. 11 shows that the adverse
effect can be eliminated without sacrificing the control performance at the targeted mode.

4. Experimental validations

Measurements are conducted to validate the results presented above. In Fig. 12(a), a simply-supported aluminum plate,
having the same dimension as the one used in simulation, is fabricated and installed on an isolation table [20]. In order to
achieve a simply-supported boundary condition, a strip of V groove was carved at each side of the plate along the edge. The
rims of the plate (outside the V grooves) were clamped by steel-made frames with a thickness of 40 mm (front frame) and
80 mm (back frame), respectively [see Fig. 12(a) for details]. The frame was initially supported by a pair of oblique bars
installed at the back of the frame. However, measurements showed that this turned out to be unnecessary, and only the frame
itself could provide a large enough stiffness in the transverse direction of the plate. A single point primary force is applied at
(0.28 m, 0.38 m) using a Brüel & Kjær Type 4809 shaker. Vibrations are measured using a PSV-400 Scanning Laser-vibrometer.
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The measured and computed FRF curves of the plate at location (0.123 m, 0.113 m) are compared in Fig. 13. In the
computation, the experimentally identified damping ratios are used (see Table 1). The good match between the measured and
predicted curves in the frequency range of interest shows that the simply-supported boundary conditions of the plate used in
the experiment is well satisfied. It should be noted that an alternative and probably more reasonable way of representing the
structural damping of a system in the theoretical development is to use the hysteretic damping instead of viscous damping
[21]. In our case, modal damping ratio was obtained by measurement. The agreement between the model and measurement



Table 1
Computed natural frequencies and measured damping ratios.

Index Mode no. Natural freq. (Hz) Damping ratio

1 (1, 1) 85 0.0147

2 (1, 2) 200 0.0016

3 (2, 1) 224 0.0011

4 (2, 2) 339 0.0020

5 (1, 3) 393 0.0038

6 (3, 1) 456 0.0035

7 (2, 3) 532 0.0032

8 (3, 2) 571 0.0019

9 (1, 4) 662 0.0015

10 (3, 3) 764 0.0024

11 (4, 1) 780 0.0029

12 (2, 4) 801 0.0025
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shown in Fig. 13 demonstrate that the viscous damping model can well satisfy the prediction accuracy required in this
analysis.
4.1. Optimal damping

In order to reduce the moment effect on the interactions between the plate and the DVA, the DVA is designed and
fabricated using two identical back to back beam-mass elements, symmetrically arranged with respect to the central axis, as
shown in Fig. 12(b). As mentioned in Section 2.2, the two identical absorbers are equivalent to one absorber with the same
resonance frequency and damping but doubled lumped mass. The dynamics of each beam-mass system can be approximated
as a single degree of freedom system assuming that only the first mode of the beam dominates [22]. Therefore, the beam
serves as a spring and a distributed mass. By adjusting the location of the lumped mass on the beam, the effective stiffness of
the spring can be changed, and in turn, the working resonance frequency of the DVA can be tuned. Initial design of the
absorber is based on the estimated natural frequency of the system using formulas in [23]. The final configuration is then
finely tuned experimentally. The damping ratio of the absorbers was tuned by applying a damping layer coated on the surface
of the beam. Commercially available damping liquid, SWEDAC DG-U 6, is applied to the surface of the beam. By controlling the
thicknesses of the coating layer, different damping ratio of the DVA can be obtained. It should be noted that the support part of
the DVA increases the total mass of the absorber. As demonstrated by Eq. (22), the increase of the absorber mass will widen
the separation of the coupled resonances. For the current configuration, the mass ratio of the base support to the modal mass
of the plate is only 0.6%, which results in 1.2 Hz increase in the frequency separation for the first mode. Thus the influence of
the support part is small as it is relatively light compared with the plate.

The vibration control at the first resonance of 85 Hz using the DVA is carried out. The FRF of the plate with an absorber is
measured at (0.17 m, 0.20 m) and shown in Fig. 14. Similar to the simulation implemented in Fig. 3, the beam-mass absorbers
are designed to have three typical damping ratios as those used in simulations. Due to the practical difficulty in getting exactly
the desired optimal damping value (xred=0.041), the best achieved damping used in the experiment is x=0.039, which is near
the optimal result. With this damping, a 6.8 dB reduction is achieved, which is 1 dB smaller than the predicted result. For the
small and large damping, the two sharp peaks and the single peak occur, respectively, consistent with numerical predictions.
In general, the control performance of each absorber agrees with the numerical results to an acceptable extent and the
optimal damping obtained is capable to provide the highest reduction.
4.2. Optimal location of DVA

The optimal location of absorber for vibration control in a frequency band is also experimentally validated. The closely
packed mode (1, 2) at 200 Hz is chosen. In a bandwidth of 20 Hz centered at 200 Hz, the maximum displacement amplitude at
each node of a 20�20 grid over the plate is measured using PSV-400 without DVA. It is seen from Fig. 15 that the vibration
finds its maximum at the regions around the anti-node and a minimum vibration region distributes in the midline of the plate,
which indicates that the vibration within this band is dominated by the targeted mode (1, 2). Then, the DVA is, respectively,
placed at the location (0.205 m, 0.3375 m), which is the anti-node of the targeted mode, and the location (0.27 m, 0.34 m),
which is the optimal location obtained in the simulation. The FRF of the plate (displacement) measured at the location
(0.265 m, 0.162 m) is shown in Fig. 16. It is observed that after placing the DVA on the plate, the vibration at the targeted
resonance 200 Hz is well suppressed. Also, it is found that the absorber placed at optimal location results in a reduction of
7.9 dB, while only a 4.6 dB reduction is achieved if the absorber is placed at the anti-node. This is also consistent with
numerical results.
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4.3. Broadband control by using multiple DVAs

As a final example, the capability of using multiple DVAs to achieve a broadband vibration reduction is demonstrated.
When the number of DVA increases, however, a systematic optimization becomes a necessity due to the complex coupling
among DVAs and the host plate. That is, a model, such as the one presented in this work, becomes indispensable. To achieve
the optimal control performance of the DVAs, genetic algorithm (GA) is used in conjunction with the present model. The GA
approach allows determining the optimal location of each DVA. The control object is to find the maximum energy reduction Er

in the 20 Hz bandwidth centered at each targeted resonance frequency. The implementation procedures of control using the
DVAs are described as follows: (1) A DVA is first designed using the resonance frequency of the target mode. A genetic
algorithm (GA) used in [24] is applied to find the optimal location for this DVA. (2) The installation of the first DVA splits the
target peak into two new peaks. These two new coupled resonances are then selected as the resonance frequencies of
the other two DVAs. (3) The above procedure can be repeated until the resonance frequencies of all the DVAs are fixed. After



160 170 180 190 200 210 220 230 240
-110

-100

-90

-80

-70

-60

-50

Fr
eq

ue
nc

y 
re

sp
on

se
 o

f p
la

te
 (d

B
 re

f 1
m

/N
) 

Frequency (Hz)

4.6dB

7.9dB

250

Fig. 16. FRF of the plate observed at location (0.265 m, 0.162 m). ——, without DVA; — —, DVA placed at anti-node; — �—, DVA placed at the optimum

location.

0 50 100 150 200 250 300 350
-160

-150

-140

-130

-120

-110

-100

-90

-80

-70

Frequency (Hz)

FR
F 

of
 th

e 
 a

te
 (d

B
  r

ef
 1

m
/N

)

7.3dB
19dB

18.3dB

10.9dB

400

Fig. 17. FRF of the plate observed at (0.17 m, 0.20 m). ——, without DVAs; — —, with 12 optimized DVAs.

C. Yang et al. / Journal of Sound and Vibration 330 (2011) 1582–15981596
the determination of all resonance frequencies, the GA method is applied again to find the new optimal locations for all DVAs.
In this study, four dominating modes are selected as the control target. For each mode, it is found that three DVAs can provide
a desired band control performance. Notice that only DVA location is considered in the optimization. The FRF of the plate
observed at (0.17 m, 0.20 m) is shown in Fig. 17 and the DVA parameters are listed in Table 2. It can be seen that an apparent
reduction is achieved at each targeted mode, with reduction ranging from 7.3 to 19.0 dB.



Table 2
Optimized DVA locations.

Targeted mode DVA resonance freq. (Hz) Location (m)

80 (0.2138, 0.2506)

(1, 1) 85 (0.2283, 0.2771)

89 (0.2219, 0.2647)

194 (0.2573, 0.3106)

(1, 2) 200 (0.1495, 0.2259)

206 (0.2348, 0.2877)

218 (0.2637, 0.18)

(2, 1) 224 (0.2106, 0.3053)

230 (0.1351, 0.1253)

333 (0.1994, 0.2506)

(2, 2) 339 (0.0949, 0.0953)

345 (0.1929, 0.2153)

mm=0.01, kg, x=0.01.
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5. Conclusions

In this paper, a dynamic vibration absorber is used to suppress the vibration of a plate in a frequency band. The control
mechanism is investigated with respect to different bandwidth, and the coupling is also examined in terms of the resonator
location and frequency bandwidth. With the help of a mathematical model, it is found that the control mechanism of the DVA
depends on the frequency bandwidth: for a narrow band control, the interaction between the DVA and the host structure by
means of the reacting force from the absorber dominates the control performance; as the bandwidth gradually increases,
there is a growing importance of energy dissipation; for a relatively wide band control, the energy dissipation of the DVA
becomes a dominant factor.

Insertion of the DVA into the host structure activates more structural modes and revitalizes a more active modal coupling.
This enhanced coupling depends not only on the bandwidth to be considered but also on the location of the DVA, which
further influences the separation of the new coupled peaks.

For the control of well-separated modes, the optimal location of the DVA is found at the maximum vibration locations, in
both narrow band and broadband control. For close-packed mode, however, the optimal location for installing DVA should be
meticulously determined with the consideration of multi-modal coupling. Meanwhile, it is also possible to use the criteria
provided in this work to suppress the adverse effect on the off-targeted mode without compromising the control performance
at the targeted mode.

It should be stressed that the finding of the present work should not be limited to the case of a plate. In fact, based on modal
expansion, the coupled equations of any structure can be decomposed into a set of discrete modal equations under a unified
frame. Therefore, the mathematical equation, cast into the modal form, will be general enough to represent a general
vibrating structure. In the present case, a simply-supported plate was chosen as a benchmark problem basically because of its
simplicity. The conclusion drawn from it, however, remains general and applicable to any vibrating structures.
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