
A three-dimensional model for T-shaped acoustic resonators with
sound absorption materials

Ganghua Yu, Li Cheng,a) and Deyu Li
Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon,
Hong Kong, China

(Received 11 September 2010; revised 25 January 2011; accepted 10 February 2011)

Recent development in noise control using T-shaped acoustic resonators calls for the development

of more reliable and accurate models to predict their acoustic characteristics, which is unfortunately

lacking in the literature. This paper attempts to establish such a model based on three-dimensional

theory for T-shaped acoustic resonators containing sound absorption materials. The model is vali-

dated by experiments using various configurations. Predictions on fundamental and high-order reso-

nance frequencies are compared with those obtained from the one-dimensional model and finite

element analyses, and the effects of the physical and geometric parameters of the absorption materi-

als on the resonance frequencies and Q-factor are also investigated numerically and experimentally.

Limitations and applicability of existing one-dimensional models are assessed. The proposed gen-

eral three-dimensional model proved to be able to provide an accurate and reliable prediction on

the resonance frequencies for T-shaped acoustic resonators with or without absorption materials.

This can eventually meet the requirement for resonator array design in terms of accuracy.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3560917]

PACS number(s): 43.50.Gf, 43.20.Mv [FCS] Pages: 3000–3010

I. INTRODUCTION

Research on low-frequency noise control using acoustic

resonators has been revitalized due to a number of recent

developments in terms of resonator design, system optimiza-

tion, and implementation. Among these efforts, the T-shaped

acoustic resonators (TARs) show great potential in control-

ling noise inside acoustic cavities.1–3 Owing to the large as-

pect ratio, a TAR can be embedded into the walls or

structures enclosing the cavity to form a compact system by

minimizing the space required by installation. Upon proper

design, multiple TARs can be used to form a resonator array

for achieving a broad band sound reduction.4,5

A typical TAR consists of two mutually perpendicular

tubes: a long closed-end tube and a short open-end one. A

theoretical model was first proposed by Merkli based on

one-dimensional (1-D) pipe assumption,6 in which the TAR

was divided into three branches and a common junction

shared by these branches. Two assumptions were made in

the modeling process: (a) only plane wave propagating in all

branches and (b) a uniform pressure distributing in the com-

mon junction. The derived model required end corrections

which depended on the lengths of the branches. Meanwhile,

the study is rather restrictive in that the model was limited to

TARs that only had the same circular cross-section for all

branches with equal lengths for the two coaxial branches. In

a later study on the TAR, Li and Vipperman extended Mer-

kli’s model to more general configurations under the same

1-D assumption.7 Different methods in determining the

internal end corrections for all branches were developed.

Among them, the empirical Hybrid Rayleigh’s end correc-

tions, depending only on the radius of branches, gave the best

predictions. Li and Vipperman’s 1-D model is simple enough,

which was used to guide the TAR design in engineering appli-

cations with some success.2–5 Similar T-junction tubes were

also investigated by Dubos et al.8 They developed a 1-D

model to describe the discontinuity at the junction. The radia-

tion impedance at the orifice of TARs was calculated as the

added acoustic mass, which was derived on the basis of the

multiple-modal method.

In the design of TARs, the lengths of some branches are

expected to be short, which may be comparable to or even

smaller than their transverse dimensions. Therefore, the

commonly adopted 1-D plane wave assumption9–11 becomes

quite debatable and produces unacceptable errors. Although

the empirical end corrections can compensate for the error of

that simplification to certain extent for a limited number of

configurations,7 more general cases cannot be handled.

Meanwhile, apart from the cross-sectional areas and the tube

lengths, other geometrical parameters such as the ratio

between the cross-sectional width and height in the case

where the tube is rectangular are not considered in the above

two 1-D models.

Multiple-dimensional models have been developed to

accurately predict the fundamental resonance frequency for

the conventional Helmholtz resonators (HRs).11–13 However,

these models cannot be used for TARs because of the

obvious difference in geometry between the HRs and TARs.

In a previous attempt to control the interior sound pres-

sure inside a cavity, it was observed that an accurate predic-

tion and meticulous tuning of the Helmholtz frequencies are

crucial to ensure an effective control.3–5 This becomes even

more critical when multiple resonators are needed to enlarge

the control band. Errors produced by existing 1-D models

can easily be large enough to jeopardize the performance of
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the resonator array. It was shown that, depending on the tar-

geted bandwidth, fine tuning of the Helmholtz frequencies3–5

and damping14 of resonators allowed a compromised balance

between the reaction effect and dissipation effect of the reso-

nators to achieve an optimized control performance. Damp-

ing of resonators is usually tuned by inserting sound

absorption materials, which existing 1-D models cannot

accommodate. All these show a real need for a general and

accurate 3-D TAR model, which can be incorporated into

the resonator optimization procedure.4

Therefore, this paper aims to develop an accurate three-

dimensional (3-D) model for the TAR to design its geomet-

ric dimensions and to predict its physical parameters. Since

high frequency noise can be readily handled by many exist-

ing means such as damping and dissipation, the scope of

application for acoustic resonators is the low-frequency

range. Therefore, the targeted frequency range of this model

is also the low-frequency range. Instead of exploring proper

internal end corrections used in 1-D model, the propagation

of 3-D wave inside TAR is analyzed. The effect of absorp-

tion material inside a TAR on its resonance frequencies is

investigated. The predicted resonance frequencies are com-

pared with numerical simulations obtained from the 1-D

model and the finite element method (FEM). Experiments

are also conducted to validate the 3-D model.

II. THEORY

In the current work, the tubes of the TAR have square

shape as shown in Fig. 1. The short one is referred to as tube

1, having the physical length L1 and cross-sectional dimen-

sions h1� b1. The longer one is called tube 2 whose cross-

section dimensions are h2� b2 and physical length is

L2þ L3þ h1. In the present model, tube 2 is modeled as a

whole, instead of being divided into three parts like in the 1-

D model. All surrounding walls of the TAR are assumed to

be rigid. Throughout the paper, the superscripts T1 and T2

indicate tubes 1 and 2, respectively. In this section, the sound

field inside tubes 1 and 2 are analyzed with/without absorp-

tion materials, and the input acoustic impedance of the TAR

at the aperture is derived to calculate the resonance

frequency.

The pressure field in the TAR is governed by the wave

equation15

r2pðr; tÞ � 1

c2
€pðr; tÞ ¼ �q0 _qðtÞdðr� r0Þ; (1)

where p(r, t) is the acoustic pressure; q(t) is the volume

velocity of the source at r0; c is the sound speed; q0 is the

air density; and d(r� r0) is the 3-D Dirac delta function.

Assuming the source volume velocity is harmonic, i.e.,

q(t)¼Q0eixt, the solution of Eq. (1) can be written as

p(r, t)¼P(r)eixt. For convenience, the harmonic item eixt

will be omitted in the following discussion.

A. Sound field in tube 1

The sound pressure can be further decomposed on the

basis of cross-sectional duct-modes. Therefore, the solution

of sound pressure in tube 1 can be expressed as

PT1ðx; y; zÞ ¼
X
q;r

/qrðx; zÞ Aþqre
�iKT1

qr y þ A�qre
iKT1

qr y
h i

; (2)

where /qr (x, z) are the cross-sectional mode shape functions

of tube 1, in which q and r are the indices of cross-sectional

acoustic modes along x and z directions, respectively; x is

the angular frequency; Aþqr and A�qr are the unknown coeffi-

cients; KT1
qr is the propagation constant along the axis of tube

1 given by �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjT1

qr Þ
2 � ~k2

1

q
, where jT1

qr is the cross-sectional

characteristic propagation constant computed by

ðjT1
qr Þ

2 ¼ ð2qp=h1Þ2 þ ð2rp=b1Þ2 and ~k1 is the complex prop-

agation constant. ~k1 can be approximately expressed with a

dispersion relation ~k1 ¼ k � iaw, in which k is the propaga-

tion constant without absorption given by x/c and aw is the

absorption coefficient of tubes defined in Ref. 16.

The modal shape functions /(x, z) have the orthogonal-

ity properties as

1

ST1

ðð
ST1

/qrðx; zÞ/�lm x; zð Þdxdz ¼ 0; l; m 6¼ q; r
1 l; m ¼ q; r

�
;

where ST1 is the cross-sectional area of tube 1.

For the hard-walled tube, the normalized mode shape

function for the rectangular cross-section is17

/qrðx; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� d0q

� �
2� d0rð Þ

q
cos

2qpx

h1

cos
2rpz

b1

;

where dlm is the Kronecker delta function, which is equal to

zero when l= m and unity when l¼ m. Under the harmonic

assumption, the yth component of the particle velocity uT1
y is

computed using the linear Euler’s equation as

FIG. 1. (Color online) TARs with

absorption material.
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uT1
y ¼ �

1

ixq0

@P

@y
: (3)

Substituting Eq. (2) into Eq. (3), uT1
y is given by

uT1
y ¼ �

1

ixq0

X
q;r

/qrðx; zÞ �iKT1
qr Aþqre

�iKT1
qr y þ iKT1

qr A�qre
iKT1

qr y
h i

:

(4)

In the present study, the velocity distribution over the orifice

is assumed to be uniform and has amplitude Us. The corre-

sponding velocity boundary condition requires

uT1
y y¼�LT1

eff
¼ US;

��� xj j � h1

2
; zj j � b1

2
; (5)

where LT1
eff is the effective length of tube 1 by adding its phys-

ical length L1 and the external end correction DL. Consider-

ing that acoustic resonators are usually used to control

low-frequency noise, i.e., kb1 (kh1)�1, DL can be approxi-

mately calculated by DL ¼ 8ðb2
1 þ b1h1 þ h2

1Þ=9pðb1 þ h1Þ.18

Substituting Eq. (4) into Eq. (5) and utilizing the orthog-

onal properties of mode shapes yield

Aþlme
iKT1

lm LT1
eff � A�lme

�iKT1
lm LT1

eff ¼ xq0

ST1KT1
lm

ðð
ST1

US/lmðx; zÞdS:

For l¼ 0 and m¼ 0,

Aþ0 eiKT1
0

LT1
eff � A�0 e�iKT1

0
LT1

eff ¼ xq0

KT1
0

US (6)

and for l= 0 or m= 0,

Aþlme
iKT1

lm LT1
eff � A�lme

�iKT1
lm LT1

eff ¼ 0: (7)

At the end y¼ 0, uT1
y reduces to

uT1
0 ¼

1

xq0

X
q;r

KT1
qr /qrðx; zÞ Aþqr � A�qr

h i
: (8)

This velocity distribution can be treated as the sound source

creating the sound field in tube 2. It will be used to calculate

the pressure field in the tube 2 in Sec. II B.

B. Sound field in tube 2

The sound field inside tube 2, containing sound absorp-

tion materials, is first examined. Then, the model without

absorption materials can be simplified from the derived

equations. Let absorption materials be installed inside the

tube 2 at x¼ xa (xa � h1/2) with a length La (Segment II), as

shown in Fig. 1. The two segments divided by the absorption

materials are referred to as segments I and III, respectively.

The pressure field in the segment I can be separated into two

parts: the sound radiated from the velocity distribution uT1
0 ,

and the sound induced by all boundaries of the tube 2.

According to Doak’s work, the radiated sound pressure by a

sound source distribution in an infinite rigid-walled duct can

be expressed as19

PT2
radðx; y; zÞ ¼ q0

X
m;n

xwmnðy; zÞ
2ST2KT2

mn

ðð
ST1

Hðx� x0Þe�iKT2
mnðx�x0Þ

h

þ Hðx0 � xÞeiKT2
mnðx�x0Þ

i
w�mnð0; z0ÞuT1

0 dS0; (9)

where ST2 is the cross-sectional area of tube 2 wmn are the

cross-sectional mode shape functions in tube 2, in which m
and n are the indices of cross-sectional acoustic modes along

y and z directions, respectively; H is the Heaviside function;

KT2
mn is the propagation constant along the axis of tube 2

given by �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjT2

mnÞ
2 � ~k2

2

q
, in which jT2

mn is the cross-

sectional characteristic propagation constant computed by

jT2
mn

� �2¼ ð2mp=h2Þ2 þ ð2np=b2Þ2 and ~k2 is the complex

acoustic propagation constant given by ~k2 ¼ k � iaw; and x0

is the source location. This equation is the convolution prod-

uct of the Green function and the source distribution, where

the Green function is the solution of the acoustic field excited

by a harmonic point source in an infinite rigid-walled duct.19

The acoustic mode shape functions of tube 2 are also

orthogonal to each other, having

1

ST2

ðð
ST2

wmnðy; zÞw�lmðy; zÞdydz ¼ 0; l; m 6¼ m; n
1; l; m ¼ m; n

�
;

The normalized wmn(y, z) for rigid-walled duct takes the

form

wmnðy; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� d0mð Þ 2� d0nð Þ

p
cos

mpy

h2

cos
2npz

b2

:

Using the construction of the radiation pressure in Eq.

(9), the sound in segment I induced by the boundaries can be

expressed as20

PT2
ref x; y; zð Þ ¼ q0

X
m;n

xwmn y; zð Þ
2ST2KT2

mn

ðð
ST1

Bþmne�iKT2
mnðx�x0Þ

h

þ B�mneiKT2
mnðx�x0Þ

i
w�mnð0; z0ÞuT1

0 dS0; (10)

where Bþmn and B�mn are the unknown coefficients. Equation

(10) actually not only describes the reflections at the two

ends of segment I but also involves the effect of other inter-

faces in tube 2 since this segment communicates with other

two segments. It is noted that Eq. (10) automatically satisfies

the boundary condition at the interface between two tubes.

Similarly, the pressure response in segment II can be

also decomposed on the basis of duct-modes as

PT2
abs x; y; zð Þ ¼

X
m;n

wmnðy; zÞ Cþmne�i ~KT2
mnðx�xaÞ þC�mnei ~KT2

mnðx�xaÞ
h i

;

(11)

where ~KT2
mn is the propagation constant along the axis of tube

2 computed by �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjT2

mnÞ
2 � ~k2

abs

q
, in which ~kabs is the
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complex propagation constant of the absorption material;

and Cþmn and C�mn are the constants. Considering the rigid

boundary condition at the end x¼L3þ h1/2, the pressure in

the segment III, PT2
tr , can be expressed as

PT2
tr x; y; zð Þ ¼

X
m;n

wmnðy; zÞDmn

� e�iKT2
mn x� xaþLað Þð Þ þ eikT2

mn x� xaþLað Þð �2LIIIÞ
h i

; (12)

where LIII is the length of segment III of tube 2 and equals to

L3þ h1/2� xa�La.

The responses in the three segments of tube 2 must sat-

isfy the continuity of pressure and velocity over their interfa-

ces, i.e.,

PT2
rad þ PT2

ref ¼ PT2
abs

1

�ixq0

@ PT2
rad þ PT2

ref

� �
@x

¼ 1

�ix~q
@PT2

abs

@x

8><
>: ; at x ¼ xa; (13)

and

PT2
abs ¼ PT2

tr

1

�ix~q
@PT2

abs

@x
¼ 1

�ixq0

@PT2
tr

@x

8><
>: ; at x ¼ xa þ La; (14)

where ~q is the density of the absorption material. Other than

above continuity conditions, the rigid boundary at

x¼�L2� h1/2, the end of tube 2, must also be satisfied

@ PT2
rad þ PT2

ref

� �
=@x ¼ 0: (15)

Substituting Eqs. (9)–(12) into Eqs. (13)–(15), the unknown

coefficients are solved as

Bþmn ¼
W1 þW2

W1eiKT2
mnð2L2þh1Þ �W2

; (16a)

B�mn ¼
1þ eiKT2

mnð2L2þh1Þ

W1eiKT2
mnð2L2þh1Þ �W2

W2; (16b)

Cþmn ¼
ei ~KT2

mnLa

2
1þ ~qKT2

mn

q0
~KT2

mn

 !
ei2KT2

mnLIII þ 1� ~qKT2
mn

q0
~KT2

mn

 !" #

� q0xQmn

ST2KT2
mn

1þ eiKT2
mn 2L2þh1ð Þ

W1eiKT2
mnð2L2þh1Þ�W2

; (16c)

C�mn ¼
e�i ~KT2

mnLa

2
1� ~qKT2

mn

q0
~KT2

mn

 !
ei2KT2

mnLIII þ 1þ ~qKT2
mn

q0
~KT2

mn

 !" #

� q0xQmn

ST2KT2
mn

1þ eiKT2
mnð2L2þh1Þ

W1eiKT2
mnð2L2þh1Þ �W2

; (16d)

and

Dmn ¼
q0xQmn

ST2KT2
mn

1þ eiKT2
mn 2L2þh1ð Þ

h i
ei2KT2

mnLIII

W1eiKT2
mn 2L2þh1ð Þ �W2

; (16e)

where

W1 ¼ 2ei2KT2
mnLIII cosh i ~KT2

mnLa

� �
þ q0

~KT2
mn

~qKT2
mn

� ~qKT2
mn

q0
~KT2

mn

 !
eiKT2

mnxa sinhði ~KT2
mnLaÞ

þ q0
~KT2

mn

~qKT2
mn

þ ~qKT2
mn

q0
~KT2

mn

 !
ei2KT2

mnLIII sinhði ~KT2
mnLaÞ; (16f)

W2 ¼ 2e�iKT2
mnxa cosh i ~KT2

mnLa

� �
� q0

~KT2
mn

~qKT2
mn

þ ~qKT2
mn

q0
~KT2

mn

 !
e�iKT2

mnxa sinh i ~KT2
mnLa

� �

� q0
~KT2

mn

~qKT2
mn

� ~qKT2
mn

q0
~KT2

mn

 !
ei2KT2

mnLIII sinh i ~KT2
mnLa

� �
; (16g)

and

Qmn ¼
1

xq0

X
q;r

KT1
qr Aþqr � A�qr

h i ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� d0q

� �
2� d0rð Þ

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� d0mð Þ 2� d0nð Þ

p
ð�1Þrþ1

� n=b2 sinðnpb1=b2Þ
p r=b1ð Þ2� n=b2ð Þ2
h i ð�1Þqi2KT2

mn sinh iKT2
mnh1=2

� �
2qp=h1ð Þ2� KT2

mn

� �2
:

Substituting Eqs. (16a) and (16b) into Eqs. (9) and (10), PT2
rad

and PT2
ref can be expressed in terms of Aþqr and A�qr as

PT2
radðx; y; zÞ ¼ i

X
q;r

KT1
qr Aþqr � A�qr

h i ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� d0q

� �
2� d0rð Þ

q

�
X
m;n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� d0mð Þ 2� d0nð Þ

p
wmn y; zð Þ

ST2 2qp=h1ð Þ2� KT2
mn

� �2
h i

� �1ð Þrþ1n=b2 sin npb1=b2ð Þ
p r=b1ð Þ2� n=b2ð Þ2
h i Gmn; (17)

where

Gmn¼
cos2qpx

h1
�ð�1Þqe�iKT2

mnh1=2 coshðiKT2
mnxÞ; �h1

2
� x� h1

2

ð�1Þq sinh iKT2
mnh1=2

� �
e�iKT2

mnx; x> h1

2

ð�1Þq sinh iKT2
mnh1=2

� �
e�iKT2

mnx; x<�h1

2

8><
>: ;

and

PT2
ref x; y; zð Þ ¼ i

X
q;r

KT1
qr Aþqr � A�qr

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� d0q

� �
2� d0rð Þ

q

�
X
m;n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� d0mð Þ 2� d0nð Þ

p
wmn y; zð Þ

ST2 2qp=h1ð Þ2� KT2
mn

� �2
h i

� �1ð Þrþ1n=b2 sinðnpb1=b2Þ
p r=b1ð Þ2� n=b2ð Þ2
h i

�
�1ð Þqsinh iKT2

mnh1=2
� �

W1eiKT2
mnð2L2þh1Þ �W2

� W1 þW2ð Þe�iKT2
mnx

n
þ W2 1þ eiKT2

mnð2L2þh1Þ
h i

eiKT2
mnx
o
: (18)
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At the interface of tubes 1 and 2, the boundary condition of

pressure is

pT1
y¼0 ¼ PT2

rad þ PT2
ref

�� ��
y¼0
; xj j � h1

2
; zj j � b1

2
:

(19)

Multiplying both sides of Eq. (19) by /lm(x, z) and integrat-

ing them over the cross-sectional area of tube 1 yieldðð
ST1

PT1jy¼0/lm x; zð Þdxdz

¼
ðð

ST1

PT2
rad þ PT2

ref jy¼0

h i
/lm x; zð Þdxdz: (20)

Substituting Eqs. (2), (17), and (18) into Eq. (20) gives

Aþlm þ A�lm ¼
i

ST1ST2

X
q;r

KT1
qr Aþqr � A�qr

h i ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� d0q

� �
2� d0rð Þ

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� d0l
� �

2� d0mð Þ
q X

m;n

2� d0mð Þ 2� d0nð Þ
2qp=h1ð Þ2� KT2

mn

� �2

� �1ð Þrþm n=pb2ð Þ2sin2 npb1=b2ð Þ
r=b1ð Þ2� n=b2ð Þ2

h i
m=b1ð Þ2� n=b2ð Þ2

h i

�
(

bh1 þ ð�1Þqþl i2KT2
mn sinh2 iKT2

mnh1=2
� �

2lp=h1ð Þ2� KT2
mn

� �2

�
W1 þW2 2þ eiKT2

mn 2L2þh1ð Þ
� �

W1eiKT2
mn 2L2þh1ð Þ �W2

2
4
� e�iKT2

mnh1=2

sinh iKT2
mnh1=2

� �
#)

; (21)

where

b ¼
1; q ¼ l ¼ 0

1=2; q ¼ l 6¼ 0

0; q 6¼ l

8<
:

Combining Eqs. (6) and (7) with Eq. (21), the modal response

Aþ and A� can thus be obtained. If the absorption materials are

removed from tube 2, the terms W1 and W2 in Eqs. (16f) and

(16g) become 2eiKT2
mn 2L3þh1�xa�Lað Þ and 2e�iKT2

mn xaþLað Þ, respec-

tively. Substituting W1 and W2 into Eq. (21), the first item in

the square brackets on the right hand side of this equation

changes to ½eiKT2
mn 2L2þh1ð ÞþeiKT2

mn 2L3þh1ð Þþ2�=½ei2KT2
mn L2þL3þh1ð Þ�1�.

Using this modified equation, the pressure field inside an empty

TAR can be consequently solved.

Based on the obtained pressure field, the input acoustic

impedance of the TAR is computed as

Zin ¼

1
ST1

ðð
ST1

PT1 x;�LT1
eff ; z

� �
dxdz

ST1US
: (22)

Substituting Eq. (2) into Eq. (22), Zin is simplified as

Zin ¼ Aþ0 eiKT1
0

LT1
eff þ A�0 e�iKT1

0
LT1

eff

� �
=ST1US: (23)

At resonances, the imaginary part of Zin is zero. Conse-

quently, the natural frequencies fr of the TAR can be

obtained from Eq. (23) after setting the imaginary part of Zin

to zero. Benefits of the long TAR is in that its high-order

resonances are very low compared with a conventional HR,

and therefore, apart from the fundamental resonance, these

high-order resonances have potential to be utilized simulta-

neously in noise control applications.

III. SIMULATIONS AND EXPERIMENTAL VALIDATIONS

The resonance frequencies of TARs were numerically

predicted and experimentally validated. The experimental

set-up is shown in Fig. 2(a). The TAR was excited by a loud-

speaker which was driven by a white noise signal from Bruel

& Kjaer PULSE system. Two Bruel & Kjaer type 4189 1=2
inch microphones were used to measure the frequency

response functions (FRFs). One microphone was fixed out-

side the TAR and near its orifice to measure the external ex-

citation and another was inserted into tube 2 at its end at

x¼L3þ h1/2 to measure the sound pressure inside the reso-

nator. The peaks of the FRF indicated resonances. A tunable

TAR was fabricated with two square tubes as shown in

Fig. 2(b). The length of tube 1 was 30.1 mm with a cross-

sectional dimensions of 20.0� 20.0 mm2. The cross-section

dimensions of tube 2 were 40.3� 40.2 mm2 and L2 was 30.0

mm. L3 can be varied by adjusting the total length of tube 2

and consequently the resonance frequency of the TAR can

be tuned. Given ambient temperature of 20	C, the sound

speed was determined as 344.5 m/s. The air density q0 was

1.205 kg/m3. The specific heat ratio of the air was 1.402.

The thermal conductivity of air was 0.0266 W/m K. The spe-

cific heat at constant pressure of the air was 1005 J/kg K. The

coefficient of shear viscosity was 1.88e-5 Pa s.

In simulations, the vibration amplitude of the piston was

set to 1, namely US¼ 1 in Eq. (5). The number of truncated

modes was determined by a convergence study. Finally, four

cross-sectional modes for tube 1 and 36 cross-sectional

modes for tube 2 were used. It should be noted that since the

number of truncated modes is small, the transfer matrix was

solved directly in this work. When a large number of modes

are required, the method of the local impedance matrix21

should be adopted to avoid singularity of matrix.

A. Experimental validation

1. Without absorption materials

The model validation is focused on the first two natural

frequencies of the TAR. In the study of the first natural fre-

quency, the value of L3 was varied from 50 to 550 mm in

both simulations and experiments, and in the study of the

second natural frequency, L3 was varied from 100 to 550

mm. The response inside the TAR was calculated by the

combination of Eqs. (6), (7), and (21). Using the computed

responses, the input impedance was calculated by Eq. (23).

The predicted two natural frequencies are plotted in Fig. 3. It

is seen that the two natural frequencies were very sensitive
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to L3. As L3 increased, the fundamental frequency decreased

gradually from 401.2 to 117.9 Hz. Owing to the long profile

of tube 2, the second natural frequency reached the value as

low as 360.1 Hz when L3 was 550 mm. For a conventional

HR using above tube 1 as its neck and having a body with

the same volume as tube 2 (L3¼ 550 mm), it is impossible to

obtain such a low second natural frequency. For example, if

the body of the HR is cubic, its second natural frequency

predicted by the boundary element method (BEM) was

around 1805 Hz, which is much larger than 360.1 Hz.

Experiments were carried out at ten values of L3 which

were equally spaced. The obtained natural frequencies in

each case are also plotted in Fig. 3. The comparisons

between simulations and experiments show that for the fun-

damental frequency, the maximum prediction error was

about 0.70%, occurring at L3¼ 250 mm, and for the second

natural frequency, the errors of predictions were limited

within 0.31%. Experimental results and the predictions are

also listed in Table I for reference. Generally speaking, for

both the fundamental frequency and the second natural fre-

quency, predictions by the current model agreed very well

with experiments.

2. With absorption materials

In this part of validation, sound absorption materials

were inserted into tube 2. Since the absorption performance

of materials depends on the air particle speed, the materials

cannot be installed at an arbitrary location inside tube 2. The

experience from HR study suggests that a good location for

installing the absorption materials is at the internal end of

the neck but not in the body since the particle velocity inside

the body of HR is very small. The long profile of TARs,

however, may results in a velocity field different from con-

ventional HRs. To properly locate the absorption materials,

it is necessary to understand the velocity distribution in tube

2. Taking the TAR with L3¼ 400 mm as an example, the ve-

locity amplitude was computed at the fundamental resonance

frequency and is shown in Fig. 4. Figure 4(a) depicts the ve-

locity contour at the surface z¼ 0. It can be observed that in

tube 2, the vibration of air particles was strong in its longer

segment (L3) and was very weak in its shorter segment (L2).

To show this point more clearly, the velocity amplitude

along the axis of tube 2 is plotted in Fig. 4(b). It is seen that

the velocity reached its maximum at x¼ 8 mm. On the left

hand side of this maximum, the velocity attenuated rapidly;

while on the other side, the velocity kept at a high level in a

relatively large range of x. The velocity distribution in Fig. 4

FIG. 3. (Color online) Comparison between predicted and measured reso-

nance frequencies with the variation of L3: — predicted fundamental fre-

quency from current model; * measured fundamental frequency; — —

predicted second natural frequency from current model; and h measured

second natural frequency.

FIG. 2. (Color online) (a) Experimental system

and (b) tunable TAR.
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suggests that the effect of the tube 2 was dominated by its

longer segment under the first resonance condition. It should

be a typical feature for TARs since tube 1 is usually installed

near one end of tube 2. Therefore, the absorption material

was installed inside the above longer segment (L3) close to

the maximum velocity region at xa¼ h1/2 (10 mm). It is per-

tinent to note that the contour in Fig. 4(a) illustrates the non-

plane wave propagation at locations not far from the junction

of two tubes, which suggests the importance of the consider-

ation of high-order modes.

Two different fully reticulated polyurethane foams were

used as absorption materials in experiments. Their character-

istic impedance and wave-number were measured by using

an impedance tube.22 For the two foams, the one having

lower characteristic impedance was named as foam 1 and

another having higher characteristic impedance was denoted

by foam 2. The length of foams 1 and 2 (La) was 40.8 and

39.9 mm, respectively. After assigning the properties of the

foams by the measured data, the FRFs were calculated

between the averaged pressure at the end L3þ h1/2 of tube 2

and that over the orifice of the TAR. The predicted and

measured FRFs with and without absorption materials for an

arbitrary case of L3¼ 400 mm are compared in Fig. 5. It can

be seen that the predictions agree satisfactorily with experi-

mental results. The empty TAR (see Table I) led to a funda-

mental frequency of 148.6 Hz in simulations. After the

insertion of two foams, this frequency moved to 144.3 and

138.9 Hz, respectively, both of which are close to the experi-

mental results, i.e., 145.3 and 141.3 Hz. As expected, the

absorption foams reduced the natural frequency since they

enhanced the damping effect inside the TAR. This effect can

be quantitatively described by the Q-factors obtained from

the FRF curves, which are listed in Table II. The measured

Q-factor for the empty TAR was 29.56, while after inserting

the foams the measured Q-factor was reduced to 9.56 and

3.73, respectively. The similar Q-factors of the TAR with

foams were also predicted by the current model which gave

9.34 and 3.57, respectively.

Using the foam 2 and varying L3 from 250 to 550 mm

with a step of 50 mm, the predictions from the current model

were further compared with experiments. The length of this

foam remained the same as before. The obtained results are

tabulated in Table III, which shows that the errors of the pre-

dicted results by the current model were generally lower

than 2.2%. The predictions are in good agreement with the

experimental results in all configurations.

TABLE I. Measured and predicted natural frequencies without absorption materials.

Measured fr (Hz) Predicted fr (Hz) Deviation of prediction (Hz) Prediction error (%)

L3 (mm) Fundamental Second Fundamental Second Fundamental Second Fundamental Second

50 401.5 — 401.2 — �0.3 — 0.07 —

100 319.3 1182.5 318.7 1183.2 �0.6 0.7 0.19 0.06

150 266.5 919.5 266.2 918.7 �0.3 �0.8 0.11 0.09

200 228.0 758.8 229.3 758.8 1.3 0.0 0.57 0.00

250 200.3 650.5 201.7 650.1 1.4 �0.4 0.70 0.06

300 179.3 571.0 180.1 570.6 0.8 �0.4 0.45 0.07

350 162.0 509.8 162.8 509.5 0.8 �0.3 0.49 0.06

400 147.8 459.8 148.6 461.0 0.8 1.2 0.54 0.26

450 136.3 421.0 136.7 421.3 0.4 0.3 0.29 0.07

500 126.0 387.5 126.6 388.2 0.6 0.7 0.48 0.18

550 117.3 359.0 117.9 360.1 0.6 1.1 0.51 0.31

FIG. 4. (Color online) Velocity distribution.

FIG. 5. (Color online) Measured and predicted FRFs: — prediction for

empty TAR;�measurement for empty TAR; 


 prediction for TAR with

foam 1; D measurement for TAR with foam 1; — — prediction for TAR

with foam 2; and o measurement for TAR with foam 2.
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It is therefore concluded that the current model is accu-

rate and reliable enough to guide the TAR design no matter

whether absorption materials are presented or not.

B. Analyses

1. Comparisons with the 1-D model and the
FEM model

It is relevant to compare the current 3-D model with the

FEM model and the 1-D model. The equation to compute the

natural frequencies of the TAR obtained by 1-D model is7

1� ST2

ST1
tan k L1 þ DL1ð Þ½ � tan k L2 þ DL2ð Þ½ �f

þ tan k L3 þ DL3ð Þ½ �g ¼ 0; (24)

where DL1, DL2, and DL3 are the end corrections of the three

branches, respectively. According to the hybrid Rayleigh’s

end corrections, DL1 only counts the external end correction

of the TAR, and DL2 equal to DL3 is 1.5 times DL1. Since

these end corrections were developed for the circular tubes, to

apply them for the square tubes in the current work, the tube

1 was replaced by an equivalent circular tube with the same

cross-sectional area in simulations. DL1 was consequently cal-

culated by 8r1/3p, where r1 is the radius of the equivalent cir-

cular tube and computed by
ffiffiffiffiffiffiffiffiffiffiffiffi
ST1=p

p
. This equivalent method

was applied to rectangular orifice in previous works.7,9 For

the FEM model, the length of tube 1 was the sum of its physi-

cal length and the external end correction which is the same

as that used in the current model. A uniform velocity distribu-

tion was exerted over the orifice surface.

a. Prediction accuracy. To compare the accuracy of

the current model with other existing models, the experimen-

tal results in Table I were used again to benchmark the pre-

dictions. In numerical simulations, the dimensions of the

TAR and the variation of L3 were the same as those used in

experiments in Sec. III A 1. The predicted two natural fre-

quencies by the 1-D and FEM models are listed in Table IV.

The deviations of these predictions from the measured val-

ues are compared in Fig. 6. It is observed from Fig. 6(a) that

for the fundamental frequency, the accuracy of the FEM

model is near that of the current model. The 1-D model pro-

duced deviations up to 4.5 Hz (minus) that is much higher

than 1.4 Hz, which is the maximum deviation of the current

model. The overall deviation level of the current model was

much lower than that of the 1-D model. Better performance

of the current model can be also expected on the prediction

of high-order resonances, such as the second natural fre-

quency shown in Fig. 6(b). It can be seen that the deviations

to the measured results obtained by the current model and

the FEM model were similar for most of the tested L3, while

the deviations to the measured results obtained by the 1-D

model were as large as 15 Hz. The absolute deviations of the

current model to the measured results were smaller than 1.2

Hz, which is much better than that of the 1-D model.

Note that the deviation tendency shown in Fig. 6 also

suggests the 1-D model with the hybrid Rayleigh’s end

corrections performed well for TARs with a long tube 2

(L3� 400 mm). This is consistent with the simplification

requirement for 1-D duct, i.e., the ratio of L3 to h2 (40.3 mm

and larger than b2) better to be larger than 10.9–11

b. Effects of TAR dimensions. It is observed from Eq.

(24) that the prediction on the natural frequencies by 1-D

model only depends on the cross-sectional areas and lengths

of tubes. Actually, if the ratio of the cross-sectional width to

height of the tubes is varied, it will greatly affect the natural

frequencies. However, the effect of that cross-sectional ratio

variation was not modeled in any 1-D models. To clarify this

aspect, simulations were carried out for different cross-sec-

tion aspect ratios for tube 2. In simulations, L3 was fixed at

300 mm, the cross-sectional area of tube 2 was fixed at

1620.06 mm2, the ratio of h2 to b2 was varied from 0.3 to 3,

while other geometric dimensions of the TAR remained the

same as those used in experiments. It should be noted that

during the variation of the above ratios, the maximum trans-

verse dimension was 73.5 mm and the ratio of L3 to this

value was 4. This ratio is larger than 3, the minimum

requirement for 1-D simplification,10 and hence the 1-D

model is still applicable for such an extreme geometry. Since

the current model has been validated by experiments, the 1-

D model and the FEM model were directly compared with

the current model. The fundamental frequencies predicted

by the three models are plotted in Fig. 7. The figure shows

that the 1-D model gave a constant fundamental frequency

when h2/b2 changed. The predictions from the current model

TABLE II. Measured and predicted Q-factors.

Foam in TAR Predicted Q-factor Measured Q-factor

Foam 1 9.34 9.56

Foam 2 3.57 3.73

TABLE III. Measured and predicted fundamental frequency after inserting absorption material.

L3 (mm) Measured fr (Hz) Predicted fr (Hz) Absolute deviation of predictions (Hz) Prediction error (%)

250 191.3 191 0.3 0.16

300 171 170 1.0 0.58

350 154.3 153 1.3 0.84

400 141.3 138.9 2.4 1.70

450 128.8 126.8 2.0 1.55

500 118.8 116.2 2.6 2.19

550 108.5 106.9 1.6 1.47
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and FEM model, however, showed a clear dependence of the

resonance frequency on h2/b2 with very similar tendency. A

maximum 3.9 Hz variation on the fundamental frequency

was obtained from the current model. The 1-D model seems

to better apply to rectangular cross-sections when h2/b2 is

near unit or circular cross-sections.

Apart from the requirement on the cross-sectional

dimensions of tubes, the limitation on the length of tube 1 is

also strict, especially in case where the space is a concern.

However, a short tube 1 probably reduces the accuracy of

the 1-D model in which the tube 1 is assumed to be a 1-D

pipe. This surmise can be ascertained from Fig. 8, in which

the predicted fundamental frequencies from three models

with respect to the length of tube 1 are compared. In simula-

tions, L3 was fixed at 300 mm and the length of tube 1 was

varied from 5 to 50 mm. It can be seen that the predictions

of the current model and the FEM model were almost in

TABLE IV. Predicted two natural frequencies by 1-D model and FEM model and absolute deviations of these predictions from experimental results.

1-D model FEM model in sysnoise

fr (Hz) Deviation (Hz) fr (Hz) Deviation (Hz)

L3 (mm) Fundamental Second Fundamental Second Fundamental Second Fundamental Second

50 397 — �4.5 — 402.7 — 1.2 —

100 319.2 1119.9 �0.1 �62.6 319.8 1188.9 0.5 6.4

150 268 883.7 1.5 �35.8 267.1 921.2 0.6 1.7

200 231.3 737.9 3.3 �20.9 230 760.3 2.0 1.5

250 203.6 637.1 3.3 �13.4 202.2 651.1 1.9 0.6

300 181.9 562.4 2.6 �8.6 180.6 571.4 1.3 0.4

350 164.5 504.4 2.5 �5.4 163.2 510.2 1.2 0.4

400 150.1 457.8 2.3 �2.0 148.9 461.6 1.1 1.8

450 138 419.4 1.7 �1.6 137 421.8 0.7 0.8

500 127.7 387.2 1.7 �0.3 126.8 388.7 0.8 1.2

550 118.9 359.6 1.6 0.6 118.1 360.5 0.8 1.5

FIG. 6. (Color online) Absolute deviation of predicted natural frequencies

from experimental results. (a) Fundamental frequency: — current model;

— —1-D model; — �— FEM model; (b) Second natural frequency: — cur-

rent model; — — 1-D model; — �— FEM model.

FIG. 7. (Color online) Predicted fundamental frequency by different models

with the different ratios of h2 to b2: — current model; — — 1-D model; and

o FEM model.
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perfect agreement, with a maximum difference of 1 Hz or

so. In contrast, the differences between the predictions by

the 1-D model and the 3-D model increased up to 4.4 Hz

with the decrease of the length of tube 1. No doubt, the 1-D

model better approaches the real resonance for a long tube 1.

2. Effect of absorption materials

As it is observed from the FRF curves in Fig. 5, the per-

formance of the TAR was influenced by the properties of the

absorption materials, i.e., the characteristic impedance and

wave-number. To fully understand the effects of these pa-

rameters, simulations were also conducted by using glass

fibers with variable flow resistivities, from which the charac-

teristic impedance and wave-number were calculated.23 In

simulations, La was fixed to 40 mm and the flow resistive

was varied from 500 to 10 000 Rayls/m. The absorption

materials were fixed at two different locations: the opening

and close end of the longer segment of tube 2 (L3), i.e., at

x¼ h1/2 and x¼ L3þ h1/2 � La, respectively. The fundamen-

tal frequency was predicted and is shown in Fig. 9. It is

found that when the absorption material was fixed at the

close end (x¼ L3þ h1/2 � La), as the flow resistivity

increased, the fundamental frequency only varied slightly

and slowly converged to a constant value. A plausible expla-

nation for it is that the particle velocity is very small at this

location as shown in Fig. 4(a) and hence the damping effect

is weak even for a large flow resistivity. In contrast, when

the material was fixed at the opening (x¼ h1/2) where the

particle velocity was large, the fundamental frequency

became sensitive to the flow resistivity and underwent more

obvious variations. The increase in the flow resistivity first

induced a decrease of the fundamental frequency due to an

enhancement of the damping inside the TAR. After reaching

the lowest value, the fundamental frequency reversed to rise

quickly with the further increase of the flow resistivity. As

expected, in such cases an excessive flow resistivity weakens

the communication or connectivity between the two sections

(I and III) of tube 2 separated by the absorption materials.

This equivalently shortens the effective length of tube 2 and

results in the increase of the fundamental frequency. One

can surmise that when the flow resistivity tends to infinite, it

will completely neutralize the effect of the sections II and III

of tube 2 shown in Fig. 1, leading to a significant increase in

the fundamental frequency. It is noted that the variation

tendency of the fundamental frequency for the installation

case with x¼ h1/2 is quite different from that of conventional

HRs12 which is more similar to the case where the sound

absorption materials are installed at the end of the tube.

Resonances of TARs are also affected by the thickness

of the absorption materials as illustrated in Fig. 10. Foam 2

was employed again in this simulation and its La was varied

from 0 to 100 mm, while L3 was kept to 300 mm as it was

used in the above section. It was found that with the increase

of the thickness, the fundamental frequency decreased,

attributing to the effect of damping increase inside the TAR.

FIG. 8. (Color online) Predicted fundamental frequency with the different length

of tube 1: — current model; — — 1-D model; and — � �— FEM model.

FIG. 9. (Color online) Predicted fundamental frequency with the variation

of the flow resistivity. * absorption material at x¼ h1/2;� absorption mate-

rial at x¼L3þ h1/2�La.

FIG. 10. (Color online) Predicted fundamental frequency with the variation

of the thickness of foam.
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IV. CONCLUSIONS

A 3-D model is developed and experimentally validated

to characterize the TAR having inserted absorption materi-

als. Compared with the existing 1-D models, the 3-D model

is much more in that it can accommodate various geometri-

cal parameters of TAR as well as the presence of the sound

absorption materials. It is demonstrated that the proposed

3-D model can predict the resonance frequencies of TARs

more accurately and eventually can meet the requirement for

resonator array design in terms of accuracy. More specifi-

cally, typical errors of the predictions by the 3-D model

from measured data are caped within 0.70% and 0.31% for

the first two natural frequencies, respectively. Meanwhile,

existing 1-D model with empirical end corrections is found

to perform well only for TARs consisting of long tubes. It is

also found that the resonance frequencies are sensitive to the

location of the absorption materials inside the long closed-

end tube. A moderate increase in either flow resistivity or

length of the absorption materials results in a reduction of

the resonance frequencies due to the enhanced damping

effect inside the TAR. An excessive increase in the flow re-

sistivity, however, can induce a significant increase of the

resonance frequencies, which is different from the conven-

tional HRs.
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