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a b s t r a c t

In recognition of the obvious limitations of most global vibration-based and local

guided-wave-based damage detection techniques, a novel inverse identification

approach was developed by canvassing the local perturbance to equilibrium character-

istics of the structural component under inspection. Characterized by high-order spatial

Most importantly, it requires neither benchmark structures nor baseline signals;

neither global models nor additional excitation sources as long as the structure

undergoes steady vibration under its normal operation. Independent of a global model,

prior knowledge on structural boundary conditions is not compulsory. To minimize

unavoidable influence of measurement noise on high-order spatial derivatives, various

de-noising treatments, including wavenumber filtering, optimal selection of measure-

ment configuration and hybrid information fusion were introduced independently.

Using a simple beam as a representative structural component for illustration, relation-

ships among vibration frequency, density of measurement points and size of detectable

damage were explored, facilitating a judicious selection of measurement parameters.

Proof-of-concept validation was numerically conducted, and then experimentally

demonstrated using a scanning laser vibrometer. In principle, this proposed methodol-

ogy is applicable to a complex system comprising various structural components,

provided that the local equilibrium relationships of the components are known a priori.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

As a consequence of manufacturing defect, improper use, service wear, fatigue or even sabotage, engineering assets
(e.g., land/water/air/space vehicles, civil infrastructure and heavy equipment) experience continuous accumulation of
damage over their lifespan. The damage, in whatever form it manifests, can considerably jeopardize the structural integrity
and system functionality, potentially leading to catastrophic failure without timely detection. With safety being the
paramount priority for all engineering assets, reliability, integrity and durability criteria must be strictly met. Towards this
demanding requirement, a large variety of nondestructive evaluation (NDE) methods has been developed in the past,
typified by radioscopy, ultrasonic inspection, shearography, magnetic resonance imagery, laser interferometry, acoustic
emission, infrared thermography, eddy-current, etc. [1–7]. Most of these well-defined techniques can fulfill offline
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detection of local damage in small-scale structural fragments effectively. In practice, however, it is highly imperative to
develop continuous and automated damage evaluation techniques conducive to online damage characterization. Such a
consensus has entailed intensive research and development activities on structural health monitoring (SHM) in the past
two decades.

In this aspect, majority of existing SHM techniques are either global vibration-based (using for example eigen-
frequencies [8–10], mode shape or modal curvature [10,11], electro-mechanical impedance [12], flexibility matrix [13–15]
and damping properties [16]) or local guided-wave-based (using for instance Lamb waves [17–24]). The basic rationale of
global vibration-based detection resides on the fact that occurrence of damage induces changes in physical properties of a
structure (e.g., local stiffness, density, mass, thermal properties, electric/magnetic conductivity, and electro-mechanical
impedance); and these changes are in turn manifested in dynamic responses captured from the structure. On the other
hand, local guided-wave-based detection is based on wave scattering phenomena (e.g., wave reflection, transmission,
refraction and diffraction), mode conversion and energy absorption, upon interaction between the incident waves and
damage existing in their propagation paths.

However, practical implementation of these vibration- or guided-wave-based detection techniques is somewhat
hampered due to a number of obvious obstacles:
(i)
 a benchmark counterpart is often a prerequisite, from which baseline signals are obtained for comparison with signals
acquired from the structure under inspection;
(ii)
 a pre-developed global model is vital to link changes in global responses or variations in local wave signals with
damage parameters. The applicability and accuracy of a detection approach are substantially subject to the model;
(iii)
 approaches based on global vibration are excessively susceptible to structural boundary conditions; while most
guided-wave-based methods require meticulous and strategic arrangements of sensor/actuators so as to avoid
complex wave reflection from boundaries, leading to a very confined inspection region;
(iv)
 a well-controlled external excitation source is usually indispensible for activating structural vibration or guided
waves, introducing additional complexity to the system and impeding realization of automated SHM; and
(v)
 last but not least, vibration-based methods, capitalizing on changes in global dynamic properties, are not sensitive to
damage before it reaches a conspicuous extent, because damage is a local event which would not alter global
responses phenomenally [25]. Guided-wave-based approaches can suffer from the wavelength of a selected wave
mode, and, typically, only when the damage is larger than half the wavelength can it be detected [26].
Envisaging the above deficiencies of most existing global vibration-based and local guided-wave-based damage
detection techniques, and driven by recent breakthroughs in advanced signal processing and measurement technology, a
novel inverse damage identification technique was developed in this study, by canvassing locally perturbed dynamic
equilibrium characteristics of a structural component governed by high-order spatial derivatives. The basic philosophy
behind is that an intact structure locally satisfies a sort of dynamic equilibrium based on certain physical laws such as the
local equation of motion. Upon occurrence of structural damage, the dynamic equilibrium is locally perturbed, and the
perturbance in turn can be used as an indication of damage occurrence. Development of this approach was largely inspired
by authors’ previous work in reconstructing the distribution of excitation force applied on different structural elements
[27,28]. In a sense, structural damage can likewise be regarded as an element creating perturbations as local excitation
force to the structure within the damaged area. The proposed method requires NO benchmark structures, NO baseline
signals, NO global structural model and therefore NO prior knowledge on structural boundary conditions, and NO
additional excitation sources. In principle, it is applicable to a complex system comprising various structural components,
provided that the local equilibrium relationship of the component of interest is known a priori. All these appealing features
of the approach have ushered a new avenue to develop a practical SHM technique for complex systems in service.

The outline of the paper is as follows. Essence of the proposed methodology is illuminated in Section 2, focusing on
establishing a damage index using a finite difference scheme. Proof-of-concept validation using finite element simulation
is reported in Section 3. In this section, effect of measurement noise on accuracy and precision of the approach is
quantified, which has motivated the introduction of wavenumber filtering for de-nosing. Dependence of detection
accuracy on various measurement configurations (e.g., vibration frequency and density of measurement points) is also
discussed, with an aim to minimize noise influence on high-order derivatives. Taking advantages of the flexibility offered
by the method, a data fusion scheme is in addition proposed to amalgamate various damage index plots. The proposed
approach is then validated experimentally using a scanning laser vibrometer, detailed in Section 4.

2. Principle

Essence of this proposed approach can be stated in a straightforward way. Given a system comprising a variety of
structural components, each identified component, in its intact status, satisfies a certain sort of structural equilibrium
based on physical laws. In general, vibration of a structural component is governed by a set of equations of motion, which
can be described in a general form as

½L�U½u� ¼ ½F�UdðM�MeÞ, (1)
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where [L] is a matrix differential operator, [u] the structural displacement, and [F] the external excitation force applied on
the surface of the component at location Me; d is a Dirac function which vanishes at M when MaMe. In the case that the
component has a free surface, and is not subject to any direct excitation other than those internal forces/moments exerted
by its adjacent components through their sharing boundaries (i.e., MaMe), Eq. (1) becomes

½L�U½u� ¼ 0: (2)

Note that Eq. (2) applies to every single point or element of the discussed structural component, serving as therefore a
local equilibrium equation and reflecting the local equilibrium correlation between the inertia force of a structural element
and the internal forces/moments exerted by its adjacent elements. In this sense, even in the absence of any external force,
Eq. (2) is still able to describe the forced vibration of a structural element (excitation is exerted by its adjacent elements).
Provided [u] can be obtained through measurement, any drastic deviation from zero in the left-hand-side term of Eq. (2) at
a particular spatial position of the component implies, in principle, local breakage of the structural equilibrium, i.e.,
occurrence of damage therein.

The left-hand-side term of Eq. (2) is defined as a damage index (DI) hereinafter. Before proceeding to technical details,
it is worthy of highlighting the appealing features of damage detection based on the above philosophy:
(i)
 because the proposed method locally examines individual parts of an assembly, independently of rest of the whole
system, a global model is not required. By the same token, the complexity of the system such as boundary conditions
would not limit the applicability of the approach, provided that the local equilibrium characteristics of a structural
component of current interest are known;
(ii)
 for the same sake, no benchmark structure or baseline signal is required a priori;

(iii)
 knowledge on structural boundary condition is not required beforehand;

(iv)
 as long as the structural component undergoes steady vibration (e.g., under the normal operation of the system),

no additional excitation source is compulsory, which provides great flexibility to automated SHM applications.
In theory this method is applicable to a complex system comprising various structural components such as beams,
plates and shells, regardless of the type and number, provided that local equilibrium relationship for the component of
interest is available. Taking a homogeneous and isotropic Euler-Bernoulli beam component subjected to a flexural
(transverse) excitation as a simple example for illustration, DI in Eq. (2) can be condensed to a single transverse
component as a result of de-coupling between the in-plane motion and out-of-plane motion. In a harmonic regime, it has

DI¼ EI
d4wðxÞ

dx4
�rSo2wðxÞ, (3)

where w(x) is the transverse displacement of the beam at x; E, r, I and S are the complex Young’s modulus (including
material damping), density, moment of inertia and cross-section area of the beam, respectively; o is the angular frequency
of the vibration (in general, o is determined by the ‘natural excitation’ of the structural component under its normal
operation). In the case that the natural excitation is not harmonic, a frequency component in the frequency domain after
Fourier transform can also be used. Appropriate selection of o is to be discussed in subsequent sections. It is relevant to
note that the system damping is apprehended in complex modulus E. In practice, however, estimate of damping is tedious
and its effects can become pronounced only in the vicinity of the resonance region. Therefore, it is preferable to apply this
method at off-resonance regime of the structure under inspection, so as to minimize the effect of system damping. The
proposed method provides such flexibility in frequency selection, to be demonstrated later in this paper.

With occurrence of damage, anticipated changes in DI can be illustrated using the above beam component. Assume that
(i) this beam component bears a crack of a certain length (X1oxoX2) along the beam span as schematically shown in
Fig. 1; and (ii) the damage can be represented by DrS and DEI, where DrS and DEI are multiplicative reductions in mass and
stiffness in the damaged zone compared with its intact status, respectively. Thus, it has, in Fig. 1

in the intact zones (xoX1 or x4X2):

DI¼ EI
d4wðxÞ

dx4
�rSo2 wðxÞ ¼ 0; (4)
Fig. 1. Schematic of a beam component bearing a damaged zone.
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within the damaged zone (X1rxrX2):

DI¼ EI
d4wðxÞ

dx4
�rSo2wðxÞ ¼ ðEI�DEIÞ

d4wðxÞ

dx4
�ðrS�DrSÞo2wðxÞ

" #
þ DEI

d4wðxÞ

dx4
�DrSo2wðxÞ

" #
¼ DEI

d4wðxÞ

dx4
�DrSo2wðxÞ

" #
:

(5)

Treatment of boundaries of the damaged zone requires more meticulous handling, as detailed as follows. The continuity
conditions at the left boundary of the damaged zone (x¼X1), can be stated as

Flexural displacement:

Lim
e-0
fwðX1�eÞg ¼ Lim

e-0
fwðX1þeÞg; (6a)

Slope:

Lim
e-0

dwðX1�eÞ
dx

� �
¼ Lim

e-0

dwðXlþeÞ
dx

� �
; (6b)

Bending moment:

Lim
e-0

EI
d2wðX1�eÞ

dx2

( )
¼ Lim

e-0
ðEI�DEIÞ

d2wðX1þeÞ
dx2

( )
¼MðX1Þ; (6c)

Shear force:

Lim
e-0

EI
d3wðX1�eÞ

dx3

( )
¼ Lim

e-0
ðEI�DEIÞ

d3wðX1þeÞ
dx3

( )
¼ TðX1Þ; (6d)

where T(X1) and M(X1) are the internal shear force and bending moment of the beam at X1, respectively. Eqs. (6c) and (6d)
can be re-arranged as, respectively

Lim
e-0

d2wðX1þeÞ
dx2

�
d2wðX1�eÞ

dx2

( )
¼

1

ðEI�DEIÞ
�

1

EI

� �
MðX1Þ; (6e)

and

Lim
e-0

d3wðX1þeÞ
dx3

�
d3wðX1�eÞ

dx3

( )
¼

1

ðEI�DEIÞ
�

1

EI

� �
TðX1Þ: (6f)

It can be seen that the second and third-order derivatives of the flexural displacement of the beam, w(x), are discontinuous
across the boundary of the damaged zone (at x¼X1).

Similarly, at the other boundary of the damaged zone (at x¼X2), it has

Lim
e-0

d2wðX2þeÞ
dx2

�
d2w X2�eð Þ

dx2

( )
¼�

1

ðEI�DEIÞ
�

1

EI

� �
MðX2Þ, (7a)

and

Lim
e-0

d3wðX2þeÞ
dx3

�
d3wðX2�eÞ

dx3

( )
¼�

1

ðEI�DEIÞ
�

1

EI

� �
TðX2Þ: (7b)

Eq. (6e) can be used to calculate EI(d3w/dx3) as follows (at x¼X1):

EI
d3wðxÞ

dx3
¼ ELim

e-0

d2wðX1þeÞ
dx2

�
d2wðX1�eÞ

dx2

( )
=2e
+
¼ EI

1

ðEI�DEIÞ
�

1

EI

� �
MðX1ÞLim

e-0

1

2e

� �*

¼
1

2

EI

ðEI�DEIÞ
�1

� �
MðX1Þdðx�X1Þ: (8)

Eq. (8) can further be employed to obtain EI(d4w/dx4) (at x¼X1):

EI
d4w

dx4
¼

1

2

EI

ðEI�DEIÞ
�1

� �
dMðX1Þ

dx
dðx�X1ÞþMðX1Þd

0
ðx�X1Þ

� �

¼
1

2

EI

ðEI�DEIÞ
�1

� �
TðX1Þdðx�X1ÞþMðX1Þd

0
ðx�X1Þ

� �
: (9)

In Eq. (9), d0(x) is the first-order derivative of Dirac functionn d(x). Similar derivation also applies to the other boundary of
the damaged zone (x¼X2).
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Combining Eqs. (4), (5) and (9), the following general expression, valid across the whole beam span, can be obtained

DI¼ EI
d4wðxÞ

dx4
�rSo2wðxÞ ¼ DEI

d4wðxÞ

dx4
�DrSo2wðxÞ

 !
ðHðx�X1Þ�Hðx�X2ÞÞ

þ
1

2

EI

ðEI�DEIÞ
�1

� �
TðX1Þdðx�X1Þþ

1

2

EI

ðEI�DEIÞ
�1

� �
MðX1Þd

0
ðx�X1Þ

�
1

2

EI

ðEI�DEIÞ
�1

� �
TðX2Þdðx�X2Þ�

1

2

EI

ðEI�DEIÞ
�1

� �
MðX2Þd

0
ðx�X2Þ, (10)

where H(x) is a Heaviside function.
Eq. (10) indicates that DI equals to zero in the intact region; within the damaged zone, DI varies smoothly as calibrated

by the first right-hand-side residual term in Eq. (10). Drastic deviation of DI from zero is anticipated at the damage
boundaries where the Dirac function (d(x)) and its derivatives (d0(x)) change significantly. Therefore, it is expected that this
method is highly sensitive to damage boundaries in terms of the drastic perturbance to DI at boundaries.

The flexural displacement of the beam component under steady vibration can be discretely acquired using a number of
well-defined measurement techniques and devices such as accelerometers, laser holography or Doppler laser vibrometer,
whereby the high-order derivatives in Eq. (10) at a discrete measurement point i can be obtained using a finite difference
scheme in the light of its neighboring measurement points closely spaced. In a discrete form, the damage index at
measurement point i, DIi, is, if four neighboring measurement points from point i�2 to iþ2 are involved,

DIi ¼
EI

D4
m

ðwiþ2�4wiþ1þ6wi�4wi�1þwi�2Þ�rSo2wi, (11)

where wi is the flexural displacement measured at point i. In Eq. (11), Dm is the interval between two adjacent
measurement points.

It is noteworthy that, not only the above-detailed detection philosophy is applicable to a structural beam, but also can it
be used to other structural components with known local equilibrium (e.g., a plate or a shell). For example, for a plate-like
component, without the necessity of concerning the complexity of its boundary conditions and geometric shapes (these
factors are crucial in conventional global vibration-based detection), DI can be constructed in a similar way using the local
equilibrium for the plate element, as

DI¼
Eh3

12ð1�n2Þ

@4wðx,yÞ

@x4
þ
@4wðx,yÞ

@y4
þ2

@4wðx,yÞ

@2x@2y

 !
�rho2wðx,yÞ, (12)

where E, r, h and n are complex Young’s modulus, density, thickness and Poisson’s ratio of the plate, respectively. w(x,y) is
the transverse displacement of the plate at (x,y). Likewise, Eq. (12) can be discretized at measurement point (i,j) using a
finite difference scheme as

DIi,j ¼
Eh3

12ð1�n2Þ
ðw4x

i,j þw
4y
i,j þ2w2x2y

i,j Þ�rho2wi,j, (13)

where wi,j is the flexural displacement of the plate measured at point (i,j), and

w4x
i,j ¼

@4w

@x4
¼

1

D4
x

ðwiþ2,j�4wiþ1,jþ6wi,j�4wi�1,jþwi�2,jÞ,

w4y
i,j ¼

@4w

@y4
¼

1

D4
y

ðwi,jþ2�4wi,jþ1þ6wi,j�4wi,j�1þwi,j�2Þ,

w2x2y
i,j ¼

@4w

@2x@2y
¼

1

D2
xD

2
y

ðwiþ1,jþ1�2wiþ1,jþwiþ1,j�1�2wi,jþ1þ4wi,j�2wi,j�1þwi�1,jþ1�2wi�1,jþwi�1,j�1Þ, (14)

if twelve neighboring measurement points are involved for the finite difference.

3. Proof-of-concept validation using numerical simulation

Proof-of-concept validation for the proposed damage detection approach was carried out using finite element (FE)
simulation. Without loss of generality, a homogeneous and isotropic Euler-Bernoulli beam was used as a simple example.

3.1. In the absence of measurement noise

Consider a cantilever beam (1440 mm long, 20 mm wide and 20 mm thick; Young’s Modulus: 200� (1þ10�4i) GPa;
density: 7800 kg/m3), clamped at its left end and bearing a through-width damaged zone from xdþd/2 to xd�d/2 along the
beam axis (centralized at xd with a length of d), as shown in Fig. 2. The whole beam was modeled with a total of 144 beam
elements (10 mm in length for each element). The damage was simulated with a reduction in Young’s modulus of
corresponding elements within the damaged zone by 30% of their original value. The beam was excited by a harmonic



Fig. 2. FE model of a cantilever beam bearing a damaged zone for proof-of-concept validation.

Fig. 3. Constructed DIi throughout inspection region for the beam in Fig. 2 (xd¼900 mm and d¼280 mm).
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point force of frequency f at xe¼120 mm, as indicated in Fig. 2. To avoid any singularity near the excitation force, an
inspection region (LInspection) was selected by excluding the vicinity of xe. The flexural displacements at all FE nodes
(corresponding to those measurement points in subsequent experiment) were obtained using ANSYSs, to construct DIi in
terms of Eq. (11). Fig. 3 exemplarily shows the calculated DIi across the inspection region (LInspection¼1200 mm, meshed by
120 elements) when xd¼900 mm, d¼280 mm and f¼550 Hz. In the figure, distribution of DIi calculated from simulation
coincides with the prediction using Eq. (10): DIi remains zero in intact regions and deviates from zero in damaged zone,
with prominent Dirac changes at two boundaries of the damaged zone. Note that the spikes at the damage boundaries are
not symmetrical with respect to DIi¼0, because of the asymmetrical Dirac function component.

Further, reducing length of the damaged zone from d¼280 mm to d¼20 mm (xd¼900 mm), the calculated DIi across
the inspection region is displayed in Fig. 4(a) against the beam span. Though Dirac oscillation of DIi at two boundaries of
the damaged zone overlaps as a result of the reduced d (this might pose certain difficulty in explicitly differentiating
individual damage boundaries), overall size of the damaged zone is still distinguishable, more clearly seen in Fig. 4(b)
which presents the absolute value of DIi only.
3.2. In the presence of measurement noise

In practical implementation, measurement noise is unavoidable. Such noise interference can be exacerbated for this
proposed approach because measurement noise can considerably contaminate high-order derivatives of displacement in



Fig. 4. (a) Constructed DIi throughout inspection region for the beam in Fig. 2 (xd¼900 mm and d¼20 mm) and (b) absolute value of DIi in (a).
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the constructed DIi, masking information pertaining to the damage. To quantitatively examine tolerance of the developed
approach to measurement noise, a certain amount of noise disturbance was added to the calculated displacements at FE
nodes in accordance with

wi
noisy ¼wi

exactDwejDj, (15)

where wi
exact

and wi
noisy

are the noise-free displacement obtained at measurement point i from simulation and its
corresponding noise-polluted counterpart; Dw is a Gaussian random real number related to the magnitude of wi

exact
; Dj is

an another Gaussian random real number related to phase of wi
exact

. Fig. 5(a) shows the respectively constructed DIi using
wi

exact
and wi

noisy
(in the latter, the mean of Dw is one with a standard deviation being 1% of the magnitude, whilst the

mean of Dj is zero with a standard deviation being 11 of the phase). With noise pollution (dashed line in Fig. 5(a)),
constructed DIi does not offer any information for damage localization, calling for appropriate de-noising treatment.

3.3. De-noising through low-pass wavenumber filtering

Prior to de-noising, spectrographic analysis was applied to canvass calculated DIi in a wavenumber domain. Using the
two DIi curves in Fig. 5(a) (with and without added noise) for illustration, distributions of DIi for these two cases in the
wavenumber domain upon Fourier transform are shown in Fig. 5(b), showing certain overlapping in between at lower
wavenumbers and dominance of noise at higher wavenumbers. By observing this, a low-pass filter was designed, defined
in the wavenumber domain as

~hðkÞ ¼ 1 ðk 2 ½�kc ,þkc�Þ,
~hðkÞ ¼ 0 ðk 2 ½�1,�kc� [ ½þkc ,þ1�Þ, (16)



Fig. 5. Constructed DIi using noise-free nodal displacements (solid line) and noise-contaminated nodal displacements (dashed line) for the beam in

Fig. 2: (a) in spatial domain; (b) in wavenumber domain; and (c) re-constructed DIi upon application of low-pass wavenumber filtering (kc¼55 rad/m).
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where k is the wavenumber; ~hðkÞ the transfer function of an ideal filter in the wavenumber domain; kc the cutoff
wavenumber with a unit of rad�m�1, as indicated in Fig. 5(b). In addition, in order to minimize the influence from
boundaries of the inspection region (known as the Gibbs phenomenon [28]), a rectangular window, C(x), was
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multiplicatively applied to the calculated DIi prior to the above wavenumber filtering. The window was defined as

CðxÞ ¼ 0:5 1�cos
px

a

� 	
ðxoaÞ,

CðxÞ ¼ 1 ðarxrLInspection�aÞ,

CðxÞ ¼ 0:5� 1�cos
pðx�LInspectionþ2aÞ

a

� �
ðx4LInspection�aÞ, (17)

where a¼2p/kc. Upon application of the rectangular window and wavenumber filtering, Fig. 5(c) shows the re-constructed
DIi for the two signals in Fig. 5(a) (when kc¼55 rad/m), able to highlight the location and size of the damaged zone roughly.

3.4. De-noising through proper selection of measurement parameters

Characterized by high-order spatial derivatives (d4w(x)/dx4)), it is anticipated that accuracy of the approach is
somewhat subject to a variety of factors during measurement of w(x).

3.4.1. Damage location vs. distribution of internal bending moment

Subjected to an external excitation, the structural component manifests various vibration patterns. Under different
patterns, sensitivity of the method varies. To explore such an issue, up to 59 damage scenarios were considered in the
simulation, in each of which the discussed beam component bore a damaged zone of the same length (d¼20 mm) at
different locations (xd¼260–1420 mm, with an increment of 20 mm within the inspection region LInspection¼1200 mm).
A transverse excitation (xe¼120 mm, f¼550 Hz) was applied, under which DIi was calculated at each measurement point
and the maximum absolute value of DIi, 9DIi9max, for each scenario was extracted. Fig. 6 presents variation in 9DIi9max for
the 59 damage scenarios and distribution of internal bending moment of the intact beam under the same excitation, to
notice a consistence in between. This observation implies that, when the damage is right located at or near the position at
which the internal bending moments is relatively large, the local breakage of equilibrium can be more pronouncedly
reflected (a larger DIi), benefiting the detection exercise.

3.4.2. Density of measurement points vs. vibration frequency

Allowing for the fact that accuracy of the finite difference calculation can be slaved to the number of measurement
points involved, different densities of measurement points in LInspection were comparatively used to construct DIi. Let Dm be
the interval between two adjacent measurement points and l be the wavelength of the vibration of the beam at a given
excitation frequency, Fig. 7 shows distributions of DIi for the discussed beam calculated using nodal displacements at
different ratios of Dm/l (Dm/l¼0.017, 0.033, 0.050, 0.067, 0.100, 0.133), without and with added noise (noise was added
using Eq. (15) as detailed in Section 3.2). It can be seen that, with the increase of Dm/l (from (a) to (f)), (i) DIi in the absence
of noise (solid lines) gradually loses its capacity of depicting the location and size of the damaged zone, whereas (ii) DIi in
the absence of noise (solid lines) coincides more with DIi in the presence of noise (dashed lines), indicating an increasing
similarity between noise-polluted and noise-free signals. These two observations suggest a dual-effect of Dm/l: using less
measurement points at a given excitation frequency (greater Dm/l) enhances the noise immunity of the approach, while
this scarifies the accuracy of finite difference, and vice versa.

Therefore, a judicious selection of Dm/l is critical to strike a balance between accuracy of the method and its capacity of
noise immunity. To quantify this dual-effect, two normalized signal parameters, AD (representing Accuracy of finite
Difference) and NI (representing Noise Influence), were introduced for following discussion.
Fig. 6. Comparison between 9DIi9max for 59 damage scenarios and internal bending moment of the intact beam (f¼550 Hz).
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Fig. 7. Constructed DIi using noise-free nodal displacements (solid line) and noise-contaminated nodal displacements (dashed line) for the beam in Fig. 2

when Dm/l is (a) 0.017; (b) 0.033; (c) 0.050; (d) 0.067; (e) 0.100; and (f) 0.133.
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3.4.2.1. AD. Using the above-discussed beam for illustration, an effective damaged zone was first defined, centralized at xd

and containing the peak values of DIi as a result of Dirac changes near damage boundaries, as shown in Fig. 8(a). Obviously
length of the effective damaged zone is associated with Dm, and it is in principle larger than the actual length of the



Fig. 8. Definition of (a) effective damaged zone and (b) signal parameter AD.
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damaged zone because the construction of DIi using the finite difference at damage boundaries involves neighboring
measurement points beyond the damaged zone. Letting the maximum peak value of DIi within the effective damaged zone
be c, the maximum peak value of DIi outside the effective zone (but within LInspection) be t (highlighted in Fig. 8(b)) and the
mean of all DIi throughout LInspection be a, AD is then defined as

AD¼
t

a
: (18a)

The incentive of establishing the above AD is to introduce a normalized parameter, able to quantify the accuracy of finite
difference. The underlying hypostasis of AD can be better understood by re-arranging it as

AD¼
t

a
¼

t=c

a=c
, (18b)

in which the numerator represents the relative fluctuation of DIi in the intact zone (due to noise) with regard to the
maximum changes in the signal due to presence of damage (c), and it additionally shows the relative dominance of the
damage-induced changes in DIi. In particular, the smaller the ratio t/c, the more prominent is DIi in the effective damaged
zone. On the other hand, the denominator reflects the mean of all damage indices (due to both damage and noise) with
regard to the maximum changes in the signal due to presence of damage (c). Accuracy of the finite difference is deemed
acceptable when 0oADr1 (for example, those signals in Fig. 7(a)–(e), in which both location and size of the damaged
zone can be captured roughly without applying any de-noising treatment such as the low-pass wavenumber filtering
aforementioned); while the approach presents low accuracy when AD41 (for example, the signal in Fig. 7(f)), failing to
describe the damage without applying any de-noising treatment.
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3.4.2.2. NI. Along the same line of consideration for developing AD, the index, NI, is defined as

NI¼
1�X
1�Xc

, (19a)

where X is the correlation coefficient between two DIi curves in the absence (ideal case) and presence of measurement
noise (practical case). The correlation coefficient is given by

X¼
N
PN

i ¼ 1 DInoisy
i DIexact

i �
PN

i ¼ 1 DInoisy
i

PN
i ¼ 1 DIexact

iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
PN
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i Þ

2
�
PN

i ¼ 1 DInoisy
i

� 	2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N
PN

i ¼ 1 ðDIexact
i Þ

2
�
PN

i ¼ 1 DIexact
i

� 	2
r , (19b)

where DInoisy
i and DIexact

i stand for the damage indices calculated using nodal displacements with and without added noise,
respectively. N is the number of measurement points in LInspection. The greater the similarity between DInoisy

i and DIexact
i , the

closer to unity is the coefficient X. In Eq. (19a), Xc is a threshold, over which the measurement noise influence is deemed
significant leading to poor recognizability of signals. When 0oNIr1 (i.e., XZXc), DInoisy

i and DIexact
i exhibit high

coincidence (for example, those signals in Fig. 7(e) and (f)), indicating that measurement noise become negligible; while
when NI41 (i.e., XoXc), deviates significantly from DIexact

i (for example, those signals in Fig. 7(a)–(d)), making damage
identification impossible if without any de-noising treatment.

From the above twofold discussion, it becomes clear that an ideal scenario is the case in which both AD and NI are as
low as possible, or at least below the unity. In order to determine an optimal Dm/l so as to ensure both AD and NI are in
acceptable levels, signals shown in Fig. 7 were further processed to extract their corresponding AD and NI values. Fig. 9
displays the variations in AD and NI at different selections of Dm/l. The ascending trend for AD and descending trend for NI
with an increase in Dm/l reconfirm previous observation and analysis. Most importantly, when Dm/l is around 0.1, both AD
and NI fall into acceptable levels (0oADr1 and 0oNIr1). Such a selection of Dm/l¼0.1 corresponds to the case shown
in Fig. 7(e) where roughly TEN measurement points per wavelength were used for constructing DIi, reaching a compromise
between signal recognizability and tolerance to measurement noise. In Fig. 7(e), damage can be estimated roughly even
without application of any de-nosing treatment such as the low-pass wavenumber filtering.

To better show the dependence of both parameters on Dm/l, AD and NI are plotted in a two-dimensional presentation
(AD–NI), in Fig. 10, for those signals in Fig. 7. According to the above-addressed criterion, selection of AD and NI in the
shadowed region (0oADr1 and 0oNIr1) is deemed optimal to deliver satisfactory identification results without
relying on any signal de-nosing treatment. Using an optimal Dm/l, accuracy of the finite difference can be guaranteed and
at the same time the noise interference is negligible, so that the location of damage can be directly identified without using
the wavenumber-based filtering. It is noteworthy that an optimal selection of Dm/l is obviously dependent on the noise
level. Should the measurement noise level be lower, NI becomes less important in determining Dm/l. Under such a
circumstance more measurement point should be used to enhance the identification accuracy.

3.4.3. Damage extent vs. AD and NI

As envisaged, precision of the proposed detection approach can also be affected by either size of the damaged zone
relative to the wavelength of vibration (i.e., d/l) or severity of the damage (degree of stiffness reduction, denoted by SR in
what follows), apart from Dm/l as discussed previously.

For discussion, keeping the same forced excitation (i.e., the same l) but changing length of the damaged zone (d),
various ratios of d/l were obtained. Fig. 11 exemplarily shows six cases when d/l¼0.017, 0.033, 0.067, 0.100, 0.133, 0.167,
Fig. 9. Variation in AD and NI for the beam in Fig. 2 under different Dm/l for cases in Fig. 7 (Xc¼0.8).



Fig. 10. Two-dimensional AD–NI presentation under different Dm/l for cases in Fig. 7 (Xc¼0.8).
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respectively, and Fig. 12 shows their corresponding two-dimensional AD–NI presentation with one more additional case
(d/l¼0.200). It can be seen from both sets of figures that, regardless of damage length d, the optimal selection of Dm/l¼0.1
(viz., roughly ten measurement points per wavelength) as suggested in Section 3.4.2 does not seem to be affected.

It is highly noteworthy that, with such an optimal selection, this approach is even able to detect damage which is much
smaller than wavelength l, showing advantages over conventional vibration-based detection (via which the minimum
detectable damage is often over 10% of the overall size of the structure under inspection) and also outperforming elastic-
wave-based damage detection (via which only when the damage is larger than half the wavelength can it be detected).
Among six discussed cases in Fig. 11, the smallest detectable damage, without applying any signal de-noising processing,
is only 3.3% of the wavelength (when d/l¼0.033).

Fig. 13 shows the two-dimensional AD–NI presentation at different degrees of stiffness reduction (SR¼10%, 20%, 30%,
40%, 50%, 60%, respectively), to observe that the higher the SR, the more options are available for selecting Dm/l with both
acceptable AD and NI. Conclusively, under the given noise level (i.e., 1% error in magnitude and 11 error in phase), the one
of Dm/l¼0.1 (roughly ten measurement points per wavelength) is the most optimal selection for all the discussed cases,
leading to a recommendable compromise between accuracy of finite difference and tolerance to measurement noise. Such
a conclusion is also applicable to more severe noise contamination up to 10% error in magnitude or 51 error in phase as
demonstrated by the authors elsewhere [29].

3.5. Data fusion for further improvement of precision

Reaching this stage, it is clear that this approach provides a flexible framework for practical implementation. DIi can be
constructed under different forcing frequencies and different measurement resolutions, with or without wavenumber
filtering, etc. This makes it possible to generate a large quantity of DIi plots or mappings. On the other hand, it is noticed
that, during practical implementation, captured signals are prone to contamination from a variety of interference sources
including measurement noise and uncertainties, boundary effects and error of finite difference, possibly dimming damage-
related signal features and leading to inaccurate or even erroneous identification. Allowing for the above two aspects, a
data fusion technique was included in this approach to combine damage indices constructed under different measurement
configurations, with an aim of further improving the detection precision.

Data fusion herein can generally be understood as a technique appropriately aggregating two or more information
sources obtained under different circumstances, to achieve a specific purpose such as enhanced signal-to-noise ratio or
improved identification precision. In the approach, damage indices at individual measurement point i were obtained under
K different measurement configurations, denoted by DIi�1,DIi�2, . . .,DIL, . . .,DIi�K (L¼1, 2, y, K), respectively, and all of
them were subsequently amalgamated via a hybrid fusion scheme developed in authors’ previous work [30,31], which is
defined as

DIi-hybrid ¼DIi-geometric \ DIi-arithematic, (20)

where

DIi-geometric ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DIi�1UDIi�2 � � �DIi�L � � � DIi�K

K

q
, DIi-arithematic ¼

1

K

XK

L ¼ 1

DIi�L: (21)
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Fig. 11. Variation in AD and NI for the beam in Fig. 2 when d/l is (a) 0.017; (b) 0.033; (c) 0.067; (d) 0.100, (e) 0.133; and (f) 0.167 (Xc¼0.8).
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DIi-hybrid is the ultimate damage index at measurement point i upon data fusion. In such a hybrid fusion scheme, the
arithmetic fusion (‘

P
’ in Eq. (21)) equally takes into account all prior perceptions pertaining to damage (DIL, L¼1, 2, y, K)

constructed under individual measurement configurations (e.g., different forcing frequencies) and well de-centralizes their



Fig. 12. Two-dimensional AD–NI presentation under different d/l for cases in Fig. 11 (Xc¼0.8).

Dm/λ=0.100 

Fig. 13. Two-dimensional AD–NI presentation under different SR (d¼20 mm and Xc¼0.8).
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contributions in the ultimate damage index. However, although the arithmetic fusion guarantees a full inclusion of prior
perceptions from all configurations, it is envisaged that information in all sources including ambient noise and
measurement uncertainties are also included, which might ‘pessimistically exaggerate’ the possibility of damage presence,
leading to a false alarm. To circumvent this problem, a geometric mean (‘ ffiffiffi

K
p ’ in Eq. (21)) and further a conjunctive fusion

(‘\’ in Eq. (20)) multiplicatively process individual source information. In this process, a low damage index at a
measurement point under a particular measurement configuration leads to a significantly low likelihood of damage
presence at that measurement point, showing good immunity to measurement noise and uncertainties. Through such a
hybrid fusion, damage-related information (commonality in individual source information) is stood out and noise (random
information in individual source information) is suppressed simultaneously. Effectiveness of the hybrid fusion defined by
Eq. (20) will be demonstrated using experimental data in subsequent section.

4. Experimental validation

Albeit that the proposed methodology is not restricted by the complexity of the structure to be inspected, a simple
cantilever beam was used in the experimental validation for easy understanding of principle of the approach. The beam
can be a component of a complex system consisting of various structural components. This beam was made of aluminum
alloy (360 mm long, 19 mm wide and 6 mm deep), with its material properties and geometric parameters tabulated in
Table 1. A through-width notch (8 mm long and 2 mm deep) was machined, 260 mm away to the fixed beam end from its
center (xd¼260 mm), as photographed in Fig. 14(a). An electro-mechanical shaker (B&Ks 4809) was used to generate a
harmonic excitation (f¼140 Hz), applied 82 mm away from the fixed beam end (xe¼82 mm). The current selection of



Table 1
Material properties and geometric parameters of the beam used for experimental validation.

Density (kg/m3) 2700

Young’s Modulus E (GPa) 70

Beam length L (mm) 360

Width b (mm) 19

Thickness h (mm) 6

Location of excitation xe (mm) 82

Length of inspection region LInspection (mm) 240

Central location of damaged zone xd (mm) 260

Length of damaged zone d (mm) 8

Damaged zone 

Shaker

Tested beam (a)

(b)

Fig. 14. Experimental setup for validation: (a) a through-width notch in the beam to be detected and (b) schematic of experimental setup.
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excitation frequency was made in terms of experimentally obtained Frequency Response Function (FRF) curves, from
which the resonance region was identified using the standard definition of the half-power bandwidth [32], to avoid the use
of resonance frequency as explained in Section 2. Note that the use of a shaker was to simulate the vibration of the entire
system under its normal operation. The excitation itself, however, was not directly used in data processing (to show that
implementation of this approach is independent of external forcing frequency). Forty-nine measurement points were first
selected and evenly distributed across the inspection region (LInspection¼240 mm), and at this configuration the interval
between two neighboring measurement points was 5 mm, leading to a high density configuration. The out-of-plane
displacements were captured at each measurement point using a scanning Doppler laser vibrometer system (Polytecs

PSV-400). Note that the displacements at measurement points were captured from the intact surface of the beam, opposite
to which lay the damage, as shown schematically in Fig. 14(b).

Upon application of the rectangular window for eliminating the Gibbs phenomenon, the constructed DIi curve
across the inspection region using Eq. (11) is presented in Fig. 15(a), in which the damaged zone cannot be clearly



Fig. 15. Re-constructed DIi at different measurement configurations: (a) f¼140 Hz; number of measurement points: 49 (no wavenumber filtering applied);

(b) f¼140 Hz; number of measurement points: 49 (applied with developed low-pass wavenumber filter (kc¼200 rad/m)); (c) f¼140 Hz; number of

measurement points: 25 (no wavenumber filtering applied); and (d) f¼903 Hz; number of measurement points: 25 (no wavenumber filtering applied).
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identified without any de-noising processing. Treated with the low-pass wavenumber filtering (kc¼200 rad/m) developed
in Section 3.3, the processed DIi curve is shown in Fig. 15(b), from which both the presence and location of the damaged
zone can be recognized roughly, demonstrating effectiveness of the low-pass wavenumber filtering in handling noise-
polluted signals experimentally captured. In parallel with the use of the wavenumber filtering, by reducing the number of
measurement points from 49 to 25 (but without applying the wavenumber filtering), Fig. 15(c) exhibits the accordingly
obtained DIi curve, in which DIi in the damaged zone stood out prominently. This further supports the conclusion drawn in
Section 3.4 that, with a proper choice of measurement parameters, the wavenumber filtering may not even be of necessity.
Furthermore, Fig. 15(d) presents the DIi curve after increasing the excitation frequency from f¼140 Hz to f¼903 Hz while
remaining 25 measurement points and without applying the wavenumber filtering, to also observe improvement in
detection accuracy, emphasizing the flexibility of the approach in implementation. Conclusively, during practical
implementation, two de-noising techniques can be applied independently, rather than used either simultaneously or
subsequently. In the current validation, with proper selection of a measurement configuration, acceptable identification
results have been achieved even without the use of wavenumber filtering, as the results shown in Fig. 15(c) and (d).

Thanks to the diversity of de-noising treatments proposed in the study, only a few tests under different measurement
configurations (e.g., different densities of measurement points or different excitation frequencies) are sufficient to form a
large data pool, from which various data sets (as individual source information) can be created for fusion. In an extreme
case, if the structure is subject to a random excitation in a broadband frequency range, a single test would be enough
because the information corresponding to different frequencies can be extracted from the measured FRF. To demonstrate
this, the above three DIi plots (Fig. 15(b)–(d)), obtained under different experiment configurations and applied with
different signal processing, were fused using the hybrid data fusion scheme described by Eq. (20), to obtain the ultimate DIi



Fig. 16. (a) Fused ultimate DIi plot using the plots in Fig. 15(b)–(d) and (b) two-dimensional view of (a) from the top.
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curve, shown in Fig. 16. It is clear that the fused plot presents a much more explicit and intuitive indication of the presence
and length of the damaged zone.

5. Conclusions

A novel damage identification approach based on local perturbation to dynamic equilibrium of the structural
component under inspection was developed. Both simulation and experiment results have shown that the approach is
able to bypass major limitations of conventional global vibration-based or local guided-wave-based damage detection
philosophies, presenting a number of unique and appealing features: it requires neither benchmark structures nor baseline
signals; neither global models nor prior knowledge on structural boundary conditions; plus no particular requirement for
an additional excitation as long as the structure undergoes steady vibration during its normal operation. In addition,
benefiting from its local inspection nature, the approach can be readily extended to the detection of multiple-damage
within the same inspection region, showing advantages over conventional global detection.

However, limitations of the approach should be envisaged. Under some circumstances, it may be a challenging task to
achieve the local equilibrium relationship for a complex structural component (e.g., composite materials), although local
FE model can be created to facilitate the obtainment of such a relationship. Moreover, as observed, the influence of
measurement noise can jeopardize detection accuracy and precision seriously, making a de-noising treatment indis-
pensable in some practical applications. Towards this limitation, alternatives were provided in this study: (i) application of
low-pass filtering in a wavenumber domain to screen out high-wavenumber noise contamination; and (ii) proper selection
of measurement configurations. For the latter, the spatial resolution for displacement measurement is shown to be vital in
balancing detection accuracy and noise immunity of the method. An optimal selection of Dm/l is dependent on the noise
level. A lower measurement noise level allows lower Dm/l, so that more measurement point can be used to enhance the
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identification accuracy. As an example, when measurement noise is around 1% in amplitude and 11 in phase, as a rule of
thumb, a selection of ten measurement points per wavelength seems to be a practical and optimal criterion to warrant
acceptable accuracy, even without application of any de-noising treatment. As a last resort, a data fusion scheme can be
applied to further enhance the detection capability. Effectiveness of the approach was experimentally examined by
quantifying damage in a beam using a scanning laser vibrometer. As a final note, it should be mentioned that this proposed
methodology is applicable to complex systems comprising various structural components, provided that the local
equilibrium relationship of a component of interest is known a priori.
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