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Online Identification of Nonlinear Spatiotemporal
Systems Using Kernel Learning Approach

Hanwen Ning, Xingjian Jing, and Li Cheng

Abstract— The identification of nonlinear spatiotemporal sys-
tems is of significance to engineering practice, since it can
always provide useful insight into the underlying nonlinear
mechanism and physical characteristics under study. In this
paper, nonlinear spatiotemporal system models are transformed
into a class of multi-input–multi-output (MIMO) partially linear
systems (PLSs), and an effective online identification algorithm
is therefore proposed by using a pruning error minimization
principle and least square support vector machines. It is shown
that many benchmark physical and engineering systems can
be transformed into MIMO-PLSs which keep some important
physical spatiotemporal relationships and are very helpful in the
identification and analysis of the underlying system. Compared
with several existing methods, the advantages of the proposed
method are that it can make full use of some prior structural
information about system physical models, can realize online
estimation of the system dynamics, and achieve accurate charac-
terization of some important nonlinear physical characteristics
of the system. This would provide an important basis for state
estimation, control, optimal analysis, and design of nonlinear
distributed parameter systems. The proposed algorithm can also
be applied to identification problems of stochastic spatiotemporal
dynamical systems. Numeral examples and comparisons are given
to demonstrate our results.

Index Terms— Lattice dynamics, least squares support vector
machines, nonlinear system identification, partially linear sys-
tems, spatiotemporal systems.

I. INTRODUCTION

SPATIO-TEMPORAL systems given by partial differential
equations (PDEs) are widely used to describe physical

and engineering phenomena such as heat process, population
dynamics, chemical reactors, fluid dynamics, etc., [1], [2].
Traditional methods for the analysis of a PDE system relies
on an analytical solution of the system, which is actually
difficult to obtain for most nonlinear PDEs. Alternatively,
qualitative solutions such as the existence, stability, control-
lability, observability etc., are studied by using functional
analysis, Sobolev space theory, generalized function theory,
etc., [3]–[7]. Numerical methods are also employed to find an
approximation of the solution of a PDE system, which include
finite element methods and difference methods. Noticeably, the
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difference method is to translate PDEs into lattice dynamical
systems (or multidimensional difference equations) [8]–[10].
The concept of lattice dynamical systems adopts state space
expressions and has been applied to various systems, and is
found to be powerful to reproduce complex spatiotemporal
patterns [11], [12]. The variables with respect to each node
on the lattice represent the same set of physical quantities. If
the numeral relationship of these variables could be obtained,
then the values of the dependent variables and the approximate
solution of the PDE could be derived iteratively. These benefits
in solving numerical solution, predicting system future states
or system states that are not available for measurement and
maintaining a straightforward link to the physical properties of
the original system, provide a basic motivation of the technical
method developed in this paper.

Note that identification of spatiotemporal dynamical sys-
tems has also been studied recently by using finite-dimensional
parametric multi-input–multi-output (MIMO) models such
as nonlinear autoregressive exogenous model (NARX) and
neural networks to approximate infinite-dimensional systems
[13]–[17]. In these results, the estimation of spatiotemporal
systems is technically formulated into a traditional identi-
fication problem of a MIMO system, and therefore many
existing methods in nonlinear system identification theory
can be applied, such as set membership, orthogonal least
squares, etc., [18]–[21]. Because multiple input and output
variables are involved in regressors including their nonlinear
combinations, existing methods are usually computationally
intensive and difficult (if not impossible) to be applied for
online estimation. However, it is observed that with some
known spatiotemporal structural information about systems,
the PDE model can eventually be transformed into a partially
linear model with a linear part of known structure and an
unknown nonlinear part. For the transformed partially linear
model, the known model structure could be a useful factor
to reduce algorithm complexity, and thus online estimation
could be achieved by using kernel learning approaches to
approximate the nonlinear part. Among the kernel learning
methods [22]–[24], the support vector machine (SVM) method
is a promising statistical learning theory first developed by
Vapnik [25], which can realize the best estimation with the
least number of samples [26]–[28], and has relatively good
performance when used for MIMO systems [29]. These shed
light on some other motivations of the technical method to be
developed in this paper.

Moreover, this paper also aims at methods that can accu-
rately estimate system physical characteristics which are
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nonlinear spatial-dependent functions characterized by some
model parameters in the PDE system. This will provide an
important insight into the analysis and design of physical and
structural properties of the dynamical system under study.

Therefore, based on pruning minimization principles [30]
and the least squares SVM (LS-SVM), an effective iden-
tification algorithm named pruning minimization principle
recursive least squares-support vector machine PM-RLS-SVM
is proposed for the online identification of spatiotemporal
systems from the perspective of MIMO partially linear models
(PLMs). It is shown that benchmark spatiotemporal systems in
heat process and vibration systems can always be transformed
into lattice dynamic systems and then into MIMO PLMs,
which have a clear structural information of the data, and
thus allow accurate estimations of the model and important
model parameters (which have direct links with physical,
material, or structural properties) simultaneously. In contrast
to several existing identification methods for spatiotemporal
systems [13]–[17], the computation complexity is reduced
by using the prior spatiotemporal structural information of
the data and the powerful LS-SVM method. Although the
SVM methods have already been applied in solving different
problems, to the best of the authors’ knowledge, few results
are available for online identification problems of nonlinear
spatiotemporal systems. Comparisons with several existing and
recently developed kernel learning methods are conducted to
demonstrate the advantages of the new learning algorithm.
Necessary discussions are also provided to illustrate the effec-
tiveness and to point out potential applications of our results.

This paper is organized as follows. Lattice dynamical
systems are introduced in Section II with illustrations for
benchmark spatiotemporal systems. Section III introduces the
MIMO partially linear model. In Section IV, based on LS-
SVM and pruning error minimization principle, an online algo-
rithm for MIMO partially linear model is proposed. Section V
provides numerical examples and comparisons to demonstrate
the new method. Conclusions are provided at the end.

II. DISCRETIZATION AND LATTICE DYNAMIC SYSTEMS

Exact solutions for most of the nonlinear PDEs are difficult
to obtain due to diverse nonlinearity, different structures, and
complex boundary conditions. To estimate state values at any
time and space positions, numeral methods (e.g., classic differ-
ence methods) can be adopted. The discrete lattice difference
model has good performance in simulating spatiotemporal
dynamic systems [11], [12], [31]. The basic idea is to replace
the differential quotient by the difference quotient, and finally
to construct a proper lattice dynamic structure for the spe-
cific spatiotemporal system to find approximate values using
iteration methods [8]–[10].

To demonstrate this, consider a heat transfer system
⎧
⎨

⎩

∂u
∂t = a(x) ∂2u

∂x2 + f (u), 0 < t ≤ T,

u(x, 0) = ξ(x), 0 < x < 1,
u(0, t) = u(1, t) = 0, 0 ≤ t ≤ T

(1)

where f is a unknown nonlinear function. Let 0 = x0 < x1 <
· · · < xn = 1, 0 = t0 < t1 < · · · < tm = T , h = x j+1 − x j ,

j = 0, 1, . . . , n − 1, τ = tk+1 − tk , and u(x j , tk) = uk
j . With

this discretization method, we can obtain

u(x j , tk+1) − u(x j , tk)

τ

≈ ∂u

∂ t

∣
∣
∣
∣
(x j ,tk)

= a(x)
∂2u

∂x2

∣
∣
∣
∣
(x j ,tk)

+ f (u(x j , tk))

≈ a(x j )
u(x j+1, tk) − 2u(x j , tk) + u(x j−1, tk)

h2

+ f (u(x j , tk)) (2)

which further yields

uk+1
j = r j u

k
j−1 + (1 − 2r j )u

k
j + r j u

k
j+1 + τ f (uk

j ) (3)

where r j = a j
τ
h2 (denote a(x j ) = a j ). We can specify it with

the matrix form
⎡

⎢
⎢
⎢
⎢
⎣

uk+1
1

uk+1
2
.
.

uk+1
n−1

⎤

⎥
⎥
⎥
⎥
⎦

= τ

⎡

⎢
⎢
⎢
⎢
⎣

f (uk
1)

f (uk
2)

.

.

f (uk
n−1)

⎤

⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎣

1 − 2r1 r1 0 0
r2 1 − 2r2 r2 0

. .
. .

0 0 . rn−1 1 − 2rn−1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

uk
1

uk
2
.
.

uk
n−1.

⎤

⎥
⎥
⎥
⎥
⎦

. (4)

It is observed that this is a state space model with a
combination of a linear part and a nonlinear part, where the
parameters in the linear part, i.e., r j = a j (τ/h2), have a
direct link with the parameter a(x) in the original physical
model.

Similarly, consider a vibration system of two dimensions
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂2u
∂t2 = b(x, y)

(
∂2u
∂x2 + ∂2u

∂y2

)
+ g(u), 0 < t ≤ T,

u(x, 0, t) = ξ1(x, t), u(x, 1, t) = ξ2(x, t),
u(0, y, t) = η1(t), u(1, y, t) = η2(y, t),
u(x, y, 0) = ξ(x, y),
∂u
∂t (x, y, 0) = η(x, y), 0 < t < T, 0 ≤ x, y ≤ 1.

(5)

Let 0 = x0 < x1 < · · · < xn1 = 1, 0 = y0 < y1 < · · · <
yn2 = 1, 0 = t0 < t1 < · · · < tm = T , h1 = x j+1 − x j ,
j = 0, 1, . . . , n1 − 1, h2 = y j+1 − y j , j = 0, 1, . . . , n2 − 1,
τ = tk+1 − tk , and u(xi , y j , tk) = uk

i, j . With this discretization
method, we can obtain

uk+1
i, j = r x

i, j (u
k
i, j+1 + uk

i, j−1) + 2(1 − r x
i, j − r y

i, j )u
k
i, j

+ r y
i, j (u

k
i−1, j + uk

i+1, j ) − uk−1
i, j + τ 2g(uk

i, j ) (6)

where r x
i, j = b(xi , y j )(τ

2/h2
1) and r y

i, j = b(xi , y j )(τ
2/h2

2),
which directly come from the model parameters of the original
system. Since u−1

i, j is not given, u1
i, j cannot be computed.

We approximate the initial condition on the derivative by
(u1

i, j −u−1
i, j )/τ = η(xi , y j ). Thus the term u−1

i, j can be removed.
Actually, it is not necessary to know the data at the beginning
or the boundary in the identification process.

It can be seen that the spatiotemporal dynamic systems (1)
and (5) can both be translated into lattice dynamic systems
using the difference approach, and the state space equations,
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consisting of a linear part and a nonlinear part, clearly show
the relationship of each node in the lattice with direct links
to system parameters of original physical models. For these
systems in practice, the nonlinear mappings f and g and
parameters a(x) and b(x, y), which have particular physical
meanings, could be completely unknown, and only some mea-
surement data for uk

j can be available. System identification is
to construct a model to fit the data and predict future state of u
at each lattice site. Since the data samples could be described
by some general lattice structures mentioned above, this prior
information can be utilized in system identification, and thus is
helpful to build a more appropriate model. On the other hand,
if the linear part of the lattice models can be obtained, the
nonlinear functions [a(x) and b(x, y)], which are linked to the
physical properties of the systems, can therefore be identified.
This will be advantageous and beneficial in practice compared
with some black-box modeling methods.

III. MIMO PARTIALLY LINEAR SYSTEMS

Model structure selection is an important topic in nonlinear
system identification [31], [32]. If some of the regressors are
linear and some are nonlinear, it could be conducted in an
alternative way (via partially linear models): that is, to exploit
the known information on model structure as demonstrated
before. Empirically, the complexity and generalizations in
system identification could be improved by using a partially
linear model structure with the same samples [33].

To this aim, spatiotemporal models will be formulated into
a general partially linear model via the lattice dynamic system
using state space equations. Consider a MIMO system

Y (k) = F[Y (k − 1), . . . , Y (k − ny), U(k − 1), . . . ,

U(k − nu)] + E(k) (7)

where F is an unknown nonlinear mapping. Y (k), U(k), and
E(k) are the system output, input, and noise vector at time k.
ny and nu are the maximal time lags. For (7), denote

Y (k) = [y1(k), . . . , yM (k)]T , U(k) = [u1(k), . . . , uL(k)]T ,

E(k) = [e1(k), . . . , eM (k)]T (8)

where ym(k) and em(k) represent the mth output and noise
of the system, respectively. ul(k) represents the lth input of
the system. M is the number of output channels, and m =
1, . . . , M . L is the number of inputs, and l = 1, . . . , L. Thus,
a general input vector consisting of all the possible variables
existing in the regression could be constructed as follows:

x(k) = [
Y T (k − 1), . . . , Y T (k − ny), U T (k − 1) . . . ,

U T (k − nu)
]T

. (9)

For each channel

ym(k) = Fm(x(k)) + em(k) (10)

for m = 1, . . . , M . This leads to a MIMO NARX regression
model, which includes all the possible combinations of linear
and nonlinear terms, and it usually involves a complicated and
time-consuming process to select the best regressors in system
identification. It is evident from Section II that some of the

regressors in the lattice dynamic models are linear. Therefore,
it is reasonable to formulate into a partially linear model.

Let X = {x : x is a component of the vector x(k)}. For any
given channel m, define an arbitrary partition X = Xm1

⋃
Xm2

with Xm1
⋂

Xm2 = ∅. The subscript m1 and m2 respectively
represent the subset of regressors that linearly and nonlinearly
enters into the regression model. Xm1

⋂
Xm2 = ∅ is required

to guarantee the uniqueness of the partition. For example, in
the system y1(k) = y1(k − 1)2 + y1(k − 1) + y2(k − 1),
y1(k − 1) must be classified as a nonlinear regressor and the
system can be identified as y1(k) = y2(k − 1)+ f (y1(k − 1)).
Thus, the regressor vector can be partitioned as x(k) =
{(xm1(k))T , (xm2(k))T }T . The MIMO partially linear model
can be expressed as

ym(k) = βT
m xm1(k) + fm(xm2(k)) (11)

for m = 1, . . . , M . Here, fm ’s are nonlinear mappings. From
the discretization formulas in the last section, the spatiotempo-
ral lattice dynamical systems could be considered as a special
case of MIMO partially linear models as long as the nodes
of the lattice are marked properly. Note that the parameters in
(1) and (5), which have physical meanings, are represented by
the coefficients in the linear part.

IV. PM-RLS-SVM FOR MIMO PARTIALLY

LINEAR SYSTEMS

A general identification algorithm for the MIMO par-
tially linear system (11) is developed in this section. Con-
sider a given set of training samples {x(k), Y (k)}1,...,N , i.e.,
{xm1(k), xm2(k), Y (k)}1,...,N , for the partially linear system,
and the task is to find the underlying relationship of the dataset
characterized by βm and fm(.). For an SVM and the mth
channel, the following regression model can be obtained:

ym(k) = βm1
mT x

(k) + W T
m ϕm(xm2(k)) + cm . (12)

Here, βm , xm1(k) ∈ RNm1 , xm2(k) ∈ RNm2 , Nm1 , and Nm2

denote the number of regressors of the linear and nonlinear
parts of the mth channel, respectively, and cm is the bias
term. The nonlinear mapping ϕ maps Rm2 into spaces Rmh ,
which may be infinite dimensional and is assumed to satisfy
the Mercer kernel condition [25]. The approximation error is
defined as

em(k) = ym(k) − ym(k) (13)

where ym(k) denotes the prediction for ym(k). The LS-SVM
is used to find the weights that give the smallest summed
quadratic error of the training samples, and a regularization
strategy (ridge regression) is also needed to smoothen the
approximation. To this aim, the following constrained opti-
mization problem is constructed (prime problem):

Jm = min
Wm ,cm,em(k),βm

1

2
W T

m Wm + 1

2γ

N∑

k=1

em(k)2 (14)

with equality constraints

ym(k) = βT
m xm1(k) + W T

m ϕm(xm2(k)) + cm + em(k) (15)
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for k = 1, . . . , N . The relative importance between the
smoothness of the solution and the data fitting is determined
by γ , which is a positive regularization constant. To solve the
constrained optimization problem (14) and (15), a Lagrangian
is formulated

Lm = 1

2
W T

m Wm + 1

2γ

N∑

k=1

em(k)2 −
N∑

k=1

αm(k)(βT
m xm1(k)

+W T
m ϕm(xm2(k)) + cm + em(k) − ym(k)) (16)

where αm(k)’s are the Lagrangian multipliers. To find the
saddle point, the following hold:

∂Lm

∂Wm
= 0 ⇒ Wm =

N∑

k=1

αm(k)ϕm(xm2(k))

∂Lm

∂cm
= 0 ⇒

N∑

k=1

αm(k) = 0

∂Lm

∂em(k)
= 0 ⇒ αm(k) = 1

γ
em(k), for k = 1, . . . , N

∂Lm

∂βm
= 0 ⇒

N∑

k=1

αm(k)xm1(k) = 0

∂Lm

∂αm(k)
= 0 ⇒ for k = 1, . . . , N,

ym(k) = βT
m xm1(k) + W T

m ϕm(xm2(k)) + cm + em(k). (17)

By Mercer’s theorem [25], ϕm(xm2(k))T ϕm(xm2(k)) =
Km(xm2(k), xm2(k)) with a positive definite kernel Km . After
elimination of Wm and em(k), we obtain

ym(k) = βT
m xm1(k) +

N∑

j=1

αm(k)Km(xm2( j), xm2(k))

+ cm + γαm(k). (18)

If constructing a kernel matrix 
m with 
m(i, j) =
Km(xm2(i), xm2( j)) i, j = 1, . . . , N , then the coefficients of
the regression model can be derived by solving the following
dual problem:

⎡

⎣
0 0 X T

m1

0 0 1T

Xm1 1 
m + γ I

⎤

⎦ ·
⎡

⎣
βm

cm

αm

⎤

⎦ =
⎡

⎣
0
0

ym

⎤

⎦ (19)

where Xm1 = [xm1(1)T ; xm1(2)T ; . . . ; xm1(N)T ] ∈ N ×
RNm1 and ym = [ym(1), ym(2), . . . , ym(N)]. For convenience,
denote the matrix above (in the left side of the equation)
consisting of N samples as Am,N . Positive kernels must be
chosen to guarantee the existence of a solution for the linear
matrix equation. Obviously, the nonlinear mapping ϕ need not
be defined explicitly. The most commonly used kernels satis-
fying Mercer’s theorem are Gaussian radial basis functions
(RBFs), polynomials, splines, etc., [25], [34]. The method
described above could be applied to every output channel (11).
Consequently, the estimated model for the MIMO partially

linear system is given by

ŷm(k) = βT
m xm1(k) + W T

m ϕm(xm2(k)) + cm

= βT
m xm1(k) +

N∑

k=1

αm(k)Km(xm2(k),

xm2(k)) + cm (20)

for m = 1, . . . , M . The coefficients can be derived by solving
the linear matrix equations such as (19).

Although the MIMO identification problem is solved by
treating each channel individually, the linear and nonlinear
coupling effects among channels are fully considered in the
estimation of channel models, and the model parameters are
optimized in terms of a performance in (14), which minimize
both the estimation error and weight values. Simulations
later show that, although each channel is treated individually,
the physically important parameters [i.e., βm in (18)–(20)]
estimated in each channel model form a spatial-dependent
function, which can be estimated accurately by the PM-RLS-
SVM.

A. Increment Algorithm

Most LS-SVM algorithms work in an offline manner.
This section develops an online LS-SVM algorithm for the
identification of the partially linear model. The estimated
MIMO partially linear model (20) should be updated with
new measurement data at each sampling time. When a new
data pair (x(N + 1), Y (N + 1)) is available, the LS-SVM
linear matrix equation for the mth channel using N + 1 and
N samples are given respectively as follows:

Am,N+1[βm, cm, αm , αm(N + 1)]T = [0, 0, y N
m , ym(N + 1)]T

Am,N [βm, cm, αm ]T = [0, 0, y N
m ]T (21)

where yN
m = (ym(1), . . . , ym(N)). The relationship between

Am,N and Am,N+1 is

Am,N+1 =
[

Am,N am

aT
m hm

]

(22)

where am = [xm1(N+1); 1; Km(xm2(1), xm2(N + 1));. . .;
Km(xm2(N); xm2(N + 1))], hm = γ + Km(xm2(N +
1), xm2(N +1)). The new sampling data can be used to update
the model parameters without computing the inverse of the
new matrix Am,N+1, by adopting the method in [35], as

A−1
m,N+1 =

[
A−1

m,N 0
0 0

]

+ [ hm − aT
m A−1

N am
]−1

[
A−1

m,N am

−1

] [
aT

m A−1
m,N −1

]
. (23)

Note that the computation of the inverse of matrix Am,N+1
usually involves an additional computation cost.

B. Sparseness Strategy

This section considers a sparseness strategy for the partially
linear system based on pruning error minimization principle
[30]. The computation load in the LS-SVM is mainly due
to the dimensions of the kernel matrix, which are related to
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the number of samples used for regression. The more the
number of samples involved in the regression, the worse is the
computation complexity. Therefore, pruning strategies should
be adopted to reduce the computation complexity while guar-
anteeing the generalization ability of the model. In general,
for an online algorithm, it is better to ignore the sampling
data that have the least contribution to the approximation.
If such a sample is pruned, the computation load is reduced
and the global optimum could still be guaranteed with the
rest of samples. With this idea, the pruning error minimization
principle is adopted in this paper to prune the training samples
which introduce the smallest approximation error after they are
omitted.

Consider again the primal optimization problem

Jm = min
Wm,cm ,em(k),βm

1

2
W T

m Wm + 1

2γ

N∑

t=1

em(k)2

= min
Wm,cm ,em(k),βm

1

2
W T

m Wm + 1

2γ
em(1)2

+ 1

2γ
em(2)2 + · · · + 1

2γ
em(N)2 (24)

with equality constraints

ym(k) = βT
m xm1(k) + W T

m ϕm(xm2(k)) + cm + em(k) (25)

for k = 1, . . . , N . In the regression, the importance of em(k) is
determined by γ . For em(i), if we let γ become smaller ((1/γ )
becomes larger), it will increase the effect of the sampling data
(x(i), Y (i)). Furthermore, if we let γ → ∞ ((1/γ ) → 0),
em(i) will no longer have any effect in the ridge regression.

Using the estimated model (20), the output of channel m
with N + 1 kernels (i.e., considering N + 1 sampling data)
with respect to the training sample j can be calculated as

y N+1
m (x( j))

= βT
m,N+1xm1( j) +

N+1∑

k=1,k 	= j

αN+1
m (k)Km(xm2(k), xm2( j))

+αN+1
m ( j)Km(xm2( j), xm2( j)) + cN+1

m . (26)

The output of channel m with N kernels with respect to the
training sample j can be calculated as

y N
m (x( j)) = βT

m,N xm1( j)

+
N+1∑

k=1,k 	= j

αN
m (k)Km(xm2(k), xm2( j)) + cN

m . (27)

Then by subtracting the two equations above, the introduced
error of the mth output channel for sample j , when j is
omitted, is given by

Dm(x( j)) = y N+1
m (x( j)) − y N

m (x( j))

= (βT
m,N+1 − βT

m,N )xm1( j)

+
N+1∑

k=1,k 	= j

(αN+1
m (k) − αN

m (k))Km(xm2(k), xm2( j))

+ αN+1
m ( j)Km(xm2( j), xm2( j))

+ cN+1
m − cN

m . (28)

Since the computation complexity is directly dependent on
the number of samples, in order to reduce it while guaran-
teeing the generalization, in the case of N + 1 samples, one
needs to prune one sample that carries the least information
compared to the other samples. Intuitively, the sample that
introduces the smallest approximation error after being omitted
could be pruned. Note that the introduced error for the mth
output channel is determined by the difference of coefficients
βm , αm(k)’s and cm . Now, compute the approximation error
introduced by sample j . Let the regularization constant γ with
respect to em( j) tend to infinity, which implies that a parameter
λ(λ tends to infinity) is added to γ with respect to em( j). This
leads to the following linear matrix equation:

⎡

⎣
0 0 X T

m1

0 0 1T

Xm1 1 
N+1
m + γ I + Vj

⎤

⎦ ·
⎡

⎣
βm

cm

αm

⎤

⎦ =
⎡

⎣
0
0

ym

⎤

⎦ (29)

where Vj = diag{0, . . . , λ, . . . , 0}, Xm1 = [xm1(1)T ,
xm1(2)T , . . . , xm1(N + 1)T ], ym = [ym(1), ym(2), . . . , ym

(N + 1)]. If λ = 0, the equation is just the case of N + 1
samples, if λ → ∞, the sample j is ignored in the regression.
We can obtain (see Appendix) the introduced error after
sample j is omitted as

Dm(x( j)) = αN+1
m ( j)

[A−1
m,N+1] j j

(30)

where [A−1
m,N+1] j j represents the Nm1 +1+ j diagonal element

of the inverse of A−1
m,N+1. For the MIMO partially linear

system (11), there are M output channels. Therefore, the
introduced error for all the channels should be considered to
find the sample to prune. To this aim, the following criterion
is proposed:

arg j min
M∑

m=1

|Dm(x( j))| = arg j min
M∑

m=1

∣
∣
∣
∣

αN+1
m ( j)

[A−1
m,N+1] j j

∣
∣
∣
∣. (31)

With this pruning method, the kernel with the least contribu-
tion would be removed to keep the parsimony and generaliza-
tion ability of the estimation model.

The commonly used pruning strategies for LS-SVM are the
moving window strategy [36] and the least Lagrange multiplier
strategy [37]. The former usually deletes the oldest sample by
supposing the newer one contains more information about the
system. The latter tries to remove the sample with the smallest
Lagrange multiplier. However, both have no solid theoretical
proof and may not guarantee the generalization ability after
the sample is pruned. However, based on the pruning error
minimization principle, the sparseness strategy given in this
section can theoretically guarantee the minimum estimation
error and probably the best generalization of the model.

C. Decrement Algorithm

The increment algorithm above demonstrates how to update
the estimate model when a new sample is available without
computing the inverse of the updated kernel matrix. To con-
struct an online algorithm, after the new sample is available,
the redundant sample in the new training dataset that is
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Initial samples and
kernel parameters

(e.g. N, d, r)

MIMO partially linear
estimation model with

N order (Eq. (20))

Increments algorithm
update kernel matrix

A−1
m, N+1 

(Eq. (23))

Decrements algorithm
update kernel matrix
A−1

m, N 
(Eq. (32−35))

End No

YES

NO

YES

New sample

N = N + 1

N ≥ N
t
?

Continue?

Sparseness strategy and
find j for pruning the

redundant sample
(Eq. (31))

Compute kernel matrix
A−1

m, N

selected by the sparseness strategy needs to be pruned. Similar
to the increment algorithm, it is better to avoid computing the
inverse of the matrix. Thus, A−1

m,N that will appear after the
redundant sample is pruned should be updated from A−1

m,N+1.
According to the proposed sparseness strategy, any sample

in the training set could be pruned. If sample j is pruned, for
the mth output channel, it means that Am,N is constructed by
deleting the Nm1 + 1 + j th row and Nm1 + 1 + j th column
of Am,N+1. For A−1

m,N+1 and A−1
m,N , denote the inverse of

Am,N+1 by

A−1
m,N+1 =

⎡

⎣
A−1

m,N+1(1, 1) am(1, j) A−1
m,N+1(1, 2)

aT
m(1, j) a∗

m aT
m(2, j)

A−1
m,N+1(2, 1) am(2, j) A−1

m,N+1(2, 2)

⎤

⎦ (32)

and

A
−1
m,N+1 =

(
A−1

m,N+1(1, 1) A−1
m,N+1(1, 2)

A−1
m,N+1(2, 1) A−1

m,N+1(2, 2)

)

(33)

Hm,N+1 =
(

am(1, j)
am(2, j)

)

(34)

where [am(1, j), a∗
m, am(2, j)]T and [aT

m(1, j), a∗
m, aT

m(2, j)]
represent the Nm1 + 1 + j column and Nm1 + 1 + j row of
A−1

m,N+1. The inverse of Am,N can be obtained by

A−1
m,N = A

−1
m,N+1 − 1

a∗
m

Hm,N+1 H T
m,N+1. (35)

Then, A−1
m,N can be updated from A−1

m,N+1 without the inverse
of Am,N .

Generally speaking, a specific spatiotemporal system corre-
sponds to a specific lattice structure and difference relation-
ship. After model transformations, it would become a MIMO
partially linear model. The proposed algorithm can be used
to reproduce online the dynamic behaviors of spatiotemporal
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Fig. 1. Actual data u(x, t).

dynamical systems and also to characterize the physical char-
acteristics of the system as mentioned before. The algorithm
is summarized in the figure top. Nt is the threshold number
of the training data that are used for regression.

V. SIMULATIONS AND DISCUSSIONS

A. Example A: Kolmogorov–Petrovskii–Piskunov Equation

Let u(x, t) represent the temperature distribution of an
insulated rod and assume that there is a nonlinear heat source
of strength 0.1u(x, t)(5u(x, t)−1)(5u(x, t)+1) (Kolmogorov–
Petrovskii–Piskunov equation [2]). The nonlinear equation to
be studied has the form

∂u

∂ t
= (1 + sin3(2πx))

∂2u

∂x2

+ 0.1u(x, t)(25u2(x, t) − 1) (36)

with the initial and boundary conditions

u(x, 0) = 2 sin(πx), u(0, t) = 0, u(1, t) = 0. (37)

This system can be transformed into a lattice dynamical system
following Section II and then a MIMO partially linear system
when both the space and time are properly discretized.

In identification, the space domain is sampled at 22 equally
spaced points over [0, 1]. Therefore, a 20-D MIMO partially
linear model is established. The time domain is sampled at
200 equally spaced points over [0, 0.1]. Thus 200 data points
for each dimension is generated. The actual data with space
step �x = 1/21 and time step �t = 0.1/200 is plotted in
Fig. 1.

The commonly used positive kernel functions are the
linear kernel (K (xi , x j ) = x T

i x j ), the polynomial kernel
(K (xi , x j ) = (x T

i x j + r)d , where d is polynomial degree and
r is tuning parameter), and the Gaussian kernel (K (xi , x j ) =
exp(−||xi − x j ||22/σ 2), where σ is the bandwidth). For each
dimension, by solving the corresponding matrix equation, the
coefficients of the linear part for the regression model can
be derived. Then, the space-dependent coefficient a(x), which
is a nonlinear function representing the physical property
of the heat transition medium, can be obtained by proper
scaling. Without loss of generality, the corresponding data
of a(x) is taken at k = 21, after a threshold number of
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Fig. 2. Estimations for a(x) = 1 + sin3(2π x).
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Fig. 3. Model prediction output using a polynomial kernel.
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Fig. 4. Model prediction error using a polynomial kernel.

samples are available for the regression model to avoid the
transient response (the threshold number is taken as 20 given
heuristically in this example). The result is shown in Fig. 2.
The model prediction and prediction error using polynomial
kernel functions are shown in Figs. 3 and 4, and those using
Gaussian kernel functions are given in Figs. 5 and 6. In the
first case, the proposed online algorithm leads to 20 samples
that are finally selected out as (123, 142, 147, 149, 150, 156,
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Fig. 5. Model prediction output using a Gaussian kernel.
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Fig. 6. Model prediction error using the Gaussian kernel.

168, 182, 183, 184, 187, 189, 191, 192, 193, 194, 195, 196,
199, 200) and the polynomial kernel function is chosen with
parameters d = 3, r = 1, and γ = 0.001. In the second
case, by using the online algorithm, 20 samples are finally
selected out (169, 172, 173, 174, 175, 178, 179, 180, 181,
182, 183, 185, 190, 191, 192, 193, 194, 196, 199, 200) and the
Gaussian kernel function is chosen with parameters σ = 10
and γ = 0.001. It can be seen that the proposed algorithm
tracks the dynamics very well and the identified model can
accurately reproduce the behavior of the spatiotemporal system
after a short period of transient response (about five sampling
times in Figs. 4 and 6). With proper scaling, the nonlinear
a(x) = 1 + sin3(2πx) is precisely fitted.

In the simulation, at a fixed dimension i , each corresponding
coefficient of the linear part is available to obtain the coeffi-
cient a(i). Therefore, the average value of the coefficients are
used (actually, the coefficients of the linear part are slightly
different). Satisfactory results could be obtained with fewer
samples (20 training data are used here).

The selection of kernel parameters may have some influence
on the identification performance [25], [34], [38]. For the
linear and Gaussian kernels, it is efficient to identify a more
complex nonlinear process by using a larger degree d or a
smaller bandwidth σ 2. But it may result in overfitting prob-
lems, when the nonlinearity of the process is relatively weak.



1388 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 9, SEPTEMBER 2011

TABLE I

IDENTIFICATION RESULTS WITH DIFFERENT PARAMETERS UNDER

DIFFERENT CONDITIONS

Kernel γ (d, r) σ MSE RMSE Samples

Poly 10−3 (3, 1) 5.3 × 10−6 4.1 × 10−6 20

Poly 10−3 (4, 1) 4.8 × 10−6 4.4 × 10−6 20

Poly 10−3 (5, 1) 5.5 × 10−5 2.8 × 10−5 10

RBF 10−6 10 2.8 × 10−6 7.4 × 10−6 20

RBF 10−6 1 4.5 × 10−8 8.1 × 10−8 20

RBF 10−3 10 4.0 × 10−5 7.3 × 10−5 20

RBF 10−3 1 2.7 × 10−8 5.9 × 10−8 20

0
10

20
30

40
50

0

20

40

60
−5

−4

−3

−2

−1

0

1

x
y

u(
x,

 y
, t

)

Fig. 7. Model prediction output u(x, y, t) using a polynomial kernel at t = 2.

When a smaller degree d and a larger bandwidth σ 2 are used,
overfitting problems may be avoided, but it is difficult to trace
a complex nonlinear process. The regularization parameter
γ can be preselected, a larger γ could help to derive a
more complex model, and vice versa. Therefore, some prior
information about the system nonlinearity may be helpful for
the selection of kernel parameters.

To demonstrate the proposed algorithm, two
performance indices are introduced, i.e., the mean

square error (MSE=
√
∑M

i=1
∑N

k=7(ū(i, k) − u(i, k))2/M N ),
and the relative mean square error (RMSE=√
∑M

i=1
∑N

k=7 (ū(i, k) − u(i, k)/u(i, k))2/M N ), where ū(i, k)
is used to denote the predicted output of u(i, k). Note that the
MSE and RMSE are calculated without the data with N < 7
to remove the transient response effects. The Gaussian kernel
function and polynomial kernel function are utilized with
different kernel parameter (γ, σ ) and (γ, d, r) (see Table I).
Although the selection of kernel parameters does affect the
results, the identification performance is slightly different as
shown when the values of the parameters are in a reasonable
range as discussed before.

B. Example B: Nonlinear Klein–Gordon Equation

Another example is used to show the application of the
proposed method to a 2-D problem. Consider the following

0
10

20
30

40
50

0

20

40

60
−2

−1

0

1

2

3

x
y

e(
x,

 y
, t

)

× 10−8

Fig. 8. Model prediction error using polynomial kernel at t = 2.
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Fig. 9. Estimations for b(x, y) using a polynomial kernel.

nonlinear Klein–Gordon equation:
∂2u

∂ t2 =
(

x2 + y2
)(∂2u

∂x2 + ∂2u

∂y2

)

+ 0.2u2(x, y, t)

0 ≤ x ≤ 2, 0 ≤ y ≤ 2 (38)

with boundary conditions and initial conditions

u(x, 0, t) = 0, u(x, 2, t) = 0,

u(0, y, t) = 0, u(2, y, t) = 0,

u(x, y, 0) = 0.1 sin(πx) sin
(πy

2

)
,

∂u

∂ t
(x, y, 0) = 0. (39)

Following Section II, this system can be transformed into a
MIMO partially linear model with proper discretization. To
apply the proposed algorithm, the space domains along the x-
and y-axes are sampled evenly with 21 points over [0, 2]. A
361-D MIMO partially linear model is then established. The
time domain is sampled evenly with 200 points over [0, 2].
Two hundred data points for each dimension are generated.

By using polynomial kernel functions with parameters d =
3, r = 1, and γ = 10−9, 50 samples are selected out.
The model prediction and prediction error for u(x, y, t) at
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Fig. 10. Estimation errors for b(x, y) using a polynomial kernel.
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Fig. 11. Model prediction output using the Gaussian kernel at t = 2.

TABLE II

IDENTIFICATION RESULTS WITH DIFFERENT PARAMETERS UNDER

DIFFERENT CONDITIONS

Kernel γ (d, r) σ MSE RMSE Samples

Poly 10−9 (2, 1) 1.1 × 10−6 1.2 × 10−3 50
Poly 10−9 (3, 1) 1.8 × 10−6 2.3 × 10−3 50
Poly 10−9 (5, 1) 3.8 × 10−6 9.6 × 10−3 30
RBF 10−9 10 2.03 × 10−4 3.5 × 10−3 50
RBF 10−9 100 7.6 × 10−6 1.2 × 10−3 50
RBF 10−9 100 2.3 × 10−4 3.3 × 10−3 30

t = 0.01 × 200 = 2 are plotted in Figs. 7 and 8, respectively.
The estimated values and their errors for b(x, y) are shown
in Figs. 9 and 10. The model prediction and prediction error
for u(x, y, t) at t = 0.01 × 200 = 2 using Gaussian kernel
functions are given in Figs. 11 and 12. The estimated values
and their errors for b(x, y) are shown in Figs. 13 and 14. The
Gaussian kernel function is chosen with parameters σ = 10
and γ = 10−9. The results with different kernel functions and
parameters are summarized in Table II.
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Fig. 12. Model prediction error using the Gaussian kernel at t = 2.
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Fig. 13. Estimations for b(x, y) using the Gaussian kernel.

These results still demonstrate the good performance of the
proposed method. Note that the estimation error on the node
near the original point is relatively large (a peak in Fig. 10).
The reason could be that b(x, y) is actually very small on this
node, which may consequently result in bigger rounding error
in the regression. Moreover, it should be noted that multiple
step ahead prediction using the proposed method can also be
achieved with reasonably small prediction error, since one step
ahead prediction is very accurate (Figs. 4, 6, and 8).

C. Comparison Results

Compared to the existing methods developed for the identi-
fication of spatiotemporal systems in [14]–[17], the proposed
method utilizes the known structural information about the
system so that the nonlinear physical characteristics of the
original system can be estimated simultaneously. However, the
FOLS methods in [14]–[17] produce only an NARX model
or black-box model having little physical link. The FOLS
algorithms are only offline ones and involve repetitively using
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Fig. 14. Estimation errors for b(x, y) using the Gaussian kernel.
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Fig. 15. Actual data u(x, t) (an abrupt change at time 0.1).

the Gram–Schmidt orthogonalization process for each new
sample whose complexity is known as O(N3

s ) [14], [19],
[20], [39], where Ns is the number of samples used for
regression. The proposed method is a recursive version of
the LS-SVM with recursive update of the matrix inversions,
and the computation complexity of the offline LS-SVM is
estimated as O(N2

s ) [34], [33]. Therefore, the complexity of
the PM-RLS-SVM must be better than the FOLS in [14]–[17]
and can be used for online estimation.

Note that several kernel learning methods such as kernel
least mean squares (KLMS) and kernel recursive least squares
(KRLS) were proposed recently [40]–[43]. Although these
algorithms have efficient sparseness and update strategies,
none employs pruning strategy.

The pruning strategy in the PM-RLS-SVM can remove
the sample with the least contribution to the model, and
therefore can maintain the parsimony of the model and trace
the changing dynamics of the system (if any) quickly. Without
the pruning strategy, the performance would be different. For
better understanding, consider a special cases shown in Fig. 15,
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Fig. 16. Model prediction output.
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where the system dynamics undergo significant changes at
time t∗. In order to accurately predict the system behavior after
t∗, obviously the old samples measured before t∗ would take a
very limited or even negative contribution and thus should be
pruned from the regression. The PM-RLS-SVM can effectively
achieve this and quickly keep up with the changing of the
system dynamics. However, the KLMS and KRLS algorithms
cannot remove the old useless information and thus would
bring larger errors or biased estimation for system model and
system states.

Moreover, the proposed method in this paper can accurately
estimate the model parameters that characterize system phys-
ical properties and are nonlinear functions of space variables.
The KLMS and KRLS algorithms are developed in the feature
space aiming at minimizing the estimation error only [compare
with (14)], and the KRLS additionally requires the approxi-
mate linear dependence condition [40]–[43]. Therefore, they
may not be directly extended to the identification of partially
linear models with capability of estimating important physical
parameters simultaneously.
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Fig. 18. Estimations for a(x) at time 0.15.

TABLE III

IDENTIFICATION RESULTS USING DIFFERENT ONLINE ALGORITHMS

Method (d, r) γ η ν MSE RMSE

PM-RLS-
SVM

(3, 1) 0.001 1.78 × 10−5 1.47 × 10−5

KLMS (3, 1) 0.5 7.9 × 10−2 8.1 × 10−2

KRLS (3, 1) 0.05 1.27 × 10−2 3.2 × 10−2

KLLS (3, 1) larger larger

To illustrate the advantages of the PM-RLS-SVM algorithm
in tracking changing nonlinear dynamics and changing phys-
ical characteristics, consider Example A again with similar
discretization in the time interval [0, 0.2] instead of [0, 0.1].
At t = 0.1 (i.e., the sampling time 201), the nonlinear term
f (u(x, t)) is designed to change from f (u) = 0.1u(25u2 −1)
to f (u) = 5u−15u2, the parameter a(x) is designed to change
from a(x) = 1 + sin3(2πx) to a(x) = 1 + 0.5 cos(2πx), and
the input u(x, t) is also changed at the same time. That is,
the boundary condition u(x, 0.1) = 4x(1 − x), 0 ≤ x ≤ 1
(see Fig. 15). In simulations, the polynomial kernel function
is chosen with d = 3, r = 1. If the prediction error exceeds
0.5, then take it as 0.5 for convenience in visual illustration.
The prediction output and errors with the proposed algorithm
are given in Figs. 16 and 19. The data of a(x) taken at time
0.05 and 0.15 is shown in Figs. 17 and 18. It can be seen that
after a short period (about 15 sampling times) of transient
effects, the dynamics of the system can be predicted very
well, and the change of a(x) is estimated accurately. The
prediction errors with the least Lagrange multiplier strategy
(KLLS) [37] is shown in Fig. 20, where γ is also chosen
to 0.001, and with KLMS and KRLS given in Figs. 21 and
22, where the learning step η for KLMS is chosen as 0.5
and the ALD condition parameter ν for KRLS is chosen as
0.05 for as good a performance as possible. Large estimation
errors are observed even after transient response. The MSE and
RMSE using these algorithms are shown in Table III, where
the transient effects are removed in computing the MSE and
RMSE.
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Fig. 19. Model prediction error (an abrupt change at time 0.1).
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Fig. 20. Model prediction error using the least Lagrange multiplier
strategy.

Compared to the KLMS and KRLS in [40]–[43] and the
least Lagrange multiplier strategy [37], the PM-RLS-SVM
demonstrates obviously a better performance in tracing the
changing dynamics of the system in this example.

Furthermore, it should be noted that this could be the first
attempt to use a recursive LS-SVM method to tackle the
(online) estimation problems of distributed parameter systems
from the perspective of a partially linear model, although
the LS-SVM methods have already been applied to identify
partially linear models recently such as the PL-SVM in [33].
Compared to the PL-SVM, the PM-RLS-SVM provides an
efficient recursive version of the LS-SVM algorithm (i.e.,
an increment algorithm and a decrement algorithm with a
well-proven sparseness strategy and efficient update method
for matrix inversion), copes with a MIMO partially linear
model, which is reflected in the coupling effects in the linear
and nonlinear parts of each channel model (7)–(20), and can
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Fig. 21. Model prediction error using KLMS.
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Fig. 22. Model prediction error using KRLS.

estimate important physical parameters accurately (a spatio-
dependent function involved in all channel models).

D. Further Discussions

Generally speaking, many physical phenomena can be
described by spatiotemporal models using PDEs. With some
classic discretization methods, these models can always be
transformed into lattice dynamical systems and then into par-
tially linear models which can be identified with the PM-RLS-
SVM. The kernel-based learning methods as demonstrated in
this paper could be a promising and very powerful tool to
investigate the analysis and estimation problems of distributed
parameter systems and thus provide a useful insight into data-
based optimization and control of PDEs [44], [45].

In practice, the measurement noise is inevitable. Consid-
ering (36), suppose the measurement data of u(x, y, t) are
perturbed by Gaussian noise e(t). That is, u∗ is obtained and
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Fig. 23. Model prediction output.
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Fig. 24. Model prediction error (subject to measurement noise).

used in regression with

u∗(x, y, t) = u(x, y, t) + e(t). (40)

The nonlinear term of the model for Example A contains the
state u(x, y, t) ( f (u)). Substituting u(x, y, t) by u∗(x, y, t),
the regression model can be generally written as

u∗(t + 1) = f ∗(u∗(t) + e(t)) + e(t + 1). (41)

The measurement noise actually enters into the regression
nonlinearly as a process noise, which is a difficult problem in
nonlinear system identification. A little noise may have great
influence on the identification algorithm and result in large
estimation errors.

Considering (36), a simulation result is given to demonstrate
the proposed algorithm in treating noisy data. The data are
corrupted by independent Gaussian noise with variance of
0.001. The polynomial kernel function is chosen with d = 3,
r = 1, and γ = 0.001. Twenty samples are finally selected.
The results are given in Figs. 23 and 24, showing that the noise
does have an influence on identification, but the estimated
dynamics of the system still matched well. For spatiotempo-
ral dynamical systems with suitable nonlinearity, satisfactory
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performance with the proposed identification algorithm could
still be obtained in noisy environments.

Alternatively, spatiotemporal systems perturbed by noise
may be studied based on stochastic PDEs [46]–[49]. A simple
example widely applied in neurophysiology [48] is given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂u
∂t (t, x) = ∂2u

∂x2 (x, t) − bu(x, t) + f (x, t)

+ ∂2W
∂t∂x (x, t), t > 0,

u(x, 0) = ξ(x), 0 ≤ x ≤ 1,
u(0, t) = u(1, t) = 0, t ≥ 0

(42)

where (∂2W/∂ t∂x)(x, t) denotes the space–time white noise,
b is a constant. There are many different stochastic PDEs
for different physical phenomena and different noise (e.g.,
levy noise). Therefore, the application and extension of the
identification method proposed in this paper to stochastic
spatiotemporal systems are interesting topics for further inves-
tigation.

VI. CONCLUSION

A systematic identification method for nonlinear spatiotem-
poral systems was developed by using the LS-SVM method
from a perspective of partially linear models. The spatiotempo-
ral dynamical systems were formulated into a general MIMO
partially linear system, and an online algorithm was therefore
proposed based on the LS-SVM and a well-proven pruning
error minimization principle. Because the proposed method
takes advantage of the prior structural information of the
samples to determine the structure of regression models and
corresponding regressors, this results in reduced computation
complexity and powerful characterization of the dynamic and
nonlinear characteristics of the physical or structural properties
of the underlying system. The latter is of particular signifi-
cance in the analysis and design of nonlinear spatiotemporal
systems, which now is under further study. The method can
also be extended to a more general case with stochastic
process noise and the control and optimal design of distributed
parameter systems. These will be dealt with in future studies.

APPENDIX

CALCULATION OF THE INTRODUCED ERROR

Denote (0, 0, ym) = δm , p = [0, 0, 0,
√

λ, 0]T , Im, j the
column vector of size N +2+Nm1 filled with 0 except element
Nm1 + 1 + j which is equal to 1, and

Am,N+1,λ =
⎛

⎝
0 0 X T

m1

0 0 1
Xm1 1 
N+1

m + γ I + Vj

⎞

⎠ . (A1)

The kernel matrix can be represented by Am,N+1 + ppT . With
the method in [35]

A−1
m,N+1,λ = [Am,N+1 + ppT ]−1

= A−1
m,N+1 − A−1

m,N+1 ppT A−1
m,N+1

1 + pT A−1
m,N+1 p

. (A2)

Set zm = A−1
m,N+1δm and zm,λ = A−1

m,N+1,λδm , then

�zm = zm − zm,λ = A−1
m,N+1δm − A−1

m,N+1,λδm

=
(

A−1
m,N+1 ppT A−1

m,N+1

1 + pT A−1
m,N+1 p

)

δm

=
(

λA−1
m,N+1 Im, j I T

m, j A−1
m,N+1

1 + λI T
m, j A−1

m,N+1 Im, j

)

δm . (A3)

Taking λ → ∞ gives

lim
λ→∞ �zm =

(
A−1

m,N+1 Im, j I T
m, j A−1

m,N+1

I T
m, j A−1

m,N+1 Im, j

)

δm . (A4)

Note that

Dm(x( j)) = (βT
m,N+1 − βT

m,N )xm1( j)

+
N+1∑

t=1,k 	= j

(αN+1
m (t) − αN

m (t))Km (xm2(t), xm2( j))

+ αN+1
m ( j)Km(xm2( j), xm2( j)) + cN+1

m

− cN
m (A5)

which is equal to the product of the difference of the solutions
and the Nm1 + 1 + j row of kernel matrix Am,N+1, then we
have Dm(x( j)) = (αN+1

m ( j)/[A−1
m,N+1] j j).
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