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a b s t r a c t

In this article, the HN optimization design of a hybrid vibration absorber (HVA),

including both passive and active elements, for the minimization of the resonant

vibration amplitude of a single degree-of-freedom (sdof) vibrating structure is derived

by using the fixed-points theory. The optimum tuning parameters are the feedback

gain, the tuning frequency, damping and mass ratios of the absorber. The effects of

these parameters on the vibration reduction of the primary structure are revealed based

on the analytical model. Design parameters of both passive and active elements of the

HVA are optimized for the minimization of the resonant vibration amplitude of the

primary system. One of the inherent limitations of the traditional passive vibration

absorber is that its vibration absorption is low if the mass ratio between the absorber

mass and the mass of the primary structure is low. The proposed HVA overcomes this

limitation and provides very good vibration reduction performance even at a low mass

ratio. The proposed optimized HVA is compared to a recently published HVA designed

for similar propose and it shows that the present design requires less energy for the

active element of the HVA than the compared design.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The traditional passive vibration absorber (PVA) is an auxiliary mass–spring–damper system which, when correctly
tuned and attached to a vibrating system subject to harmonic excitation, causes to cease the steady-state motion at the
point to which it is attached. The first research conducted at the beginning of the twentieth century considered an
undamped PVA tuned to the frequency of the disturbing force [1]. Such an absorber is a narrow-band device as it is unable
to eliminate structural vibration after a change in the disturbing frequency.

Finding the optimum parameters of a viscous friction PVA in sdof system drew the attention of many scholars. One of
the optimization methods is HN optimization. Ormondroyd and Den Hartog [2] proposed the optimization principle of the
damped PVA in terms of minimizing the maximum amplitude response of the primary system, which is called HN

optimization of PVA. Following this principle, Hahnkamm [3] derived the expressions for the optimum tuning of PVA used
in the sdof system. Brock [4] developed the approximated optimum damping. The optimum design method of the dynamic
vibration absorber is called ‘‘Fixed-points theory’’, which was well documented in the textbook by Den Hartog [5]. The
exact solution of the HN optimization of a PVA attached to undamped primary system was derived by Nishihara and
Matsuhisa [6]. However, it was found that the minimum resonant vibration amplitude of the primary system attached
with the PVA depends on the mass ratio [7]. When the mass ratio is fixed, the performance of the PVA is also limited.
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In order to improve the vibration suppression performance of the PVA, some researchers incorporate an active actuator
to a PVA to form a hybrid vibration absorber (HVA). Various methods were proposed to control the active element of the
HVA including neural network [8], delayed resonator [9], linear matrix inequalities [10], modal feedback control [11–15]
and closed-loop poles by modal feedback [16,17]. However, the control methods of HVA found in literature are very
complicated and most of the research reported in literature focused on the improvement of the active controller design
rather than the optimization of both the active and passive components of the HVA.

In this article, HN optimal design of a damped hybrid vibration absorber is proposed for the minimization of the
resonant vibration amplitude of a sdof system. Both the active and passive elements are optimized. The proposed
optimized tuning of the HVA can also minimize the actuation force of the actuator. Comparisons with the result of HN

optimal PD control of HVA by Chatterjee [18] show much better results of our optimum design. Finally, we apply the
proposed optimized HVA to a beam structure and compare its vibration suppression performance to that of the optimized
PVA [18,19] and also to the optimal PD control of HVA by Chatterjee [18].

2. Theory

A HVA coupled with a primary system is shown as Fig. 1, where x, M and K denote, respectively, displacement, mass and
stiffness of the primary system; and xa, m and k are those of the absorber. c is the damping coefficient of the absorber.

The equations of motion of the primary mass M and the absorber mass m may be written as

M €x ¼�Kx�kðx�xaÞ�cð _x� _xaÞ�f aþF

m €xa ¼�kðxa�xÞ�cð _xa� _xÞþ f a

(
(1)

where F is a disturbance and fa¼ax is the active force applied by the actuator as illustrated in Fig. 1. Taking Laplace
transformation of Eq. (1), the transfer function of the primary mass M may be written as

HðpÞ ¼
X

F=K
¼

g2þp2þ2zgp

ð1þp2Þðg2þp2Þþðmg2þ2aÞp2þ2zgpð1þp2þmp2Þ
(2a)

where p¼ s=on, m¼m=M, on ¼
ffiffiffiffiffiffiffiffiffiffiffi
K=M

p
, oa ¼

ffiffiffiffiffiffiffiffiffiffi
k=m

p
, g¼oa=on, z¼ c=2

ffiffiffiffiffiffiffi
mk
p

and a¼ a=2K .
The transfer function of the absorber mass m may be written as

Xa

F=K
¼

g2þð2a=mÞþ2zgp

ð1þp2Þðg2þp2Þþðmg2þ2aÞp2þ2zgpð1þp2þmp2Þ
(2b)

Since fa¼a x¼2Ka x, the transfer function of the active force in the absorber may be written as

Fa

F
¼ 2aHðpÞ ¼

2aðg2þp2þ2zgpÞ

ð1þp2Þðg2þp2Þþðmg2þ2aÞp2þ2zgpð1þp2þmp2Þ
(2c)

F sinωt

 x

 xa

M

 K/2  K/2 

m

k c
  fa

  fa

Fig. 1. Schematic diagram of the proposed hybrid vibration absorber (m-k-c-fa system) attached to the primary (M–K) system.
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where Fa is the Laplace transformation of fa. According to Eqs. (2a)–(2c), the characteristic equation of the combined
system may be written as

p4þ2zgð1þmÞp3þð1þg2þmg2þ2aÞp2þ2zgpþg2 ¼ 0 (3)

and 8z, g, m, aARþ .
To apply the Routh’s stability criterion, the array of coefficient may be written as

The system is stable if the real parts of all poles are negative. Since all coefficients of the array in Eq. (4) are positive if
aZ0, the control system is stable according to the Routh’s stability criterion. That means the proposed HVA control system
is applicable in principle if aZ0.

The frequency response function of mass M can be obtained by replacing p in Eq. (2a) by jl where l¼o=on and j2
¼�1.

The frequency response function of mass M may be written as

HðlÞ ¼
g2�l2

þ2jzgl
ð1�l2

Þðg2�l2
Þ�ðmg2þ2aÞl2

þ2jzglð1�l2
�ml2

Þ
(5)

The frequency response amplitude of the primary mass M, 9H(l)9, is calculated according to Eq. (5) with three different
damping ratios and the results are plotted in Fig. 2 for illustration. It can be seen in Fig. 2 that the frequency response
amplitudes of mass M at la and lb are independent of the damping ratio z and these two points are called ‘fixed points’.
Considering H(l)9B¼0¼H(l)9B¼N, we may write

l4
�

2ðg2þmg2þ1þaÞ
2þm l2

þ
2g2

2þm ¼ 0 (6)

The two roots of Eq. (6) are la
2

and lb
2

where 0olaolb. The amplitudes of the frequency response at la and lb may be
written as

9HðlaÞ9¼
1

1�l2
a�ml

2
a

�����
����� (7a)

and

9HðlbÞ9¼
1

1�l2
b�ml

2
b

�����
����� (7b)

Frequency ratio, λ
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Fig. 2. The frequency response of the primary mass M with HVA at m¼0.2 and a¼0.1: — z¼0, – – – – z¼0.2, and – �– �– �– � z¼1.
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At any damping ratio, the frequency must pass through these two fixed points. So the optimum condition should obey
the following equation:

maxð9Hðl,gH1,zH1Þ9Þ ¼min
g,z
ðmaxð9HðlaÞ9,9HðlbÞ9ÞÞ (8)

According to the fixed-points theory [2] originally developed for the design of the passive dynamic vibration absorber,
the optimum condition of the dynamic vibration absorber can be achieved by adjusting the frequency ratio g such that the
vibration amplitude responses at la and lb are the same, and then finding the damping so that the two fixed points become
the maximum points on the response curves. A similar procedure is applied to the optimization of the proposed HVA, i.e.
9H(la)9¼9H(lb)9. Using Eqs. (7a) and (7b) and noting that H(la) and H(la) are in opposite phases, we may write

1

1�l2
a�ml

2
a

¼�
1

1�l2
b�ml

2
b

(9)

Solving Eq. (6) for la and lb and substituting them into Eq. (9), the tuning frequency ratio leading to the same response
amplitude at the fixed points can be found and written as

gopt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�að1þmÞ
ð1þmÞ2

s
(10)

From Eq. (10), gopt exists if 1�a(1þm)40, i.e.

ao 1

1þm (11)

Substituting Eq. (10) into Eq. (6), the resulting equation may be written as

l4
�

2

1þm
l2
þ

2ð1�a�amÞ
ð2þmÞð1þmÞ2

¼ 0 (12)

The roots of Eq. (12) may be written as

l2
a ¼

1

1þm

� �
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ2að1þmÞ

2þm

s !
(13)

and

l2
b ¼

1

1þm

� �
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ2að1þmÞ

2þm

s !
(14)

The response amplitude at the fixed points 9H(la)9 and 9H(lb)9 are calculated using Eqs. (7a), (7b), (13) and (14) with
m¼0.2 and a¼0.5 and plotted in Fig. 3 for illustration. It can be seen that, when the excitation frequency increases, 9H(la)9
increases while 9H(lb)9 decreases. The corresponding frequency ratio g at the intersection point of the curves in Fig. 3 is the
optimum frequency ratio of the HVA such that 9H(la)9¼9H(lb)9. Substituting Eq. (13) into Eq. (7a) or Eq. (14) into Eq. (7b),

0 2 4 6 8 1010-3

10-2

10-1
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Fig. 3. The amplitude response at the fixed points versus tuning ratio g at m¼0.2 and a¼0.5: — 9H(la)9, and – – – – 9H(lb)9.
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the response amplitude at the fixed points may be written as

9HðlaÞ9¼ 9HðlbÞ9¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þm

mþ2að1þmÞ

s
(15)

The optimum damping is the damping value which causes the fixed points to become the peaks on the response curve
9H(l)9 and therefore we may consider

@

@l2
9HðlÞ92

����
l ¼ la

¼
@

@l2
9HðlÞ92

����
l ¼ lb

¼ 0 (16)

The damping required leading to maximum vibration amplitude at la and lb may be solved using Eqs. (5), (13) (14) and
(16) and written as

za,b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3mþaðm2þ7mþ6ÞÞ7ðm�aðm2þ3mþ2ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ2að1þmÞ

2þm

q
8ð1þmÞð1�a�amÞ

vuut
(17)

9H(la)9 would becomes the peak value of the response function 9H(l)9 if z¼za and 9H(lb)9 would becomes the peak
value of the response function 9H(l)9 if z¼zb. A convenient approximate value of the optimum damping may be chosen as

zopt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2

aþz
2
b

2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3mþaðm2þ7mþ6Þ

8ð1þmÞð1�a�amÞ

s
(18)

Using Eqs. (3), (10) and (18), the root locus of the control system as shown in Fig. 1 is calculated with mass ratio m¼0.2
and feedback gain a varies from 0 to 1=ð1þmÞ, and the results are plotted in Fig. 4 for illustration. All four poles of the
control system have negative real parts with one pole approaching the origin when a approaches the limiting value
1=ð1þmÞ.

If the optimum tuning frequency gopt and the optimum damping zopt are applied to the proposed HVA, using Eq. (15),
the maximum vibration amplitude of the primary mass M may be written as

G¼
X

F=K

����
����
max

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þm

mþ2að1þmÞ

s
: (19)

The frequency response amplitude of the primary mass M, 9H(l)9, at m¼0.05 with the proposed optimum frequency and
damping ratios are calculated according to Eqs. (5), (10) and (18) with a¼0, 0.2 and 0.5, respectively, and the results are
plotted in Fig. 5 for illustration. All the response curves in Fig. 5 show the typical double peaks in the response spectra of
the primary mass M. When the feedback gain a¼0, the HVA becomes the traditional passive vibration absorber (PVA) and
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Fig. 4. Root locus of the sdof primary system with the proposed HVA in Fig. 1 with m¼0.2 and a 2 ð0,ð1=ð1þmÞÞÞ: — Root 1, – – – – root 2,

� � � � � � � � � � � � � root 3, and – �– �– �– � root 4 of Eq. (3).
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the resonant vibration amplitude is about 10 times of the static deflection of mass M. When the active element is deployed
with a¼0.2, the resonant vibration amplitude drops to about 2.2 times of the static deflection of mass M. When the
feedback gain a increase to 0.5, the resonant vibration amplitude drops further to about 1.4 times of the static deflection of
mass M. These results show that the proposed HVA is very effective in suppressing the resonant vibration amplitude of the
primary vibrating system in comparison to the traditional passive vibration absorption when the mass ratio is low such as
the cases of using vibration absorbers to suppress oscillations of tall buildings and bridges.

Since fa¼ax¼2Ka x, the maximum active force required for the HVA may be written using Eq. (19) as

Fa

F

����
����
max

¼ 2a G¼
aG

K
(20)

When aZ1=ð1þmÞ, it can be shown that the response amplitudes at the fixed point la is always higher than that at
fixed point lb, i.e. 9H(la)949H(lb)9. 9H(la)9and 9H(lb)9 are calculated using Eqs. (6), (7a) and (7b) with a¼0.5 and m¼0.2
and they are plotted in Fig. 6 for illustration.

The frequency of the fixed point la can be found by solving Eq. (6) and written as

la ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þmÞg2þ1þa�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g4ð1þmÞ2�2g2ð2�að1þmÞÞþð1þaÞ2

q
2þm

vuut
: (21)

Frequency ratio, λ 
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Fig. 5. The frequency response of the primary mass M with HVA at m¼0.02: � � � � � � � � � � � � � a¼0.5, - - - - - - a¼0.2, and — a¼0 (PVA).
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Fig. 6. The amplitude response at the fixed points versus tuning ratio g at m¼0.2 and a¼1: — 9H(la)9 and – – – – 9H(lb)9.
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The response amplitude of mass M at frequency la may be found by substituting Eq. (21) into Eq. (5) and written as

9HðlaÞ9¼
�1þaþmaþð1þmÞ2g2þð1þmÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g4ð1þmÞ2�2g2ð2�að1þmÞÞþð1þaÞ2

q
mþ2aþ2ma

(22)

The optimum damping is the damping value which causes the fixed point la to become the peak on the response curve
9H(l)9, i.e. ð@=@l2

Þ9HðlÞ929l ¼ la
¼ 0, and it can be derived using Eq. (5) and written as

zH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S1g4þS2g2þS3þS4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g4ð1þmÞ2�2g2ð2�að1þmÞÞþð1þaÞ2

q
8g2ð1þmÞð2þmÞ

vuut
(23)

where S1¼(2þm)(1þm)2, S2¼(3aþ1)m2
þ(9aþ1)mþ6a�4, S3¼(aþ1)(1þ2aþma) and S4¼(2þm)(1þm)g2

�2þ4aþ2ma.
The corresponding tuning ratio can be derived using Eq. (23) and written as

gH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðG�1ÞðGðmþ2aþ2amÞþ2þmÞ

2Gð1þmÞ2

s
(24)

where G is the maximum amplitude response of 9H(l)9.
To illustrate the difference of 9H(l)9 between the cases of using the low feedback gain ao1=ð1þmÞ and the high gain

aZ1=ð1þmÞ, the frequency amplitude response 9H(l)9 of both cases are calculated according to Eq. (5) and the
corresponding optimum frequency and damping ratios and the result are plotted in Fig. 7. Fig. 7 shows double peaks in
the frequency spectrum with a low gain with ao1=ð1þmÞ and single peak with a high gain. Since the active force required
in the HVA is proportional to the gain a, it is therefore recommended that a low feedback gain with ao1=ð1þmÞ should be
used whenever possible.

In practice, the maximum frequency response G is often a design constraint. If ao1=ð1þmÞ is assumed and using
Eq. (19), the range of G may be written as ffiffiffiffiffiffiffiffiffiffiffi

2þm
m

s
4G41 (25)

The corresponding feedback gain can be obtained from Eq. (19) and written as

a¼ 2þm�G2m
2G2
ð1þmÞ

(26)

The optimum tuning frequency and damping ratios of the HVA can then be determined using Eqs. (10) and (18),
respectively.

Since the use of multiple feedback signals is common in modern control theory [21], feedback signals from both the
primary and absorber masses are considered in the following for the active control of the HVA and compared to the
proposed method, which uses only the feedback signal from the primary mass. Assuming the active force of the HVA is a
function of both the displacements of primary and absorber masses written as fa¼axþbxa. The active force in the HVA may

10-2

10-1

10110-1

100

100

Frequency ratio, λ

|H
(λ

)| 

Fig. 7. The frequency response of the primary mass M with HVA tuned to the optimum tuning at m¼0.2 and G¼1.5: — 9H(l,gopt,zopt)9, ao1=ð1þmÞ
and – – – – 9H(l,gH,zH)9, aZ1=ð1þmÞ.
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be rewritten as

f a ¼ keðx�xaÞþa0x (27)

where ke¼�b and a0 ¼aþb.
ke may be consider to be an added stiffness and a

0

to be the control gain to the HVA.
Eq. (1) may be rewritten as

M €x ¼�Kx�ðkþkeÞðx�xaÞ�cð _x� _xaÞ�axþF

m €xa ¼�ðkþkeÞðxa�xÞ�cð _xa� _xÞþax

(
(28)

The frequency response function of the mass M may be written according to Eq. (5) as

HðlÞ ¼
X

F=K
¼

g2�l2
þ2jzgl

ðð1�l2
Þðg2�l2

Þ�ðmg2þ2aÞl2
Þþ2jzglð1�l2

�ml2
Þ

(29)

and the frequency response of the absorber mass m may be written as

Xa

F=K
¼

g2þ2ða=mÞþ2jzgl
ðð1�l2

Þðg2�l2
Þ�ðmg2þ2aÞl2

Þþ2jzglð1�l2
�ml2

Þ
(30)

where m¼m=M, on ¼
ffiffiffiffiffiffiffiffiffiffiffi
K=M

p
, oa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþkeÞ=m

p
, g¼oa=on, z¼ c=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðkþkeÞ

p
, l¼o=on and a¼ a0=2K.

Comparing Eqs. (5) and (29), the two equations are the same except the absorber’s frequency oa, the damping ratio z
and the control gain a are different in the two cases. The optimum tuning frequency and damping ratios of the HVA in this
case are still expressed as Eqs. (10) and (18), respectively, with a¼ a0=2K.

According to Eq. (19), the maximum vibration amplitude of the primary mass M may be written as

G¼
X

F=K

����
����
max

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þm

mþ2að1þmÞ

s
(31)

where a¼ a0=2Ko1=ð1þmÞ.
Comparing Eqs. (19) and (31), the maximum vibration amplitude of the primary mass M cannot be further reduced by using

feedback signals from both the primary and absorber masses with the control law of Eq. (27) for the active control of the HVA.
Since fa¼axþbxa, the active force required in the HVA may be written as

Fa

F

����
����¼ 1

K

� �
aXþbXa

F=K

����
���� (32)

9Fa=F9¼ 9a=K99X=F=K9 if b is zero and therefore the spectrum of 9Fa=F9 will have two peaks of equal height similar to the
spectrum of 9X=ðF=KÞ9 as shown in Fig. 5. If b is not zero, one peak of the spectrum 9Fa=F9 will raise while the other peak
will fall as illustrated in Fig. 3 for 9X=ðF=KÞ9. To illustrate the effect of b on the active force amplitude, the dimensionless
active force amplitudes 9Fa=F9 are calculated using Eqs. (29), (30) and (32) with m¼0.2 and four different set of (a/2K,b/
2K)¼(0.2, 0), (1.2, �1), (�0.3, 0.5) and (0.1, 0.1) such that (aþb)/2K¼a¼0.2 in all four cases and the results are plotted in
Fig. 8 for illustration. According to Eq. (31), the maximum vibration amplitude of the primary mass M, G can be found to be
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Fig. 8. Dimensionless active force 9Fa=F9 of the HVA in Fig. 1, where 9Fa9¼9aXþbXa9 with m¼0.2 and G¼2.1: — a¼0.2K, b¼0; � � � � � � � � � � � � � a¼1.2K,

b¼�K; – �– �– a¼�0.3K, b¼0.5K; and – – – – a¼0.1K, b¼0.1K.
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1.8 for all the four cases being considered but the maximum active force required in the first case with b¼0 is smaller than
the other three cases with b not equal to zero. This shows that in the first case where the HVA use only the feedback signal
ax from the primary mass requires smaller active forces and hence power for optimum performance than the other cases
where the HVA use both the feedback signals axþbxa from the primary and the absorber masses.

3. Simulation results and discussion

The proposed HVA is compared to a similar design of Chatterjee [18] reported recently, in which the displacement of
the absorber mass in a HVA without damping was used as feedback signal. Chatterjee proposed a HN optimum PD control
for the minimization of resonant vibration amplitude of a sdof system with the active force of the HVA being f a ¼ axa�b _xa

and the frequency response function of the primary and absorber masses may be written, respectively, as

X

F=K
¼

mg2�2a�ml2
þ jbl

ðmg2�ml2
�2aÞð1�l2

Þ�m2g2l2
þ2jblð1�l2

Þ
(33)

Xa

F=K
¼

mg2

ðmg2�ml2
�2aÞð1�l2

Þ�m2g2l2
þ2jblð1�l2

Þ
(34)

where a¼ ða=2KÞo1 and b¼ bon=2K .
The optimum tuning frequency and damping ratios of the absorber can be written, respectively, as [18]

g¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4aþ2m
mð2þmÞ

s
, (35a)

and

b¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
la
þb2

lb

2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m2ðmþ2aÞ

2þm

s
(35b)

The resonant vibration amplitude of the primary mass may be written as [18]

GPD ¼
X

F=K

����
����
max

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þm

2aþm

s
(36)

The feedback gain a may be written using Eq. (36) as

a¼ 2þm�mG2
PD

2G2
PD

(37)

The dimensionless force functions are defined as

Fa

F

����
PD

¼ 2ða�jblÞ
Xa

F=K

� �
(38)

To compare the proposed HVA to the one by Chatterjee [18], the amplitude response of the proposed HVA,
9H(l,gopt,zopt)9 is calculated according to Eqs. (5), (10) and (18) and the amplitude response of the HVA by Chatterjee is
calculated according to Eqs. (33), (35a) and (35b) and the results are plotted in Fig. 9. G¼2.1 and m¼0.2 in both cases.
g¼1.5(oa in Ref. [18]) in the second case. In Fig. 9, both amplitude response curves have similar shape but slightly
different resonant frequencies. The active force of the proposed HVA is calculated according to Eqs. (2c), (10) and (18) and
that of Chatterjee [18] according to Eqs. (26), (35a), (35b) and (38) and the results are plotted in Fig. 10 for comparison. The
maximum actuation force of the PD control is 4.6 times of that of the present P control with the optimized passive
damping of the absorber. As shown in Fig. 10, the proposed control with the proposed optimized parameters can reduce
the actuation force while maintaining the vibration suppression performance.

The proposed HVA is tested numerically on a simply supported beam similar to the one studied by Chatterjee [18], as
shown in Fig. 11, with a uniformly distributed force. The mean square displacement of the whole beam is evaluated. The
length of the beam is L¼1 m and a HVA is attached at x¼x0¼0.5 m. The dimension of the cross section is
0.025 m�0.025 m. The mass ratio of the HVA is 0.05. The material of the beam is aluminum with r¼2710 kg m�3 and
E¼6.9 GPa. The beam is assumed to be an Euler–Bernoulli beam and its equation of motion may be written as

rA
@2w

@t2
þEI

@4w

@x4
¼ pðtÞgðxÞþFhðtÞdðx�x0Þ (39)

Here it has been assumed that the externally applied forcing function can be expressed as p(t)g(x), where p(t) is a
function of time and g(x) is a deterministic function of x. Fh is the force excited by the HVA. The frequency response
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Fig. 9. The frequency response at m¼0.2 and G¼2.1: — present theory and – – – optimum control by Chatterjee [18].
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Fig. 10. Dimensionless active force 9Fa=F9 of the HVA with m¼0.2 and G¼2.1: — present theory and – – – – optimum control by Chatterjee [18].
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Fig. 11. Schematics of a simply supported beam with a hybrid vibration absorber excited by a uniform disturbed force.
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function of the beam can be derived as shown in Appendix A and written as

Wðx,lÞ
PðlÞ

¼
1

rAo2
n

X1
p ¼ 1

ap�

mLbp

P1

q ¼ 1

aqjq ðx0 Þ

g2
q
�l2

�
g2�l2 þ 2jzgl

l2 g2 þ 2a
e þ 2jzglð Þ

þmL
P1

r ¼ 1

brjr ðx0 Þ

g2
r �l

2

g2
p�l

2
jpðxÞ (40)

where jp is the pth eigenvector of the beam, ap and bp are Fourier coefficients as described in Appendix A; on ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIb4

1=rA
q

,

or ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIb4

r =rA
q

, gr ¼or=on, m¼m=rAL, e¼ mj2
1ðx0Þ and a¼ aj2

1ðx0Þ=2EILb4
1.

Based on Eq. (40), the mean square motion of the beam may be written as

1

L

Z L

0

Wðx,lÞ
PðlÞ

����
����
2

dx¼
1

rAo2
n

� �2X1
p ¼ 1

ap�

mLbp

P1

q ¼ 1

aqjq ðx0 Þ

g2
q
�l2

�
g2�l2 þ 2jzgl

l2 g2 þ 2a
e þ 2jzglð Þ

þmL
P1

q ¼ 1

brjr ðx0 Þ

g2
r �l

2

g2
p�l

2

������������

������������

2

(41)

The optimum frequency and damping of the HVA may be rewritten [20] in term of e, i.e. when ao1=ð1þeÞ,

gopt_HVA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�að1þeÞ
ð1þeÞ2

s
(42a)

and

zopt_HVA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2
la
þz2

lb

2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3eþað1þeÞð6þeÞ
8ð1þeÞ½1�að1þeÞ�

s
(42b)

The HVA is tuned for the dimensionless frequency response at G¼2. The feedback gain a is determined to be 0.1458
while the optimum tuning ratio and the optimum damping ratios are determined using Eqs. (42a) and (42b) as 0.7569 and
0.4613, respectively.

The proposed optimum HVA is firstly compared to the PVA counterpart with a¼0. The optimum tuning frequency and
damping ratio may be written, respectively, as [19]

gopt_DVA ¼
1

ð1þeÞ
(43a)

and

zopt_DVA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3e

8ð1þeÞ

s
(43b)

Dimensionless mean square displacement of the beam with a passive vibration absorber is calculated with Eq. (41)
when a¼0, g¼gopt_DVA and z¼zopt_DVA using Eqs. (43a) and (43b), respectively, and the result is plotted with the case of
the using the proposed HVA in Fig. 12. Fig. 12 shows that the maximum mean square motion of the primary mass using the

10-1 100 101

0.5

1

1.5

2

2.5

3

3.5

Frequency ratio, λ

2 dx
1 L

L
W

 (x
,λ

)
P 

(λ
)

0

Fig. 12. The mean square motion response ð1=LÞ
R L

0 9Wðx,lÞ=PðlÞ92
dx of the beam as shown in Fig. 11 with G¼2: — present theory using Eq. (41) and

� � � � � � � � � � � � � optimum PVA [19].
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proposed HVA is 60 percent lower than the one using the optimized PVA. Suppression of the mean square motion of the
primary mass using the proposed HVA at the higher modes is also better than using the PVA.

Secondly, the proposed optimum HVA is also compared to the optimized PD controlled HVA proposed by Chatterjee
[18]. Similar to Eq. (40), the frequency response function of the beam using the optimized PD controlled HVA [17] may be
derived and written as

Wðx,lÞ
PðlÞ

¼
1

rAo2
n

X1
p ¼ 1

ap�

mLbp

P1

q ¼ 1

aqjq ðx0 Þ

g2
q
�l2

�
g2�l2�2a

e þ
2jZl
e

g2l2 þmL
P1

r ¼ 1

brjr ðx0 Þ

g2
r �l

2

g2
p�l

2
jpðxÞ (44)

where on ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIb4

1=rA
q

, or ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIb4

r =rA
q

, gr ¼or=on, m¼m=rAL, e¼ mj2
1ðx0Þ, a¼ aj2

1ðx0Þ=2EILb4
1 and Z¼ bonj2

1ðx0Þ=2EILb4
1.

Similar to Eq. (41), the mean square motion over the whole domain of the beam using the optimized PD controlled HVA
[18] may be derived and written as

1

L

Z L

0

Wðx,lÞ
PðlÞ

����
����
2

dx¼
1

rAo2
n

� �2X1
p ¼ 1

ap�

mLbp

P1

q ¼ 1

aqjq ðx0 Þ

g2
q
�l2

�
g2�l2�2a

e þ
2jZl
e

g2l2 þmL
P1

r ¼ 1

brjr ðx0 Þ

g2
r
�l2

g2
p�l

2

������������

������������

2

(45)

The mean square motion response of the whole beam is calculated according to Eqs. (41) and (45) and the results are
plotted in Fig. 13. The corresponding active force spectra are plotted in Fig. 14. Comparing the proposed optimum HVA to
that of Chatterjee [18]. The active force required by the proposed optimum HVA is much smaller than that required by the
one proposed by Chatterjee [18].

There are some reported design methods of HVA such as the zero-pole placement method [16], which is able to reduce
vibration peaks while keeping the absorption dip simultaneously in the frequency response of the closed-loop primary
system. However, it is shown in Appendix B that even though the zero-pole placement method can produce greater
vibration reduction of the vibrating structure than the proposed method but the active force required in that method is
very much larger than the proposed method. The proposed design method optimizes the damping effect using the passive
elements and therefore the active force in the HVA can be very much reduced even though the reduction of vibration
amplitude of the primary mass is not as good as the zero-pole placement method. The proposed design method would be a
good option if the active force component in the HVA cannot be too large.

4. Conclusion

In this paper, the HN optimization design of a hybrid vibration absorber (HVA) for the minimization of the resonant
vibration amplitude of a single degree-of-freedom (sdof) vibrating structure is derived by using the fixed-points theory. A
general design framework is established based on an analytical model. The optimum tuning parameters are the feedback
gain, the tuning frequency ratio, the damping ratio and the mass ratio of the absorber. The effects of these parameters on
the vibration absorption of the primary structure are systematically revealed. Design parameters of both passive and active
elements in the HVA are optimized. The inherent limitation of the traditional passive vibration absorber requiring
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Fig. 13. The mean square motion response ð1=LÞ
R L

0 9Wðx,lÞ=PðlÞ92
dx of the beam as shown in Fig. 11 with G¼2: — present theory using Eq. (41) and

– �– �– � optimum control by Chatterjee [18].
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relatively large mass ratio to achieve a targeted vibration suppression level is bypassed using the proposed design, such
facilitating the application of the technique in applications involving large structures such as buildings and bridges.
Compared to other existing HVA designs for similar propose, the presently proposed design requires smaller active force
and hence less energy for the active element.

Appendix A

Consider the motion of the beam as shown in Fig. 11 excited by a uniformly distributed force located between 0 and L. A
damped hybrid vibration absorber is attached at x0. The length of the beam is L, and mass per unit length is rA with
bending stiffness EI. The added mass and the stiffness of HVA are m and k, respectively. The boundary conditions may be a
pinned, clamped or free end. The problem is described by the Bernoulli–Euler equation for small motions of slender beams
and the following conditions:

rA
@2w

@t2
þEI

@4w

@x4
¼ pðtÞgðxÞþFhðtÞdðx�x0Þ (A1a)

m €xa ¼ kðx�xaÞþcð _x� _xaÞþ f a (A1b)

FhðtÞ ¼�m €xa (A1c)

Here it has been assumed that the externally applied forcing function is p(t)g(x), where p(t) is a function of time and g(x)
is a deterministic function of x. Fh(t) is the force applied to the beam from the HVA. fa is the active force from the HVA. The
solution to this problem may be expanded in a Fourier series written as [21]

wðx,tÞ ¼
X1
p ¼ 1

qpðtÞjpðxÞ (A2)

where Z L

0
j2

i ðxÞdx¼ L (A3)

where iAN.
Similarly, the spatial part of the forcing function can be expanded as

gðxÞ ¼
X1
p ¼ 1

apjpðxÞ (A4)

And the derivative of Dirac delta functions can also be expanded as

dðx�x0Þ ¼
X1
p ¼ 1

bpjpðxÞ (A5)
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Fig. 14. Active force spectra of the HVA in Fig. 10 with G¼2: — present theory, 2a9Wðxo ,lÞ=PðlÞ9 using Eq. (40) and � � � � � � � � � � � � � optimum control by

Chatterjee [18].
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where the Fourier coefficients ai and bi are, respectively

ai ¼

R L
0 gðxÞjiðxÞdx

L
and bi ¼

jiðx0Þ

L
(A6)

Here ai depend only on the spatial distribution of the forcing function g(x). If Eqs. (A2)–(A6) are substituted into Eq.
(A1a) and the Laplace transform is taken with respect to time, the result is a set of algebraic equations

rAs2QiðsÞþEIb4
i Q iðsÞ ¼ aiPðsÞþbiFhðsÞ, where i 2 N (A7)

If this is solved for the generalized coordinates Qi(s) the result is

QiðsÞ ¼
aiPðsÞþbiFhðsÞ

rAs2þEIb4
i

(A8)

Then if P(s) and Fh(s) were known then the s-domain motion of any point on the beam could be given as

Wðx,sÞ ¼
X1
p ¼ 1

apPðsÞþbpFhðsÞ

rAs2þEIb4
p

jpðxÞ (A9)

where W(x,s) is the Laplace transform of w(x,t) with respect to time. Let the active force be fa¼ax. By Eqs. (A1b) and (A1c),
the relations between the motion of the point of attachment and the force transmitted to the beam at the point of
attachment is

FhðsÞ ¼�Wðx0,sÞ
ms2ðcsþkþaÞ

ms2þcsþk
(A10)

W(x,s) can be obtained by Eqs. (A9) and (A10), i.e.

Wðx,sÞ ¼
X1
p ¼ 1

apPðsÞ�bpWðx0,sÞms2ðcsþkþaÞ
ms2þ csþk

rAs2þEIb4
p

jpðxÞ (A11)

By Eq. (A11), W(x0,s) can be obtained when x¼x0, i.e.,

Wðx0,sÞ ¼

P1
p ¼ 1

apjpðx0ÞPðsÞ

rAs2þEIb4
p

1þ
P1

p ¼ 1

bpjpðx0Þ
ms2 ðcsþ kþ aÞ

ms2 þ csþ k

rAs2þEIb4
p

(A12)

Substitute Eq. (A12) into (A11), the transfer function of the beam is

Wðx,sÞ

PðsÞ
¼
X1
p ¼ 1

ap�bp

P1

p ¼ 1

apjp ðx0 Þ

rAs2 þ EIb4
p

ms2 þ csþ k

ms2 ðcsþ kþ aÞ
þ
P1

p ¼ 1

bpjp ðx0 Þ

rAs2 þ EIb4
p

rAs2þEIb4
p

jpðxÞ (A13)

Replacing the complex variable s in Eq. (A13) by jo, the frequency response function of the beam may be written in a
dimensionless form as

Wðx,lÞ
PðlÞ

¼
1

rAo2
n

X1
p ¼ 1

ap�

mLbp

P1

q ¼ 1

aqjq ðx0 Þ

g2
q
�l2

�
g2�l2 þ 2jzgl

l2 g2 þ 2a
e þ 2jzglð Þ

þmL
P1

r ¼ 1

brjr ðx0 Þ

g2
r �l

2

g2
p�l

2
jpðxÞ (A14)

where on ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIb4

1=rA
q

, or ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIb4

r =rA
q

, gr ¼or=on, m¼m=rAL, e¼ mj2
1ðx0Þ and a¼ aj2

1ðx0Þ=2EILb4
1.

The eigenfunctions of the beam obey the orthogonality relations and the orthogonality relations can be written asZ L

0
jiðxÞjjðxÞdx¼ 0 if iaj (A15a)

Z L

0
jiðxÞjjðxÞdx¼ L if i¼ j (A15b)

Consider the orthogonality relations and the equation

Wðx,sÞ

PðsÞ

����
����
2

¼
Wðx,sÞ

PðsÞ

Wðx,sÞ

PðsÞ

� �
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the mean square motion over the whole domain of the beam can be written as

1

L

Z L

0

Wðx,lÞ
PðlÞ

����
����
2

dx¼
1

rAo2
n

� �2X1
p ¼ 1

ap�

mLbp

P1

r ¼ 1

aqjq ðx0 Þ

g2
q
�l2

�
g2�l2 þ 2jzgl

l2 g2 þ 2a
e þ 2jzglð Þ

þmL
P1

r ¼ 1

brjr ðx0 Þ

g2
r �l

2

g2
p�l

2

������������

������������

2

(A16)

Appendix B

Consider c¼0 in Fig. 1, the equations of motion may be written using Eq. (1) as

M €x ¼�Kx�kðx�xaÞ�f aþF

m €xa ¼�kðxa�xÞþ f a

(
(B1)

where F is a disturbance and fa an actuation force. Laplace transformation is taken with respect to time, the result is a set of
algebraic equation written as

Ms2X ¼�KX�kðX�XaÞ�FaþF

ms2Xa ¼�kðXa�XÞþFa

(
(B2)

Following the approach of [16], the active force may be written as

Fa ¼
a�2

s2
þ

a�1

s
þa0þsa1

� �
X (B3)

where a�2, a�1, a0 and a1 are the feedback gains. The transfer function of the primary mass may be solved using Eq. (B2)
and written as

X

F
¼

ms2þk

mMs4þmðKþkþkMþa1Þs2þmða�1þa0Þsþma�2þkK
(B4)

Replacing s by jo in Eq. (B4), the frequency response function of the primary mass may be rewritten in a dimensionless
form as

X

F=K
¼

g2�l2

l4
�2ja1l

3
�ð1þ2a0þg2þmg2Þl2

þ2ja�1lþ2a�2þg2
(B5)

where on ¼
ffiffiffiffiffiffiffiffiffiffiffi
K=M

p
, oa ¼

ffiffiffiffiffiffiffiffiffiffi
k=m

p
, l¼o=on, g¼oa=on, m¼m=M, a1 ¼ a1on=2K , a0 ¼ a0=2K , a�1 ¼ a�1=2Kon,

a�2 ¼ a�2=2Ko2
n and j¼

ffiffiffiffiffiffiffi
�1
p

.
Similarly, the frequency response function of the active force of the HVA may be rewritten in a dimensionless form as

Fa

F
¼ �

a�2

l2
�

ja�1

l
þa0þ ja1l

� �
X

F=K

� �
(B6)

A numerical example of the HVA design using zero-pole assignment method [16] is presented in the following. Assume
g¼1 and z¼1 in Eq. (B5), the frequency response of the primary structure with damped HVA using the zero-pole
assignment method may be written as

X

F=K
¼

1�l2

l4
�4jl3

�6l2
þ4jlþ1

(B7)

where

2a1 ¼ 4) a1 ¼ 2

2:2þ2a0 ¼ 6) a0 ¼ 1:9

2a�1 ¼ 4) a�1 ¼ 2

2a�2þ1¼ 1) a�2 ¼ 0

8>>><
>>>:

Eq. (B5) is plotted together with frequency response function of the primary mass using the proposed design method of
the HVA in Fig. B1 for comparison. As shown in Fig. B1, the vibration amplitude of the primary mass using the zero-pole
assignment method is smaller than using the proposed method. The zero-pole assignment method [16] is able to reduce
vibration peaks while keeping the absorption dip simultaneously in the frequency response of the closed-loop primary
system. However, as shown in Fig. B2 the plots of Eq. (B6) together with the frequency response function of the active force
using the proposed design method of the HVA, the highest frequency response of the active force of HVA using the zero-
pole assignment method is 42 times higher than using the proposed design method. Comparing the areas under the
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frequency response curves of the active force of HVA using the two different design methods as shown in Fig. B2, the area
using zero-pole assignment method is found to be 135 times higher than using the proposed design method.
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assignment method [16].
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Fig. B2. Active force spectra of the HVA in Fig. 1 with m¼0.2 and G¼1.5: — present theory using Eq. (B6) and � � � � � � � � � � � � � zero-pole assignment

method [16].

Y.L. Cheung et al. / Journal of Sound and Vibration 331 (2012) 750–766 765



Author's personal copy

[13] A.M. Nonami, Disturbance cancellation control for vibration of multi-degree freedom systems, JSME International Journal 37 (1994) 86–93.
[14] G.J. Lee-Glauser, Optimal active vibration absorber: design and experimental results, Transactions of American Society of Mechanical Engineers Journal

of Vibration and Acoustics 117 (1995) 165–171.
[15] G.J. Lee-Glauser, Integrated passive–active vibration absorber for multi-story buildings, Journal of Structural Engineering 123 (1997) 499–504.
[16] J. Yuan, Hybrid vibration absorption by zero/pole-assignment, Journal of Vibration and Acoustics 122 (2000) 466–469.
[17] J. Yuan, Multi-point hybrid vibration absorption in flexible structure, Journal of Sound and Vibration 241 (2001) 797–807.
[18] S. Chatterjee, Optimal active absorber with internal state feedback for controlling resonant and transient vibration, Journal of Sound and Vibration

329 (2010) 5397–5414.
[19] Y.L. Cheung, W.O. Wong, HN and H2 optimizations of a dynamic vibration absorber for suppressing vibrations in plates, Journal of Sound and

Vibration 320 (2009) 29–42.
[20] Y.L. Cheung, Optimizations of Dynamic Vibration Absorbers for Suppressing Vibrations in Structures, PhD Thesis, The Hong Kong Polytechnic

University, 2009.
[21] K. Ogata, Modern Control Engineering, Prentice-Hall, 1997.

Y.L. Cheung et al. / Journal of Sound and Vibration 331 (2012) 750–766766


