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A micro-perforated panel (MPP) with a backing cavity is a well known device for efficient noise

absorption. This configuration has been thoroughly studied in the experimental conditions of an

acoustic tube (Kundt tube), in which the MPP is excited by a normal incident plane wave in

one dimension. In a more practical situation, the efficiency of MPP may be influenced by the

vibro-acoustic behavior of the surrounding systems as well as excitation. To deal with this problem,

a vibro-acoustic formulation based on the patch transfer functions (PTF) approach is proposed to

model the behavior of a micro-perforated structure in a complex vibro-acoustic environment. PTF

is a substructuring approach, which allows assembling different vibro-acoustic subsystems through

coupled surfaces. Upon casting micro-perforations and the flexibility of the MPP under transfer

function framework, the proposed PTF formulation provides explicit representation of the coupling

between subsystems and facilitates physical interpretation. As an illustration example, application

to a MPP with a backing cavity located in an infinite baffle is demonstrated. The proposed PTF

formulation is finally validated through comparison with experimental measurements available in

the literature. VC 2012 Acoustical Society of America. [DOI: 10.1121/1.3682055]

PACS number(s): 43.50.Gf, 43.55.Ev [NX] Pages: 2118–2130

I. INTRODUCTION

Since the pioneer work by Maa,1 micro-perforated

panels (MPP) have been extensively used to design various

sound absorption devices. The basic configuration is the one

in which an air gap/cavity is placed at the back of the MPP,

which creates a Helmholtz sound absorption effect, resulting

in effective sound absorption. This basic configuration has

been thoroughly studied both theoretically and experimen-

tally using an acoustic tube (Kundt tube) to quantify its

absorption ability. In such a situation, the system has one

single dimension and the MPP is excited by a normal inci-

dent plane wave. The prevailing motivation behind these

efforts is the assumption that the acoustic property of the

MPP is assumed to be locally reactive. Upon obtaining the

surface acoustic impedance or the sound absorption coeffi-

cient, the MPP will be treated as conventional sound absorp-

tion materials.

Meanwhile, in the pursuit of a more efficient sound

absorption, effort has also been made to use MPP in forming

a more complex system, which deviates more or less from

the basic configuration mentioned previously. Such devices,

taking various forms, can loosely be refereed as micro-

perforated structure. Double layer2–4 or multiple layer

absorbers5 using MPPs are typical examples. The insertion

of an additional micro-perforated panel increases the acous-

tic resistance of the absorber and extends the effective

absorption band toward a lower frequency. The performance

of the device, however, is limited by the coupling between

the MPP and the backing cavity. By transforming the con-

ventional rectangular cavity to an irregular-shaped cavity,6

the coupling can be modified and manipulated through dis-

tortion of the acoustic mode by tilting cavity walls. The

change of the cavity geometry promotes more acoustic

modes into the coupling and thereby improves the sound

absorption performance at selected frequency bands.

Conventionally, MPP was used for building applica-

tions. More recently, MPP found its use in more compact

mechanical systems in various applications. Typical exam-

ples include MRI scanners,7 acoustic liners in the flow duct8

or the nacelles of turbofan engines, and interiors of engine

enclosures and hoods in tractors, boats, and construction

equipment.9 More specifically, MPP could be used for reduc-

ing the engine noise in an automotive passenger compart-

ment. For such applications, it is necessary to evaluate the

MPP effect by taking into account the modal behavior of

the engine and the passenger compartments, as well as the

acoustic and the structural transmissions through the two

compartments. Excitations to MPP are then the vibrations

and the noise generated by the engine. This is a typical

example of what is called the complex vibro-acoustic
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environment in this paper. This trend of using MPP in these

cases in the real industrial setting brings about one critical

issue. In fact, most of the existing works focused on a MPP

device itself, usually validated in a Kundt tube. When placed

in a practical environment, however, experimental methods

usually become the only option.10,11 More importantly, the

efficiency of the MPP is shown to be strongly influenced by

the vibro-acoustic behavior of the surrounding systems as

well as excitations, which are significantly different from the

Kundt tube setting.6,7,9 Therefore, the increasing complexity

of the system calls for efficient tools to model and optimize

the performance of the MPP in a complex vibro-acoustic

environment. Versatility, efficiency, and flexibilities are

among the top attributes of the list of major attributes

required for such simulation tools, which unfortunately are

still lacking in the literature.

This paper attempts to propose a method based on the

patch transfer function (PTF) approach to model the MPP

behavior in a practical acoustic environment. To illustrate

the idea, a general complex vibro-acoustic environment of

the MPP is schematically represented in Fig. 1(a). Subject to

acoustic or mechanical excitations, the whole system is com-

posed of acoustic cavities, semi-infinite acoustic domain,

absorbing materials, and flexible panels, which are coupled

through surfaces. PTF (Ref. 12) is a substructuring approach

that allows assembling different vibro-acoustic subsystems

through coupled surfaces. In the present case, the global sys-

tem is divided into different subsystems as shown on Fig.

1(b). Each coupling surface connecting a pair of subsystems

is further divided into elementary areas called patches. The

transfer functions, called patch transfer functions, of each

uncoupled subsystem patch are calculated to form a data-

base. For a mechanical structure, the PTFs are defined as the

ratio of the mean velocity over the mean force on a patch,

equivalent to patch structural mobilities. For an acoustic do-

main, the PTFs are defined as the ratio of the mean pressure

over the mean velocity on a patch, which are the patch

acoustic impedances. Using the superposition principle for

linear systems and the continuity relation among different

subsystems, the PTF approach allows calculating the

response of a global system from the PTFs of uncoupled sub-

systems by inverting a square symmetric matrix whose

dimension corresponds to the number of patches.

The PTFs can be calculated using different methods

depending on the subsystem considered. For cavities or flexi-

ble structures, these PTFs can be obtained from modal

expansions for academic cases or from finite element simula-

tion for complex cases. For semi-infinite acoustic domains,

the Rayleigh integral may be used for a plane boundary or

boundary element method for a more complex geometry.

The sound absorption material may be directly taken into

account by its surface impedance. These calculations have

been developed and validated for different applications.12–14

The method, however, has not been used to treat a MPP ele-

ment, as it cannot be categorized into any of the existing

conventional subsystems. It should be noted that, calcula-

tions of PTFs are performed beforehand for each subsystem

separately. As a result, parallel computation is possible.

Moreover, when a finite element method (FEM) is used, the

size of the numerical models of each subsystem is consider-

ably smaller than that of the global model. In a typical

design problem, re-calculations of PTFs are required only

FIG. 1. (a) MPP in a practical vibro-

acoustic environment. (b) PTF

substructuring.
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for those subsystems or components with modifications,

endowing the method with the flexibility and efficiency in

dealing with complex systems, conducive to conducting

system optimization.

In this paper, a new formulation for calculating the

PTFs of MPP is first proposed. In a first step, the equations

of motion of the MPP are expressed on each patch of the

coupling surface. The patch flexural velocity of the MPP and

the patch acoustic velocity of the surrounding acoustic me-

dium are then linked to the difference of the patch pressures

on both sides of the MPP. Two approaches are then pro-

posed: The first one consists of resolving directly the global

problem using the MPP relation as a coupling condition with

other subsystems. In this formulation, acoustic and mechani-

cal PTFs of each individual subsystem intervene directly in

the global equations. Upon casting micro-perforations and

the flexibility of the MPP under the PTF framework, the pro-

posed PTF formulation provides explicit representation of

the coupling between subsystems and facilitates an explana-

tion of physical phenomenon. The second approach consists

in first calculating the equivalent PTF of a MPP with a back-

ing cavity, which can be further coupled with the PTFs of

other acoustic domains in a second step. This second formu-

lation is then explored to illustrate the application of the

proposed model to a cavity-backed MPP absorber with an

infinite baffle. This allows a deep analysis on the coupling

between the MPP and the backing cavity and a quantification

of their effects on the sound absorption. It is shown that a

MPP with the backing cavity does not behave like a locally

reactive material, especially at resonances of the backing

cavity. Finally, the proposed model is validated through com-

parisons with experimental results given in the literature.15

II. PRINCIPLE OF PTF APPROACH

Let us consider the basic vibro-acoustic problem pre-

sented in Fig. 2, corresponding to a thin elastic structure

coupled on both sides with an acoustic domain. The acoustic

domain may either be closed or semi-infinite. The PTF

approach is briefly recalled here based on this basic system

for the sake of clarity, bearing in mind that the methodology

can be extended to more complex linear systems.

Assuming harmonic excitations at an angular frequency

x, we are interested in the steady response of the system,

omitting the time dependence in the notation. Along the

surface Sc occupied by the thin structure, the whole system

is partitioned into three subsystems: An elastic structure and

the two acoustic domains at each side. The coupling surface

Sc is then divided into N elementary surfaces @Si, i 2 1;N½ �,
called patches. The size of the patches should be less than

the half-wavelength (i.e., k/2) corresponding to the highest

frequency of interest, either acoustic or structural, whichever

is less.12,14

The PTFs are defined for each subsystem, with all quan-

tities being defined with respect to the unit normal vector ~n
to the coupling surface Sc. For the structure, a constant nor-

mal force �f s
i is prescribed on patch i, whereas no force is pre-

scribed on the other patches. The PTFs between the two

patches, Ys
ij, is defined as the ratio between the mean normal

velocity on patch j and the normal force �f s
i

Ys
ij ¼

�us
j

�f s
i

; (1)

where �us
j is the space-averaged normal velocity on the patch,

i.e.,

�us
j ¼

1

@Sj

ð
@Sj

us
j dS; (2)

The previously defined PTFs are equivalent to structural

mobilities of the structure.

For each acoustic domain a (a ¼ 1,2), a constant normal

velocity �ua
i is imposed on patch i with a zero normal velocity

on the other patches. The PTFs between excited patch i and

receiving patch j, Za
ij , is defined as

Za
ij ¼

�f a
j

�ua
i

; (3)

where �f a
j is the resulted force from the acoustic pressure pa

on patch j when patch i vibrates with �ua
i ,

�f a
j ¼

ð
@Sj

padS: (4)

The PTFs as defined correspond to the conventional

acoustic impedance. In the previous definitions, the overbar

in the notation indicates the mean velocities or the sum of the

FIG. 2. Example of a vibro-acoustic

problem.
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pressure on the patches [i.e., Eqs. (2) and (4)]. To simplify

the notations, these overbars are omitted in the following.

The coupling between the structure and the acoustic

domains is performed in two steps.

(1) The first step consists in using the linearity proper-

ties of the system to express the relationship between the

patch velocities and the patch forces for each subsystem.

Indeed, the patch velocity of the structure can be expressed

as a sum of the velocity due to the mechanical force acting

on the structure before coupling ~us
i and the velocities resulted

from the forces exerted on each patch:

us
i ¼ ~us

i þ
XN

j¼1

Ys
ijf

s
j ; 8i 2 1; :::;N½ �: (5)

Similarly, the force on a patch is equal to the sum of the

force corresponding to the acoustic source with a rigid sur-

face, ~f a
i , and the forces generated by the patch vibrations,

f 1
i ¼ ~f 1

i þ
XN

j¼1

Z1
iju

1
j ; 8i 2 1; :::;N½ �; (6)

f 2
i ¼ ~f 2

i þ
XN

j¼1

Z2
iju

2
j ; 8i 2 1; :::;N½ �

(2) The second step consists of writing the continuity

conditions at each connecting patch, namely the force equi-

librium and the equality of normal velocities,

u1
i ¼ u2

i ¼ us
i ; 8i 2 1; :::;N½ �; (7)

f s
i ¼ f 1

i � f 2
i ; 8i 2 1; :::;N½ �

where it was assumed that the normal vector is from the

acoustic domain 1 toward 2.

Introducing Eqs. (5) and (6) into Eq. (7) yields

u1
i ¼ ~us

i þ
XN

j¼1

Ys
ij

~f 1
j � ~f 2

j

� �

þ
XN

j¼1

Ys
ij

XN

k¼1

Z1
jk � Z2

jk

� �
u1

k

" #
; 8i 2 1; :::;N½ �: (8)

This system of linear equations with u1
i as unknowns

may be written in the following matrix form:

u1 ¼ ~us þ Ys ~f
1 � ~f

2
� �

þ Ys Z1 � Z2
� �

u1: (9)

Equation (9) is a full system, with its size being equal to

the number of patches. Upon resolving this system,

u1 ¼ I� Ys Z1 � Z2
� �� ��1

~us þ Ys ~f
1 � ~f

2
� �h i

; (10)

where I is an N � N identity matrix. All other physical quan-

tities, such as acoustic pressure in each domain can be calcu-

lated in a post-processing phase.

The PTF approach allows calculating the response of a

global system from the PTFs of uncoupled subsystems by

inverting a square symmetrical matrix whose dimension cor-

responds to the number of patches. The PTFs can be calcu-

lated by different methods depending on the subsystem

considered. These calculations are performed beforehand for

each subsystem separately. When FEM is used, the size of

the numerical models of each subsystem is considerably

smaller than that of the global model. Moreover, the use of

incompatible meshes at the subsystem interface is possible,

as the problem of compatibility is solved by patch averaging.

III. PTF EQUATIONS FOR THE MICRO-PERFORATED
STRUCTURE SUBSYSTEM

Assuming the structure separating the two acoustic

domains in Fig. 2 takes the form of a micro-perforated struc-

ture, corresponding PTF equations will be developed in the

following sections.

A. Modeling of micro-perforated structure

Considering a MPP element shown in Fig. 3, the sound

pressure difference between the two sides of MPP, p1 � p2

generates the vibration of air mass u0 at each single hole. As

the orifice diameter of the hole is much smaller than the

acoustic wavelength of interests, it is appropriate to assume

that the air particle velocity is distributed uniformly within

the area of each hole. Let Z0 denote the complex acoustic

impedance of the hole normalized by the characteristic im-

pedance q0c0 , where q0 is the air density and c0 the speed of

sound. Z0 is given by16,17

Z0 ¼
32gt

q0c0d2
1þ K2

32

� 	0:5

þ
ffiffiffi
2
p

32
K

d

t

" #

þ i
xt

c0

1þ 1þ K2

32

� 	�0:5

þ0:85
d

t

" #
; (11)

where x is the angular frequency; t is the thickness of the

structure; d is the orifice diameter; g is the coefficient of vis-

cosity, and K ¼ d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xq0=4g

p
. The real part is the resistive

term, which corresponds to the viscous force, whereas the

imaginary part is the reactance term corresponding to the in-

ertial force.

Assume that the MPP is flexible and let us be its normal

velocity. The viscous force depends on the relative velocity

of the air in the hole and the structure, u0 � us and the

FIG. 3. Description of pressure and velocity variables for the MPP.
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inertial force depends only on the air velocity. Thus, one can

write the following:17–19

Re Z0f g u0 � us
� �

þ iIm Z0f gu0 ¼ 1

q0c0

p1 � p2
� �

: (12)

As the orifice diameter of the hole is much smaller than

the acoustic and flexural wavelengths of interests, the mean

velocity of the surrounding air particle u1 in the vicinity of

the MPP can be approximated from the following relation:

u1 ¼ 1� rð Þus þ ru0: (13)

u1 allows expressing the velocity continuity conditions

of the MPP with the adjacent acoustic domains. On the con-

trary, u0 will not be directly used and can be substituted

from Eq. (12),

u0 ¼ 1

q0c0Z0

p1 � p2
� �

þ Re Z0f g
Z0

us: (14)

Using the previous expression in Eq. (13) gives

u1 ¼ 1� rð Þ þ rRe Z0f g
Z0

� �
us þ r

q0c0Z0

p1 � p2
� �

: (15)

This relation can be rewritten in a compact form as

u1 ¼ Tus þW p1 � p2
� �

; (16)

where

(i) T ¼ 1� rð Þ þ rRe Z0f g=Z0 is a non-dimensional pa-

rameter that may be called the MPP transmissibility, which

represents the contribution of the structural vibrations to the

surrounding acoustic particle vibrations and

(ii) W ¼ r=q0c0Z0 is a parameter having m s�1 Pa�1 as

dimension and may be called the equivalent mobility of the

perforation.

Equation (16) clearly demonstrates the underlying

relationship among the acoustic velocity of the surrounding

medium, the pressure difference across the MPP and the

vibration of the structure. The resultant velocity in the

vicinity of the MPP is a combination of partial transmission

of the structural vibration and the air motion of the micro-

perforation. The development of the PTF equation for a

MPP subsystem in the next section is based on this

relation.

B. PTF development

1. Direct formulation

For a MPP patch, as Eqs. (5) and (6) relating the patch

pressures and the patch velocities remain valid, the continu-

ity conditions at the connecting patches need to be modified.

Indeed, by a space averaging on the patch i of Eq. (16), one

has

u1
i ¼ u2

i ¼ Tus
i þW p1

i � p2
i

� �
; 8i 2 1; :::;N½ �: (17)

Meanwhile, the pressure difference p1
i � p2

i acting on

the 1� rð Þ@Si surface of the MPP generates a force, f s
i , at

the patch i,

f s
i ¼ p1

i � p2
i

� �
1� rð Þ@Si ; 8i 2 1; :::;N½ �: (18)

As f a
i ¼ pa

i @Si, these two relations can be rewritten as

u1
i ¼ u2

i ¼ Tus
i þWi f 1

i � f 2
i

� �
with Wi ¼

W
@Si

;

8i 2 1; :::;N½ �: (19)

f s
i ¼ f 1

i � f 2
i

� �
1� rð Þ ; 8i 2 1; :::;N½ �: (20)

The previous expressions describe the continuity condi-

tions in the presence of a micro-perforated structure.

Introducing the linear decompositions Eqs. (5) and (6)

into Eqs. (19) and (20), the patch velocity of the acoustic do-

main 1 can be written as

u1
i ¼ T~us

i þ
XN

j¼1

Widij þ T 1� rð ÞYs
ij

� �
~f 1
j � ~f 2

j

� �

þ
XN

j¼1

Widij þ T 1� rð ÞYs
ij

� �XN

k¼1

Z1
jk � Z2

jk

� �
u1

k

" #
;

8i 2 1; :::;N½ � (21)

where dij is the Kronecker symbol. The above-mentioned

system can be condensed into a matrix form,

u1 ¼ T~us þ Wþ T 1� rð ÞYs
� �

~f
1 � ~f

2
� �

þ Wþ T 1� rð ÞYs
� �

Z1 � Z2
� �

u1; (22)

which admits solution in the following form:

u1 ¼ I� Wþ T 1� rð ÞYs
� �

Z1 � Z2
� �� ��1

� T~us þ Wþ T 1� rð ÞYs
� �

~f
1 � ~f

2
� �h i

: (23)

Note W is a diagonal matrix. In a post-processing phase,

the pressure inside the acoustic domains and the velocity on

the MPP can be calculated.

Equation (23) seems to differ significantly from Eq.

(10). However, if we introduce equivalent PTFs, Yeq and

equivalent free patch velocities, ~ueq such that

Yeq ¼ Wþ T 1� rð ÞYs ; ~ueq ¼ T~us; (24)

one can rewrite Eq. (23) as

u1 ¼ I� Yeq Z1 � Z2
� �� ��1

~ueq þ Yeq ~f
1 � ~f

2
� �h i

: (25)

This expression takes the same form as Eq. (10) except

that the PTFs and patch free velocities are replaced by their

equivalent expressions for the MPP case.

In the case of a rigid MPP (i.e., ~us ¼ 0 and Ys ¼ 0), Eq.

(23) becomes

2122 J. Acoust. Soc. Am., Vol. 131, No. 3, March 2012 Maxit et al.: Micro-perforated panel in complex environment

Downloaded 22 Mar 2012 to 158.132.172.70. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



u1 ¼ I�W Z1 � Z2
� �� ��1

W ~f
1 � ~f

2
� �

(26)

and the equivalent PTFs and patch free velocity of the MPP are

Yeq ¼ W ; ~ueq ¼ 0: (27)

Then, the equivalent PTFs are equal to the MPP mobil-

ity for the input terms (i.e. Y
eq
ii ¼ Wi; 8i 2 1; :::;N½ �) and are

null for the cross terms (i.e., Y
eq
ij ¼ 0; i 6¼ j). In this case, the

MPP can be considered as a locally reactive structure charac-

terized by the mobilities W . On the contrary, as can be

shown later, a MPP with a backing cavity cannot be consid-

ered as a locally reactive device, as opposed to the common

assumption made for porous absorbing materials.

2. Equivalent PTFs for a cavity-backed MPP

A typical micro-perforated panel absorber takes the

form of a MPP fitted in front of a backing wall or a cavity.

The air gap/volume behind the MPP provides an acoustic

stiffness,4 which leads to resonance-type absorption with the

perforation. This cavity-backed MPP finds its use in various

system configurations and therefore deserves a particular

treatment. In order to facilitate the modeling of the overall

system involving such devices, a cavity-backed MPP can be

regarded as a standalone subsystem. Once the acoustic prop-

erty is known in terms of PTFs over its surface, it can be

integrated into the conventional PTF framework,12 such pro-

viding an alternative to the direct formulation presented in

Sec. III B 1. Meanwhile, this will allow a significant simpli-

fication and the down-sizing of the number of the subsys-

tems to be handled in a complex system.

To this end, the equivalent PTF of a cavity-backed MPP

is defined, to be obtained according to the calculation

scheme established hereafter. Consider a typical MPP

backed by an acoustic cavity. The outer surface Sc of the

cavity-backed MPP is divided into N patches. By imposing a

unit normal velocity on patch i, the resulted force on patch j
needs to be calculated using the PTFs of the cavity and that

of the MPP.

The same matrix notation as in the previous section is

used and a N vector is defined as

N ¼ Nk½ �1�N; Nk ¼
1 for k ¼ i
0 otherwise:


(28)

The resulted forces on the patches are contained in the

f1 vector and the imposed velocity condition writes

u1 ¼ N: (29)

The continuity relations (19) and (20) become

u2 ¼ N; (30)

Tus þW f1 � f2
� �

¼ N: (31)

As the MPP and the cavity are not directly excited, Eqs. (5)

and (6) become

us ¼ Ysfs; (32)

f2 ¼ Z2u2: (33)

Combining Eqs. (30)–(33) yields

Wþ T 1� rð ÞYsð Þ f1 � Z2N
� �

¼ N: (34)

The resulting forces f1 on the patches due to a unit velocity

imposed on patch i can be written as follows

f1 ¼ WIþ T 1� rð ÞYs½ ��1þZ2
h i

N: (35)

This gives the equivalent PTF between patch i and patch

j, 8j 2 1;N½ � . One can finally deduces the equivalent PTF

matrix as

Zeq ¼ WIþ T 1� rð ÞYs½ ��1þZ2: (36)

These equivalent PTFs may be used in the classical PTF

approach to characterize the behavior of the MPP with a

backing cavity. In such cases, the standard continuity rela-

tions Eq. (7) should be used to assemble the equivalent PTFs

with the PTFs of the connected subsystem.

Equation (36) also gives indications on the behavior of

the system and in particular, on whether the system has a

localized reaction. With a rigid MPP, the equivalent PTFs

become

Zeq ¼ W�1 þ Z2 (37)

where W�1 is a diagonal matrix. The system is locally

reactive if the first term dominates (i.e., Zeq � W�1 ). Other-

wise, the system is not locally reactive when Zeq is full due

to the cavity effect characterized by Z2. Examples will be

given in the next section for a further elaboration of this

point.

IV. AN ILLUSTRATION OF APPLICATION

The general framework of a MPP coupled to a com-

plex environment is now established by using the PTF

approach. In this section, the proposed method is applied

to a basic configuration, which differs from the conven-

tional case of a micro-perforated panel in an acoustic tube.

The purpose is to show the potential of the present

approach, instead of providing a detailed treatment of the

configuration itself.

A. A cavity-backed micro-perforated panel
flush-mounted in a rigid baffle

Let us consider a MPP backed by rectangular cavity.

The surface of the MPP is flush with a rigid baffle of infinite

size. Excited by an incident plane wave p0ej k0 sin hð Þx�k0 cos hð Þz½ �

impinging on the MPP at an angle of incidence h, the MPP

radiates sound toward both the cavity and the semi-infinite

acoustic domain. For an easier interpretation of the results,

the MPP is supposed to be rigid, bearing in mind that this
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assumption is not a limitation of the approach as the struc-

ture vibration has already been incorporated into the PTF

model. Previous investigations demonstrated that the panel

vibration mainly affects the absorption performance at the

structural resonances.19 The size of the panel is 0.5 m� 0.5

m, whereas the depth of the cavity is 0.3 m. The panel thick-

ness, t, and the orifice diameter, d, are both 0.2 mm. The per-

foration ratio r is 1%. The acoustic medium is air

(q0 ¼ 1:29 kg/m3, c0 ¼ 340 m/s). The first 24 modes of the

rigid-walled cavity are tabulated in Table I.

B. PTF calculation procedure

In this section, the MPP backed by a rectangular cavity

is flushed with an infinite baffle, the performance of the MPP

absorber is thus studied by the PTF method, where three sub-

domains, i.e., semi-infinite acoustic medium, MPP, and the

cavity, constitute a whole vibro-acoustic system. The cou-

pling surface is divided in 81 patches (N ¼ 9� 9) ensuring

a patch size less than half the acoustic wavelength at 2000

Hz (according to the k/2 criteria in Ref. 12). For the semi-

infinite domain, the PTFs are estimated by using the Ray-

leigh integral in Appendix A. It is relevant to note that they

are independent of the incident wave and of the characteris-

tics of the MPP.

As the MPP is impinged by an incident plane wave

propagating in the semi-infinite medium, the patch blocked

forces of the acoustic domain 1, ~f 1
i are

~f 1
i ¼ 2

ð
@Si

pinc Mð ÞdS ; 8i 2 1; :::;N½ �; (38)

where pinc Mð Þ ¼ p0ej k0 sin hð Þx�k0 cos hð Þz½ �, and the patch blocked

forces of the fluid domain 2 (i.e., cavity), ~f 2
i are

~f 2
i ¼ 0 ; 8i 2 1; :::;N½ �: (39)

For a normal incident wave h ¼ 0�, one has

~f 1
i ¼ 2p0@Si; ~f 2

i ¼ 0; 8i 2 1; :::;N½ � (40)

Using these patch blocked forces and the PTFs of the

cavity and the semi-infinite medium, one can calculate the

patch velocities, u1
i , 8i 2 1; :::;N½ � from Eq. (23) when the

MPP is coupled with the backing cavity on one side and the

semi-infinite medium on the other side.

The acoustic power absorbed by the cavity-backed

MPP, Pabs can then be derived from

Pabs ¼
1

2

XN

i¼1

p1
i u1

i

� ��
@Si; (41)

where the asterisk denotes the complex conjugate. The patch

pressures, p1
i , can be calculated from

p1
i ¼

1

@Si
~p1

i þ
XN

j¼1

Z1
iju

1
j

 !
: (42)

The absorption coefficient aabs is defined as the ratio of

the absorption power over the incident power through the

MPP surface:

aabs ¼
Pabs

Pinc
; (43)

where Pinc is the acoustic power injected on the MPP sur-

face by the incident plane wave propagating freely in the

acoustic medium,

Pinc ¼
1

2

p2
0

q0c0

XN

i¼1

@Si: (44)

C. Analysis of results

The results shown in this section concern an incident

plane wave, normal to the MPP surface and having unit am-

plitude (p0 ¼ 1 Pa). As can be seen from Sec. IV B, although

the oblique incident wave excitation is not a limitation of the

current model, we stick to the normal incident case so that

results can be compared with literature.

1. Absorption coefficient

The sound absorption coefficient is calculated using the

PTF formulation described in Sec. IV B. Numerical results

are compared with the results of the equivalent electric cir-

cuit method in Fig. 4. Note the electric circuit method con-

siders an infinite MPP with an air gap of the same depth in

the one-dimensional case. With a limited panel size, the

three-dimensional system considered in the present PTF

scheme differs significantly from the classical one-

dimensional case. Figure 4 shows that the two methods give

similar results in the high frequency range, whereas signifi-

cant differences occur at low frequencies. At some frequen-

cies, PTF results give a sound absorption coefficient greater

than one for our system. This behavior can be explained by

the fact that the present system is a three-dimensional one, in

TABLE I. Natural frequencies of the rectangular cavity with rigid boundaries.

fq,r,s (Hz) 0 340 481 567 660 680 743 760 885 948 961 1020

(q,r,s) 0,0,0 0,1,0 1,1,0 0,0,1 0,1,1 0,2,0 1,1,1 1,2,0 0,2,1 1,2,1 2,2,0 0,3,0

1,0,0 1,0,1 2,0,0 2,1,0 2,0,1 2,1,1 3,0,0

fq,r,s (Hz) 1075 1116 1133 1167 1183 1215 1226 1231 1321 1350 1360 1364

(q,r,s) 1,3,0 2,2,1 0,0,2 0,3,1 0,1,2 1,3,1 2,3,0 1,1,2 0,2,2 2,3,1 0,4,0 1,2,2

3,1,0 3,0,1 1,0,2 3,1,1 3,2,0 2,0,2 3,2,1 4,0,0 2,1,2
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which the “edge effect”20–24 occurs. In the low frequency

range, the diffraction phenomenon in the vicinity of the edge

of the MPP results in an increase of the energy absorption

coming from the neighborhood of the edges. This can be bet-

ter seen by investigating the acoustic intensity in the neigh-

borhood of the MPP. The calculation of the acoustic

intensity in the framework of the PTF is described in Appen-

dix B. The acoustic intensity maps are then plotted for three

selected frequencies corresponding to the local maxima (of

Fig. 4) in Fig. 5. One can clearly observe that at 150 Hz, cor-

responding to the maximum absorption, the energy entry

into the MPP comes not only from the front of the MPP due

to the acoustic incidence, but also from the side way of the

MPP (due to the diffraction effect). As the definition of the

absorption coefficient only considers the acoustic power of

the incident wave over a surface corresponding to the MPP

surface [see Eq. (43)], the acoustic power diffracted from the

side of the MPP is not taken into account. This results in an

underestimation of the actual power impinging on the panel

and an absorption coefficient greater than one in the low fre-

quency range. For higher frequencies, Fig. 5 shows the

absorbed power predominately comes from the front and the

effect of the diffraction becomes more and more negligible

when frequency increases. This can also be reflected in

Fig. 4 in which the corresponding sound absorption coeffi-

cient is lower than one.

Based on this understanding, one can surmise that the

size of the MPP with respect to the acoustic wave length

should play an important role in this phenomenon. This was

indeed shown in the past by different authors considering clas-

sical absorbing material of finite sizes.15–18 They showed that

the absorption coefficient of a patch of absorbent material

depends on the size of the patch relative to the wavelength. In

general, the absorption coefficient increases when the size of

the patch material decreases. The same phenomenon has been

observed in the present MPP case, in agreement with the pre-

vious studies.21–24 It should be noted however that these stud-

ies considered porous or fibrous absorbing materials, which

present rather poor absorption at low frequencies. On the

contrary, depending on its design, cavity-backed MPP

provides efficient sound absorption even at relatively low fre-

quencies, where the acoustic wavelength is large. By the same

token, the size effect is also reinforced in the case of a MPP.

FIG. 4. Absorption coefficient versus frequency. Solid line: PTF result for a

0.5 m� 0.5 m MPP; dashed-dotted line: PTF result for a 2 m� 2 m MPP;

dashed line: equivalent circuit result.

FIG. 5. Acoustic intensity (arrow) and acoustic pressure (contour line) in a

plane at Y ¼ 0.25 m in the front of the MPP. Normal incidence of the plane

wave. MPP position symbolized by a dashed line. (a) 150 Hz, (b) 707 Hz,

And (c) 1267 Hz.
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By increasing the MPP size to 2 m� 2 m, we approach

more closely to the infinite panel scenario, which the equiv-

alent circuit method can model. Results obtained form the

current PTF approach is superposed to the two existing

curves in Fig. 4. It can be seen that using a larger panel,

the present PTF approach gives similar result as the equiva-

lent circuit method does, such demonstrating the validity

of the approach. Meanwhile, the first sound absorption

peak is indeed reduced, in agreement with the previous

analysis.

2. Equivalent patch transfer functions

The proposed PTF formulation provides explicit repre-

sentation of the coupling between subsystems and facilitates

interpretation of physical phenomena. This feature is

explored using the current system of cavity-backed MPP in

terms of the equivalent PTFs defined in Sec. III B 2.

The equivalent PTFs are calculated and depicted in

Fig. 6 for three different frequencies. Figure 6(a) shows that

at 150 Hz, the equivalent PTF matrix, Zeq [Eq. (37)] is a

diagonal-dominant matrix and Z2 in Eq. (37) is negligible

comparing with W�1. This shows that the system is rather

locally reactive at this frequency. This gives

Zeq � @S

W
I; (47)

where @S is the surface of the patches. At this frequency, the

equivalent PTFs depend only on the equivalent mobility of

the perforation W and the surface of the patches, indicating

the strong dominance of the MPP. On the contrary, for the

two other frequencies corresponding to the first two modes

of the hard-walled cavity, the equivalent PTF matrices are

full matrices as shown in Figs. 6(b) and 6(c), which implies

that the system has not a localized reaction. In this case, the

behavior of the cavity-backed MPP is dominated by the cav-

ity. The equivalent PTFs vary in function of the pressure

modal variation on the coupling surface. As an extreme

example, for the third modes (0,0,1) at 567 Hz, the PTFs are

quasi-constant as shown in Fig. 6(c) due to the uniform spa-

tial shape of this mode on the coupling surface. Slight varia-

tions at the diagonal terms are due to the term @S=W in

Eq. (37).

It is pertinent to mention that @S=W is the impedance of

the perforation and becomes the impedance of the MPP

when the vibration of the MPP is neglected. The comparison

between this impedance term and the impedance of the cav-

ity provides very useful physical insight in the way the MPP

is coupled to the cavity. This is done in Fig. 7, in which the

impedance of the MPP, @S=W, is compared to that of the

cavity Zii for one particular patch (3,4). It can be seen that,

@S=W are generally larger than Zii, except for frequencies

close to the natural frequencies of the cavity. Provided these

modes are excited, the equivalent PTFs correspond to the

cavity impedance at their resonance frequencies. In that

case, the effect of the MPP becomes negligible compared to

the cavity resonance. One such example is the mode (0,0,1)

at 567 Hz. As the acoustic damping inside the cavity is small

(g ¼ 0:0001Þ, the absorption coefficient is quasi-null at this

frequency, as shown in Fig. 4. Similar observations can be

made at 1133 and 1700 Hz, which correspond to the natural

frequencies of modes (0,0,2) and (0,0,3), respectively. It

should be mentioned that quite a few acoustic modes cannot

be excited due to the nature of the normal incident wave,

which are reflected in the sound absorption curve.

In conclusion, the equivalent PTFs of the cavity-backed

MPP allows representing the MPP coupled with the backing

FIG. 6. Magnitude of the equivalent patch transfer functions [N/(m/s)].
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cavity as a single PTF subsystem. In general, this subsystem

cannot be considered as a locally reactive material.

V. EXPERIMENTAL VALIDATIONS

The proposed PTF approach is used to investigate the

acoustic field inside a rectangular cavity used in Fenech

et al.15 Results obtained from the present approach are com-

pared with the experimental data reported in that paper. This

comparison allows further validation of the proposed

approach in a more complex vibro-acoustic environment.

The rectangular air cavity of dimension 2 m� 1.2 m� 0.2 m

was made of 22 mm fiberboard panels screwed and glued to-

gether. As shown in Fig. 8, a loudspeaker with a diameter of

9 cm was mounted on one of the vertical side panels to pro-

vide a white noise excitation to the cavity. The sound pres-

sure was measured at various locations for three

configurations: (a) The empty cavity; (b) a MPP installed at

the middle of the cavity at x ¼ 1 m; and (c) a MPP installed

near the cavity wall at d ¼ 0.25 m (Fig. 9). In Fenech

et al.15 the reverberation time of the empty cavity was found

to be �0.5 s in most of the frequency range of interest. This

allows the estimation of an overall damping loss factor from

g ¼ 2:2=fTr, where f is the frequency and Tr the reverbera-

tion time. The aluminum MPP was 1 mm thick and supplied

by the Swedish manufacturer Sontech under the trade name

Acustimet. Due to the manufacturing process, the punched

perforations were found to produce holes with sharp edges

that protrude out of the surface of the plate. Therefore,

instead of using Maa’s theory,16 the flow impedance Z0 was

experimentally measured using an impedance tube and used

in their model.15 The vibration of the MPP was supposed to

be negligible, i.e., Ys
ij ¼ 0; 8 i; jð Þ 2 1;N½ �2 in the present

formulation.

When the MPP is placed inside the cavity the system is

divided into three subsystems: The MPP, and the two rectan-

gular subcavities. The rectangular coupling surface is di-

vided in five patches to ensure the convergence of the

solution up to 500 Hz, according to the k/2 criterion. The

PTFs of the subcavities are calculated from the modal

method using rigid-walled modes of the subcavities below

1000 Hz (Appendix A). This calculation is the most time

consuming part, even though it requires only few seconds in

FIG. 7. Comparison of the term @S=W of MPP with the PTF of the cavity.

FIG. 8. Rectangular cavity used in the experiments by Fenech et al. (Ref. 15).

FIG. 9. Comparison of sound pressure calculated by PTF (solid line) with

the measurement by Fenech et al. (Ref. 15) (gray line) for two cases: (a)

Empty cavity and (b) with a MPP at d ¼ 1.0 m.
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the present case. These PTFs are also used for calculating

the response of the empty cavity in the PTF approach. In this

case, the system has only two subsystems, namely the two

subcavities, connected by a virtual surface between them at

the middle of the cavity. Of course, it is straightforward to

use modes of the entire cavity in a modal expansion scheme

for estimating the response of the empty cavity. The goal of

treating the system by PTF approach is to highlight the effi-

ciency of the method through comparisons with experimen-

tal measurement.

Comparisons between the present PTF and experimental

results obtained by Fenech et al. are given in Fig. 9 in terms

of sound pressure level at the measurement point. For the

empty cavity, Fig. 9(a) shows a satisfactory agreement

between these two sets of results, despite some noticeable

differences in the resonance frequencies as well as the peak

values. The discrepancy in frequencies may be due to the

cavity boundary used in experiment, which does not totally

comply with the theoretical model. The frequency shift

between the experimental curves and the theoretical ones, in

particular in the low frequency, has already been noticed by

Fenech et al. In their paper. the authors emphasized that the

experimental arrangement is not perfect and resulted the fre-

quency shifts due to vibro-acoustic interactions between the

sound field inside the cavity and the cavity walls. Indeed, the

first non-zero natural frequency of the cavity was predicted

at 88 Hz by the present PTF approach, as opposed to 93 Hz

measured experimentally and 86 Hz calculated from analyti-

cal solutions under the assumption of rigid walls. It is re-

markable that, although this frequency does not correspond

to any of the natural frequencies of the subcavities, it was

correctly predicted using PTF approach.

With the MPP placed at the middle of the cavity, similar

comparisons are plotted in Fig. 9(b). Again, the agreement

between the PTF results and the experimental results is glob-

ally good. Compared with Fig. 9(a), the effect of the MPP

can be observed: some resonance frequencies of the empty

cavity are altered by the presence of the MPP on one hand,

and reduction of some resonance peaks due to the sound

absorption of the MPP on the other hand. An attenuation of

up to 25 dB for some modes [i.e., (1,0), (3,0), (3,1) noticed

in the experiment of Fenech et al.] are reproduced by the

current model. It is noteworthy that due to the location of the

MPP, some modes are practically not affected by the pres-

ence of the MPP.

As the last example, Fig. 10 compares the PTF result

with that obtained by the calculation by Fenech et al., based

on the complex mode evaluation of the modified cavity,

along with the experimentally measured sound pressure level

when the MPP was placed toward a wall of the cavity at d
¼ 0.25 m. Despite some differences, the agreement between

the experiment and the simulation is generally satisfactory,

bearing in mind that the sound pressure level is sensitive to

the location of the measurement point. Similar agreement

was also observed for other figures presented in Ref. 15 (not

shown here). The two calculation models give very similar

results albeit more apparent discrepancies occur at higher

frequencies. Differences and uncertainties in the modeling

(i.e., damping model, modal convergence) and the data (i.e.,

damping value, flow impedance value) may explain these

differences. Fenech et al. have also noticed some discrepan-

cies between the magnitudes of some modes and they have

attributed to the fact that the inherent damping of the cavity

was measured on one-third octave bands. The introduction

of the wooden frame supporting the plate has changed the

geometry of the two subcavities and is also a source of

uncertainty. In conclusion, these comparisons demonstrate

the validity of the present PTF formulation in dealing with

systems of various configurations.

VI. CONCLUSIONS

A vibro-acoustic formulation based on the patch transfer

functions (PTF) approach is proposed to model micro-

perforated structures in a complex vibro-acoustic environ-

ment. The PTFs of the micro-perforated structure is first for-

mulated. Its coupling with surrounding acoustic domains is

then cast into a transfer function paradigm through velocity

continuity and force equilibrium over connecting patches.

This leads to two different formulations, namely direct for-

mulation and equivalent PTFs for cavity-backed micro-per-

forated structure, both providing explicit representation of

the coupling between subsystems and facilitating physical

interpretation.

Owing to its substructuring nature, the PTF approach

proposed in this paper is an efficient tool to deal with micro-

perforated structure in a complex vibro-acoustic environ-

ment. Calculations of PTFs are performed beforehand for

each subsystem separately. As a result, parallel computation

is possible. In a typical design problem, re-calculations of

PTFs are required only for those subsystems or components

with modifications, endowing the method with the flexibility

and efficiency in dealing with complex systems, conducive

to conducting system optimization.

As an illustration example, application to a MPP with a

backing cavity located in an infinite baffle is demonstrated. The

FIG. 10. Comparison of PTF results with the pressures measured and calcu-

lated by Fenech et al. (Ref. 15) for a MPP at d ¼ 0.25 m. Solid line: PTF

results; dashed line: Measurement by Fenech et al.; and gray line: Prediction

by Fenech et al.
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proposed PTF formulation is finally validated through compari-

son with experimental measurements available in the literature.

As a final note, it is relevant to mention that the PTF

approach has been applied to several basic systems in this

paper. It can be extended to more practical cases with com-

plex geometries. In that case, the patch transfer functions of

each subsystem may be calculated by numerical methods

like finite element method or boundary element method. The

size of the numerical models of each subsystem is consider-

ably smaller than that of the global model.
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APPENDIX A: PTFs FOR A SEMI-INFINITE
ACOUSTIC DOMAIN

Let us consider a semi-infinite acoustic domain where a

unit normal velocity is prescribed on the patch i and where

the other patches are supposed to be rigid. The pressure at

point M inside or at the boundary of the acoustic domain is

given by the following Rayleigh integral equation:

pM ¼
jq0x
2p

ð
@Si

e�jk0 QMk k

QMk k dQ; (A1)

where k0 ¼ x=c0 is the acoustic wavenumber. Note that the

integrand is singular (tends to infinity) as QMk k tends to

zero. This problem that intervenes in the calculation of the

PTF of patch i, Zii must be overcome by the use of cylindri-

cal coordinates by considering a circular patch having the

same surface as the original one (see Ref. 9):

Zii ¼ q0c0 1� e�jk0ai
� �

@Si: (A2)

For the PTF between patch i and patch j (i 6¼ j), the

patch surfaces @Si and @Sj are discretized in K and K0 ele-

mentary surfaces, respectively. As the distance QMk k is

quasi-constant for Q belonging to an element surface, the in-

tegral of Eq. (A1) is approximated by

pM ¼
jq0x@Si

2pK

XK

k¼1

e�jk0 QkMk k

QkMk k : (A3)

where Qk is the center point of the kth elementary surface.

Thus, the PTF between patch i and patch j can be eval-

uated by

Zij ¼
jq0x@Si@Sj

2pKK0

XK

k¼1

XK0
k0¼1

e�jk0 QkQk0k k

QkQk0k k ; (A4)

and the patch PTF between the patch i and the receiving

point M0 inside the semi-infinite acoustic medium by

ZiM0 ¼
jq0x@Si

2pK

XK

k¼1

e�jk0 QkM0k k

QkM0k k : (A5)

APPENDIX B: ACOUSTIC INTENSITY CALCULATION
IN A SEMI-INFINITE SPACE WITH PTF FORMALISM

The acoustic intensity at point M0 in the direction 1 is

defined by

In M0ð Þ ¼ 1

2
Re p1

M0u
1
n;M0 �

n o
; (B1)

where u1
n;M0 is the acoustic velocity in the 1 direction at point

M0 and the asterisk denotes the complex conjugate.

The pressure at point M0 can be calculated from the

patch velocities, u1
i ,

p1
M0 ¼ ~p1

M0 þ
XN

i¼1

Z1
iM0u

1
i ; (B2)

where the blocked pressure at point M0 due to the incident

wave is

~p1
M0 ¼ 2p0 cos k0 cos hð Þz½ �ej k0 sin hð Þx½ �: (B3)

In order to calculate the acoustic velocities at point M0

with the same process, one should introduce a supplementary

patch transfer function between patch i and point M0, T1
nM0

defined as the acoustic velocity in the c direction at point M0

when a normal velocity, �u1
i is prescribed on patch i (when

other patches are supposed rigid):

T1
nM0 ¼

un;M0

�u1
i

; (B4)

where un;M0 is the acoustic velocity in the 1 direction at

point M0.
The particle velocity can be related to the pressure gra-

dient using Euler’s equation,

u1
n;M0 ¼

j

q0x
@p1

M0

@n
: (B5)

The pressure gradient can be calculated from Eq. (A3)

when a unit normal velocity is prescribed on patch i. Finally,

one obtains

T1
nM0 ¼

@Si

2pK

XK

k¼1

QkM0
���!

	~n
QkM0k k

jk0e�jk0 QkM0k k

QkM0k k þ e�jk0 QkM0k k

QkM0k k2

" #
: (B6)

Using these PTFs and the patch velocities, u1
i , the

velocity at point M0 in the 1 direction can be calculated from

u1
n;M0 ¼ ~u1

n;M0 þ
XN

i¼1

T1
iM0u

1
i ; (B7)

where the blocked velocity ~u1
n;M0 is determined by
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~u1
n;M0 ¼

j

q0x
@

@n
2p0 cos k0 cos hð Þz½ �ej k0 sin hð Þx½ �
n o

: (B8)

Finally, the acoustic intensity at point M0 in the direction

1 can be obtained by introducing Eqs. (B2) and (B7) in rela-

tion (B1).
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