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A recently reported design of a hybrid vibration absorber (HVA) which is optimized to

suppress resonant vibration of a single degree-of-freedom (SDOF) system is re-optimized for

suppressing wide frequency band vibration of the SDOF system under stationary random

force excitation. The proposed HVA makes use of the feedback signals from the displace-

dynamic structure based on the H2 optimization criterion. The objective of the optimal

design is to minimize the mean square vibration amplitude of a dynamic structure under a

wideband excitation, i.e., the total area under the vibration response spectrum is minimized

in this criterion. One of the inherent limitations of the traditional passive vibration absorber

is that its vibration suppression is low if the mass ratio between the absorber mass and the

mass of the primary structure is low. The active element of the proposed HVA helps further

reduce the vibration of the controlled structure and it can provide significant vibration

absorption performance even at a low mass ratio. Both the passive and active elements are

optimized together for the minimization of the mean square vibration amplitude of the

primary system. The proposed HVA are tested on a SDOF system and continuous vibrating

structures with comparisons to the traditional passive vibration absorber.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Passive dynamic vibration absorber (PVA) is an auxiliary mass-spring-damper system which, when correctly tuned and
attached to a vibrating system subject to harmonic excitation, causes to cease the steady-state motion at the point to
which it is attached. The first research conducted at the beginning of the twentieth century considered an undamped PVA
tuned to the frequency of the disturbing force [1]. Such an absorber is a narrow-band device as it is unable to eliminate
structural vibration after a change in the disturbing frequency.

Finding the optimum parameters of a viscous friction PVA in a SDOF system drew the attention of many scholars. One
of the optimization methods is HN optimization which aims to minimize the resonant vibration amplitude. The optimum
design method of a PVA is called ‘‘Fixed-points theory’’, which was well documented in the textbook by Den Hartog [2].
Another optimization method proposed by Warburton [3,4] for PVA is H2 optimization which aims to minimize the mean
square vibration amplitude of the dynamic structure over the entire frequency range. If the system is subjected to random
excitation rather than sinusoidal excitation, the H2 optimization is more desirable than the HN optimization. However, the
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major disadvantage of PVA is that its vibration absorption performance depends on the mass ratio [5] and it is quite
limited when the mass ratio is small.

In order to improve the performance of a PVA, some researchers added a force actuator to the PVA to form a hybrid
vibration absorber (HVA) in order to provide an active force to counteract the vibration of the controlled structure.
However, most of the designs of HVA found in literature are complicated with focus on the control of the active element
only. Some common methods for controlling the active force in the HVA are neural network [6], delayed resonator [7],
modal feedback control [8–12] and closed-loop poles by modal feedback [13,14].

In this article, a hybrid vibration absorber (HVA) which is proposed and optimized by Chatterjee [15] recently for
suppressing resonant vibration of a single degree-of-freedom system is re-optimized for suppressing wide frequency band
vibration under stationary random force excitation. H2 optimization is applied to the proposed absorber such that the
mean square vibration amplitude of the dynamic structure over the entire frequency range is minimized, i.e., the total area
under the power spectrum response curve is minimized in this criterion. Damping in the primary vibrating structure was
ignored by Chatterjee [15] before but its effect on the optimization process is reported in this article. It is found that
optimum values of the system parameters do not exist if the damping in the primary system is relatively high.
2. HVA applied to a single degree-of-freedom system

2.1. Mathematical model

Fig. 1 shows three different configurations of vibration absorbers mounted on a SDOF vibrating system for suppressing
the vibration of the primary mass M. Case A in Fig. 1 is the one proposed and optimized by Chatterjee [15] for suppressing
resonant vibration of the primary mass M. Case B in Fig. 1 is similar to Case A but a viscous damper is added in the primary
system so that the effect of damping in the primary system to the optimization of the absorber can be studied. Case B
becomes Case A if damping coefficient in Case B, C, equals to zero. Since Case B is more general than Case A, the
mathematical model of Case B is established and presented in the following. Case B as shown in Fig. 1 has a HVA coupled
with a primary system where x, M, C and K denote, respectively, displacement, mass, damping and spring coefficients of
the primary system and xa, m and k represent those of the absorber. The equations of motion of the dynamic system may
be written as

M €x ¼�Kx�C _x�kðx�xaÞ�f aþF

m €xa ¼�kðxa�xÞþ f a

(
(1)

where F is the exciting force and the active force f a ¼ axa�b _xa is proposed by Chatterjee [15]. Performing Laplace
transformation of Eq. (1), the transfer function of the vibration response of the primary mass M may be written in term of
dimensionless parameters as

HðpÞ ¼
X

ðF=KÞ

¼
mg2�2aþ2bpþmp2

ð1þ2zpþp2Þðmg2�2aþ2bpþmp2Þþm2g2p2
(2)

where

p¼
s

on
, m¼ m

M
, on ¼

ffiffiffiffiffi
K

M

r
, oa ¼

ffiffiffiffiffi
k

m

r
, g¼ oa

on
, z¼

C

2
ffiffiffiffiffiffiffi
mk
p , a¼ a

2K

and

b¼
bon

2K

The frequency response function of mass M can be obtained by replacing p in Eq. (2) by jl where l¼o=on and j2¼�1
and it may be written as

HðlÞ ¼
X

F=K
¼

mg2�2a�ml2
þ2jbl

ð1�l2
þ2jzlÞðmg2�2a�ml2

þ2jblÞ�m2g2l2
(3)

The mean square vibration amplitude of the primary mass M may be written as [16]

E½x2� ¼

Z 1
�1

Hj j2SyðoÞdo (4)

where H is the frequency response function of the primary mass and SyðoÞ is the input mean square spectral density
function.



Fig. 1. Schematic diagrams of three different configurations of vibration absorber. Case A: Vibration control of a (M-K) system using the proposed hybrid

vibration absorber (HVA), Case B: Vibration control of a (M-K-C) system using the proposed hybrid vibration absorber (HVA) and Case C: Vibration

control of a (M-K) system using a passive vibration absorber (PVA).
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If the input spectrum is assumed to be ideally white, i.e., SyðoÞ ¼ S0, a constant for all frequencies, Eq. (4) can then be
rewritten as

E½x2� ¼ S0

Z 1
�1

HðoÞ
�� ��2do (5)

The non-dimensional mean square vibration amplitude of mass M may be defined as [16]

E x2
� �
¼
onS0

2p

Z 1
�1

HðlÞ
�� ��2dl (6)

A useful formula of Gradshteyn and Ryzhik [17] written as Eq. (7) below is used for solving Eq. (6).

If

HðoÞ ¼ �jo3B3�o2B2þ joB1þB0

o4A4�jo3A3�o2A2þ joA1þA0
(7a)

then Z 1
�1

HðoÞ
�� ��2do

¼ p
B2

0ðA2A3�A1A4Þ

A0
þA3ðB

2
1�2B0B2ÞþA1ðB

2
2�2B1B3Þþ

B2
3ðA1A2�A0A3Þ

A4

A1ðA2A3�A1A4Þ�A0A2
3

2
4

3
5 (7b)

Comparing Eq. (3) with Eq. (7a), we may write

A0 ¼ mg2�2a, A1 ¼ 2bþ2mzg2�4az, A2 ¼ mþmg2þm2g2�2aþ4zb,

A3 ¼ 2mzþ2b, A4 ¼ m, B0 ¼ mg2�2a, B1 ¼ 2b, B2 ¼ m, B3 ¼ 0: (8)

Using Eqs. (7) and (8), Eq. (6) may be rewritten as

E x2
� �
¼
onS0

2

C0g4þC1g2þC2

D0g4þD1g2þD2

� �
(9)

where

C0 ¼ 2m2ðm2zþmbþbÞ

C1 ¼�4m am2zþð1þa�2z2
Þbmþ2bða�bzÞ

� 	
C2 ¼ 2b m2þð4a�8az2

þ4bzÞmþ4a2þ4b2
�8abz

� 	
D0 ¼ 4m2zðm2zþmbþbÞ

D1 ¼�4m ð2az�bÞzm2þð2azþ2z�4z3
�bÞbmþ4bzða�bzÞ

� 	
D2 ¼ 4bz m2þð4a�8az2

þ4bzÞmþ4a2þ4b2
�8abz

� 	

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(10)

2.2. Stability analysis of the proposed HVA (Case A)

According to Eq. (2), the characteristic equation of the control system may be written as

ð1þp2þ2zpÞðmg2�2aþmp2þ2bpÞþm2g2p2 ¼ 0 (11)

where

8g,m,a,b 2 Rþ

The dynamic system is stable if the real parts of all the roots of Eq. (11) are negative. Applying the Routh’s stability
criterion [18], the array of coefficient of Eq. (11) with z¼ 0 may be written as

(12)
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If mg2�2a40 is assumed then all the terms in the array above will be positive and therefore the control system must be
stable according to the Routh’s stability criterion.

2.3. Optimization of HVA

The proposed HVA is optimized based on the H2 optimization criterion. The objective of the optimal design is to reduce
the mean square vibration amplitude of the dynamic structure over the entire frequency range, i.e., the total area under the
vibration response spectrum is minimized. The optimum parameters of the HVA for undamped primary structure are
derived analytically while those with a damped primary structure are derived numerically.

2.3.1. Optimum design of the HVA for an undamped SDOF vibrating system (Case A)

Substituting z¼0 into Eq. (9), the mean square vibration amplitude of the mass M may be written as

E x2
� �
¼

onS0

4bm2g2
m2ð1þmÞg4�2mðmþamþ2aÞg2þ4a2þ4b2

þ4amþm2
� 	

(13)

There are four variables m, g and a and b in Eq. (13). The existence of an optimum set of these four variables requires
that ð@=@gÞE½x2� ¼ ð@=@aÞE½x2� ¼ ð@=@bÞE½x2� ¼ ð@=@mÞE½x2� ¼ 0. Since the possible range of the mass ratio m of the HVA is small
in practice, it is chosen as a basic variable in the following optimization process of the HVA and the optimum values of
other three variables are derived and expressed in terms of m whenever possible.

If ð@=@gÞE½x2� ¼ ð@=@bÞE½x2� ¼ 0 can be solved the HVA will have an optimum set of tuning frequency g and feedback gain
b in term of a and m. We may therefore write

@E½x2�

@g
¼
onS0 2m2ð1þmÞg4�2ð4a2þ4b2

þ4amþm2Þ

� 	
4bm2g3

¼ 0 (14a)

@E½x2�

@b
¼
onS0 �m2ð1þmÞg4þ2mðmþamþ2aÞg2þ4b2

�4a2�4am�m2
� 	

4b2m2g2
¼ 0 (14b)

Using Eq. (14a), we may write

b¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ð1þmÞg4�4a2�4am�m2

4

r
(15a)

Using Eq. (14b), we may write

b¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ð1þmÞg4�2mðmþamþ2aÞg2þ4a2þ4amþm2

4

r
(15b)

The optimum tuning ratio gopt can be obtained by equating Eqs. (15a) and (15b) and solving for g and it can be written
in term of a and m as

gopt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2þ4amþm2

mðmþamþ2aÞ

s
(16)

Substituting gopt from Eq. (16) into Eqs. (15a) or (15b), the optimum velocity feedback may be written as

bopt ¼
mð2aþmÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ2a�a2

p
2ðmþamþ2aÞ

(17)

bopt exists when mþ2a�a240. The dimensionless mean square vibration amplitude of the primary mass M may be
written using Eq. (13) as

E½x2�HVA

onS0
¼

1

4bm2g2
m2ð1þmÞg4�2mðmþamþ2aÞg2þ4a2þ4b2

þ4amþm2
� 	

(18)

Substituting Eqs. (16) and (17) into (18), the mean square vibration amplitude of the primary mass M with the
optimized HVA may be written as

E½x2�HVA_opt

onS0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ2a�a2

p
mþ2a

(19)

Taking the partial derivative of Eq. (19) with respect to a, we may write

@

@a
E½x2�HVA_opt

onS0

 !
¼�

mþ2aþma
2ðmþ2aÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ2a�a2

p o0 (20a)
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Taking the partial derivative of Eq. (19) with respect to m, we may write

@

@m
E½x2�HVA_opt

onS0

 !
¼�

mþ2a�2a2

2ðmþ2aÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ2a�a2

p o0 (20b)

The proof of mþ2a�2a240is shown in Appendix A. Eqs. (20a) and (20b) show that no optimum displacement feedback
gain a and mass ratio m exist and the mean square vibration amplitude of the primary mass M, E½x2�HVA_opt=onS0, can be
reduced when the mass ratio m or the displacement feedback gain a is increased.

To illustrate the variations of E½x2�HVA_opt=onS0 with the tuning ratio g and velocity feedback gain b, E½x2�HVA_opt=on S0is

calculated according to Eq. (18) with m¼0.2 and a¼0.3 and then plotted in Fig. 2. It can be observed in Fig. 2 that

E½x2�HVA_opt=onS0becomes a minimum at bopt � 0:08 and gopt � 1:93.

It can be derived as shown in Appendix A that ar1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2m

p
=2 if gopt from Eq. (16) is substituted into mg2�2a40. The

root locus of Eq. (11) is plotted with a increasing from zero to amax ¼ ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2m

p
Þ=2 and m¼0.2 in Fig. 3 for illustration.

As shown in Fig. 3, the control system has four complex roots when the feedback of the displacement a is small and it has
two complex poles and two negative real poles when a approaches amax. Substituting amax into Eq. (19), the minimum
Fig. 2. Contour plot of E½x2�HVA=onS0of Case A with different tuning ratio g and velocity feedback gain b. m¼ 0:2, a¼ 0:3. * —Point of minimum

of E½x2�HVA=onS0.

Fig. 3. Root locus of Case A with m¼ 0:2 and a 2 ð0,1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2m

p
=2Þ.
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mean square vibration amplitude of the primary mass M may be written in terms of m as

E½x2�HVA_opt_min

onS0
¼ lim

a-amax

E½x2�HVA_opt

onS0

 !
¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þmþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2m

p
Þ

q o
1

2
(21)

Eq. (21) shows that the larger the mass ratio m, the smaller the minimum mean square vibration amplitude E½x2�HVA_opt_min,
and E½x2�HVA_opt_min=onS0 is smaller than 0.5 and it reduces as the mass ratio m increases.

It is derived as shown in Appendix B that if the optimization process is started by solving ð@=@gÞE½x2� ¼ ð@=@aÞE½x2� ¼ 0

no real solution of m, g and b can be obtained. On the other hand, if the optimization process is started by solving

ð@=@aÞE½x2� ¼ ð@=@bÞE½x2� ¼ 0 the minimum mean square vibration amplitude E½x2�HVA_opt_min=onS0 in that case becomes 0.5

as showed by Eq. (B11) of Appendix B. Comparing Eq. (21) with Eq. (B11), the proposed gopt and bopt as shown in Eqs. (16)

and (17), respectively, are the best choice of optimum parameters among the three cases of optimization considered in this
Section.
2.3.2. Effect of primary damping on the optimum design of the HVA (Case B)

In Case B, the mean square vibration amplitude of mass M, E x2
� �

HVA
=onS0, has a minimum if ð@=@gÞE½x2� ¼ ð@=@bÞE½x2� ¼ 0,

the HVA has an optimum set of g and b in terms of a. So we may write using Eq. (9)

@E½x2�

@g ¼
16m2bgðbþmzÞðE0g4þE1Þ

ðD0g4þD1g2þD2Þ
2

¼ 0 (22a)

@E½x2�

@b
¼

8m2g2ðF0g4þF1g2þF2Þ

ðD0g4þD1g2þD2Þ
2
¼ 0 (22b)

where

E0 ¼ m2ðbþmbþm2zÞ

E1 ¼�b m2þð4aþ4bz�8az2
Þmþ4a2þ4b2

�8abz
� 	

F0 ¼ m2ðb2
þmb2

þ2m2bzþm3z2
Þ

F1 ¼�2m 2ab2
þmb2

ð1þaÞþ2m2abzþam3z2
� 	

F2 ¼ b2
ð2aþm�2mz�2bÞð2aþmþ2mzþ2bÞ

8>>>>>>>>><
>>>>>>>>>:

(23)

Using Eq. (22a), we may write

g¼
b m2þð4aþ4bz�8az2

Þmþ4a2þ4b2
�8abz

� 	
m2ðbþmbþm2zÞ

0
@

1
A

1
4

(24a)

Using Eq. (22b), we may write

g¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�F1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

1�4F0F2

q
2F0

vuut
(24b)

The optimum feedback gain of velocity bopt_d can be obtained by equating Eqs. (24a) and (24b) and solving for b in

terms of m, a and z. The optimum tuning ratio gopt_d can then be derived by substituting bopt_d into either Eqs. (24a) or

(24b). To illustrate the effect of primary damping on the variation of the mean square vibration amplitude of mass M,

E½x2�HVA=onS0 are calculated according to Eqs. (9) and (10) with z¼0.1 for different values of velocity feedback gain b and

tuning ratio g. The results are plotted in Fig. 4 for the illustration of the optimum frequency gopt_d and feedback gain bopt_d

of the HVA. In comparison between Figs. 2 and 4, the minimum point of E½x2�HVA=onS0 is further reduced because of the

primary damping z in Case B and it also causes a saddle point in the contour plot in Fig. 3. It is found that bopt_d does not

exist if the primary damping ratio z is high such that the square roots terms in Eqs. ((22a) and (22b)) cannot be solved.

Figs. 5 and 6 show the variations of bopt_d and gopt_d, respectively with the primary damping z at m¼0.2 and four different

values of a for illustration. Both Figs. 5 and 6 show that the optimum tuning ratio gopt_d and the optimum feedback gain of

velocity bopt_d decrease as the primary damping z increases. The dimensionless mean square vibration amplitude of mass

M, E½x2�HVA_opt=onS0, which is then calculated using Eq. (9) with bopt_d, gopt_d, m¼0.2 and four different values of a is plotted

in Fig. 7 for illustration. It shows that the mean square vibration amplitude of the primary mass M decreases as primary

damping z increases.



Fig. 4. Contour plot of E½x2�HVA=onS0 of Case B with different tuning ratio g and velocity feedback gain b. m¼ 0:2, a¼ 0:3 and z ¼ 0.1. *—Point of

minimum of E½x2�HVA=onS0; o—Saddle point.

Fig. 5. Optimum tuning ratio gopt_d of Case B versus damping ratio z. m¼ 0:2.
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2.4. Comparison to a dynamic vibration absorber with passive damping (Case C)

Case A in Fig. 1 is compared to a passive dynamic vibration absorber (PVA), shown as Case C in Fig. 1 in this section. The
frequency response function of the PVA in Case C may be written as [2]

X

F=K
¼

g2�l2
þ2jzagl

ð1�l2
Þðg2�l2

Þ�mg2l2
þ2jzaglð1�l

2
�ml2

Þ
(25)

where

za ¼
c

2
ffiffiffiffiffiffiffi
mk
p

The H2 optimum tuning frequency and damping of the PVA may be written as [3]

g¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þm
2ð1þmÞ2

s
and za ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð3mþ4Þ

2ð2þmÞð1þmÞ

s
(26)



Fig. 6. Optimum velocity feedback gain bopt_d of Case B versus damping ratio z with m¼ 0:2.

Fig. 7. The dimensionless mean square vibration amplitude of mass M of Case B, E[x2]HVA/onS0, versus damping ratio z. m¼ 0:2.
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The mean square vibration amplitude of the primary mass may be written as [3]

E½x2�PVA_opt ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ3m
mð1þmÞ

s
(27)

Eq. (27) shows that the minimum mean square vibration amplitude of Case C, E½x2�PVA_opt, tends to infinity as the mass ratio
m tends to zero while Eq. (21) shows that the minimum mean square vibration amplitude of Case A, E½x2�HVA_opt_min=onS0 tends
to 0.5 as the mass ratio m tends to zero. These results show that the proposed HVA but not the PVA can produce significant
vibration suppression of the SDOF vibrating system if the mass ratio is low.

The ratio between the mean square vibration amplitude of the primary mass of PVA and that of the undamped HVA can
be derived using Eqs. (19) and (27) and written as

E½x2�HVA_opt

E½x2�PVA_opt

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ2a�a2
p

mþ2a

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ3m
mð1þmÞ

q ¼
2

ðmþ2aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð1þmÞðmþ2a�a2Þ

4þ3m

s
(28)

The mean square vibration amplitude motion ratio E½x2�HVA_opt=E½x2�PVA_opt is calculated for different values of displacement
feedback gain a and mass ratio m and the results are plotted as contours in Fig. 8 for illustration. As shown in Fig. 8, the ratio



Fig. 8. Contour plot of E½x2�HVA=E½x2�PVA(comparing Case A to Case C) with different mass ratio m and displacement feedback gain a.

Fig. 9. Frequency response function of the primary structure (Case A) using Eq. (2) with a ¼ 0.1 (—), 0.5 (– – – ), amax (- � - � - � ), and that with PVA (Case

C) with optimum tuning condition using Eq. (25) (——). m¼ 0:01.
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E½x2�HVA_opt=E½x2�PVA_opt reduces as the displacement feedback gain a increases. The frequency response functions of the mass M

in Case A, HðlÞ
�� ��, is calculated using Eqs. (3), (16) and (17) with mass ratio m¼0.01 and feedback gain a¼0.1, 0.5 and amax and

the results are plotted in Fig. 9 for illustration. The corresponding frequency response function of in Case C with an optimized
PVA is calculated using Eqs. (25) and (26) and the result is also plotted as the dotted line in Fig. 9 for comparison. As shown in
Fig. 9, the resonant vibration amplitude of the primary mass M in Case C using an optimized PVA is about fourteen times of that
in Case A using the proposed HVA with a¼amax. Moreover, mean square vibration amplitudes of the primary mass M in Case C
is 43% of that of Case A with a¼amax. These results show that the proposed HVA can significantly reduce both the resonant
vibration amplitude and the mean square vibration amplitude of a SDOF vibrating system even when the mass ratio m is small.
2.5. Comparison of the proposed design (Case A) with the design by Chatterjee [15]

HN optimum control of the HVA was proposed by Chatterjee [15] to minimize the resonant vibration of the primary
mass M of Case A as illustrated in Fig. 1a. Chatterjee derived the optimum a and b and then derived the optimum g in
terms of a and m. The optimum tuning frequency g and velocity feedback gain b of the HVA by [15] may be written in
terms of m and a as

gopt_ ½15� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4aþ2m
mð2þmÞ

s
, and (29a)



Fig. 10. Contour plot of E½x2�HVA=onS0of Case A with different tuning ratio g and velocity feedback gain b. m¼ 0:2, a¼ 0:7. o — g
opt and bopt proposed by

the present method (Eqs. (16) and (17)); *— g
opt and bopt proposed by Chatterjee [15] (Eqs. (29a) and (29b)).

Fig. 11. Schematics of a simply supported beam with the proposed HVA or a PVA excited by a uniform disturbed force. Case D: Vibration control of a

simply-supported beam using the proposed hybrid vibration absorber (HVA). Case E: Vibration control of a simply-supported beam using a passive

vibration absorber (PVA).
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bopt_½15� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m2ðmþ2aÞ

4ð2þmÞ

s
where ao1 (29b)

To illustrate the variations of E½x2�HVA_opt=onS0 with the tuning ratio g and velocity feedback gain b, E½x2�HVA_opt=onS0 is

calculated according to Eq. (18) with m¼0.2 and a¼0.7 and then plotted in Fig. 10. It can be observed in Fig. 10 that

E½x2�HVA_opt=onS0 becomes a minimum at bopt ¼ 0:097 and gopt ¼ 2:712. The optimum tuning frequency g and velocity

feedback gain b are calculated according to Eqs. (29a) and (29b) as bopt_½15� ¼ 0:148 and gopt_½15� ¼ 2:697and they are marked

by the asterisk in Fig. 10 for comparison to the proposed set of optimum g and b which marked by the small circle. The

mean square motion of the primary mass M, E½x2�HVA_opt=onS0 with HVA tuned according to the proposed g and b is found

to be 9.8% lower than that using the optimum parameters bopt_½15� and gopt_½15� proposed by Chatterjee [15].
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3. HVA applied to suppressing vibration of flexible beam structure

3.1. Mathematical model

In this section, Case A is compared with Case C but the primary vibrating system is changed from a SDOF system to a
continuous beam structure as illustrated by Case D and Case E in Fig. 11. The mean square displacement response of a
simply supported beam excited by an uniform distributed force as shown in Fig. 11 is to be suppressed using either the
proposed HVA (Case D) or a PVA (Case E) attached on the beam at x¼xo.

Assuming the beam behaves like an Euler–Bernoulli beam, the equation of motion of the beam may be written as [16]

rA
@2w

@t2
þEI

@4w

@x4
¼ pðtÞgðxÞþFhðtÞdðx�xoÞ (30)

where pðtÞgðxÞ is the externally applied forcing function and Fh is the force acting by the HVA onto the beam. The
eigenfunction and the eigenvalues of the beam may be written as

jiðxÞ ¼
2

L
sinðbixÞ where bi ¼

ip
L

, i 2 N (31)

The spatial parts of the forcing functions and the Dirac delta function may be expanded in Fourier series and written as

gðxÞ ¼
X1
i ¼ 1

aijiðxÞ, and (32a)

dðx�xoÞ ¼
X1
i ¼ 1

bijiðxÞ (32b)

where the Fourier coefficients ai and bi are, respectively

ai ¼
2

npL , i¼ 2n�1 n 2 N

else ai ¼ 0, and (33a)

bi ¼
2

L
sin

ipx0

L

� �
(33b)

Assuming the HVA (Case D) is tuned to suppress the first vibration mode of the beam. The frequency response of the
beam can be derived using a similar approach of Ref. [19] and written as

WHVAðx,lÞ
PðlÞ

¼
1

rAo2
n

X1
p ¼ 1

ap�

mLbp

P1
q ¼ 1

aqjq ðx0 Þ

g2
q
�l2

�
g2�l2�2a

e þ
2jbl
e

g2l2 þmL
P1
r ¼ 1

brjr ðx0 Þ

g2
r �l

2

g2
p�l

2
jpðxÞ (34)

where

on ¼

ffiffiffiffiffiffiffiffiffiffi
EIb4

1

rA

s
, or ¼

ffiffiffiffiffiffiffiffiffiffi
EIb4

r

rA

s
, gr ¼

or

on
, m¼ m

rAL
, e¼ mj2

1ðx0Þ, a¼
aj2

1ðx0Þ

2EILb4
1

and

b¼
bonj2

1ðx0Þ

2EILb4
1

Using Eq. (34), the spatial average mean square vibration amplitude of the beam may be written as

R L
0

WHVAðx,lÞ
PðlÞ

��� ���2dx

L
¼

1

rAo2
n

� �2X1
p ¼ 1

ap�

mLbp

P1
q ¼ 1

aqjq ðx0 Þ

g2
q
�l2

�
g2�l2�2a

e þ
2jbl
e

g2l2 þmL
P1
r ¼ 1

brjr ðx0 Þ

g2
r �l

2

g2
p�l

2

��������������

��������������

2

(35)

The optimum tuning frequency and velocity feedback gain can be derived using a similar approach of Ref. [19]and
written similar to Eqs. (16) and (17), respectively as

gHVA_b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2þ4aeþm2

eðeþaeþ2aÞ

s
, and (36a)



Fig. 12. Mean square vibration amplitude response of the whole beam with m¼ 0:05 and a¼ 1. —ð1=LÞ
R L

0 WHVAðx,lÞ=PðlÞ2 dx of Case D;———ð1=LÞ
R L

0 WPVA

ðx,lÞ=PðlÞ2 dx of Case E in Fig. 11.
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bHVA_b ¼
eð2aþeÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eþ2a�a2
p

2ðeþaeþ2aÞ (36b)

The spatial average mean square vibration amplitude of the beam with the PVA (Case E) may be written as [16]

R L
0

WPVAðx,lÞ
PðlÞ

��� ���2dx

L
¼

1

rAo2
n

� �2X1
p ¼ 1

ap�

mLbp

P1
q ¼ 1

aqjq ðx0 Þ

g2
q
�l2

�
g2�l2 þ 2jzgl
l2 ðg2 þ 2jzglÞ

þmL
P1
r ¼ 1

brjr ðx0 Þ

g2
r �l

2

g2
p�l

2

��������������

��������������

2

(37)

The optimum tuning frequency and damping of the PVA may be written, respectively as [19]

gPVA_b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þe

2ð1þeÞ2

s
(38a)

and

za_PVA_b ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eð3eþ4Þ

2ð2þeÞð1þeÞ

s
(38b)

3.2. Numerical example

Assuming the length of the beam is L¼ 1 m and the absorber is attached at x¼ x0 ¼ 0:5 m of the beam. The dimensions
of the cross section area are 0:025 m� 0:025 m. The material of the beam is aluminium with density r¼2710 kg/m3 and
modulus E¼ 6:9 GPa. The mass ratio m is 0.05. The feedback gain of the displacement signal is assumed to be a¼ 1. The

optimum tuning ratio gHVA_b and the optimum feedback gain of velocity bHVA_b are calculated according to Eqs. (36a) and

(36b) to be 3.1754 and 0.1004, respectively. Similarly, the optimum tuning ratio gPVA_b and the optimum damping za_PVA_b

are calculated according to Eqs. (38a) and (38b) to be 0.8740 and 0.2087, respectively. The mean square vibration

amplitude response of the whole beam, ð1=LÞ
R L

0 WHVAðx,lÞ=PðlÞ
�� ��2dx and ð1=LÞ

R L
0 WPVAðx,lÞ=PðlÞ
�� ��2dx with m¼ 0:05 and

a¼ 1 are calculated according to Eqs. (35) and (37), respectively and the results are plotted in Fig. 12 for comparison.

As shown in Fig. 12, The maximum value of ð1=LÞ
R L

0 WHVAðx,lÞ=PðlÞ
�� ��2dx of Case D is about 4 times less than the maximum

of ð1=LÞ
R L

0 WPVAðx,lÞ=PðlÞ
�� ��2dx of Case E. Moreover, the area under the curve of Case D is found to be about 40% less than

that of Case E in Fig. 12. These results show that using the proposed optimized HVA can suppress the spatial average mean
square vibration amplitude of the whole beam at resonance as well as over the entire frequency range of interest.
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4. Conclusion

A hybrid vibration absorber (HVA) which is recently proposed and optimized by Chatterjee [15] for suppressing resonant
vibration of a single degree-of-freedom (SDOF) system is re-optimized for suppressing wide frequency band vibration of SDOF
system under stationary random force excitation. H2 optimization is applied to the proposed absorber such that the mean
square vibration amplitude of the vibrating structure over the entire frequency range is minimized, i.e., the total area under the
power spectrum response curve is minimized. A methodology in the optimization to include damping in the primary vibrating
structure is proposed and the effect of this damping on the optimization process is reported. It is found that optimum values of
the system parameters do not exist if the damping in the primary system is relatively high.

The active element of the proposed HVA helps further reduce the vibration of the controlled structure and it can provide
significant vibration absorption performance even at a low mass ratio between the absorber and the primary structure. Both
the passive and active elements are optimized together for the minimization of the mean square vibration amplitude of the
primary system. It has been proved analytically in Sections 2.3 and 2.4 that the minimum mean square vibration amplitude in
Case C, E½x2�PVA_opt, tends to infinity as the mass ratio m tends to zero while that in Case A, E½x2�HVA_opt_min=onS0 tends to 0.5 as
the mass ratio m tends to zero. These results show that the proposed HVA but not the PVA can produce significant vibration
suppression of the SDOF vibrating system if the mass ratio is low. The proposed HVA has been tested numerically on both SDOF
and continuous vibrating structures and it provides much better suppression results than the passive vibration absorber.

Appendix A

According to Eq. (16),

gopt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2þ4amþm2

mðmþamþ2aÞ

s
(A1)

Substituting gopt into the inequality mg2�2a40, we may write

m 4a2þ4amþm2

mðmþamþ2aÞ

� �
�2a40 (A2)

)
4a2þ4amþm2�2aðmþamþ2aÞ

mþamþ2a
40 (A3)

)
4a2þ4amþm2�2am�2a2m�4a2

mþamþ2a
40 (A4)

)
2amþm2�2a2m
mþamþ2a 40 (A5)

) 2amþm2�2a2m40 _mþamþ2a40

 �

(A6)

) mþ2a�2a240 (A7)

)
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2m

p
2

4a4
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2m

p
2

(A8)

)
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2m

p
2

4a40 _a40ð Þ (A9)

)
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2m

p
2

4a (A10)

Appendix B. B1: Searching for optimum a and c

According to Eq. (13),

E x2
� �
¼

onS0

4bm2g2
m2ð1þmÞg4�2mðmþamþ2aÞg2þ4a2þ4b2

þ4amþm2
� 	

(B1)

Consider the case if @
@g E x2
� �
¼ @

@a E x2
� �
¼ 0, the HVA will have an optimum set of tuning frequency g and feedback gain

a in term of b and m. We may therefore write

@E½x2�

@a
¼

onS0

4bm2g2
�2mg2ð2þmÞþ8aþ4m

 �

¼ 0 (B2a)
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@E½x2�

@g
¼
onS0 2m2ð1þmÞg4�2 4a2þ4b2

þ4amþm2
� 	� 	

4bm2g3
¼ 0 (B2b)

Using Eq. (B2a), the displacement frequency feedback gain may be written as

a¼ mg2ð2þmÞ�2m
4

(B3)

Substituting Eq. (B3) into Eq. (B2b), we may write

1

2
m4g4þ8b2

¼ 0 (B4)

Eq. (B4) shows that there are no positive real root of mass ratio m, g and feedback gain b and hence no optimum values
of m, g and feedback gain b exists in this case.

B2: Searching for optimum a and b

Consider the case if @
@a E x2
� �
¼ @

@b E x2
� �
¼ 0, the HVA will have an optimum set of feedback gains a and b in term of g and

m. We may therefore write

@E½x2�

@a
¼

onS0

4bm2g2
�2mg2ð2þmÞþ8aþ4m

 �

¼ 0 (B5a)

@E½x2�

@b
¼
onS0 �m2ð1þmÞg4þ2mðmþamþ2aÞg2þ4b2

�4a2�4am�m2
� 	

4b2m2g2
¼ 0 (B5b)

Using Eq. (B5a), the displacement frequency feedback gain may be written as

a¼ mg2ð2þmÞ�2m
4

(B6)

Substituting Eq. (B6) into Eq. (B5b), we may write

b¼
mg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m�m2g2

p
4

(B7)

Substituting Eqs. (B6) and (B7) into Eq. (B1), the mean square vibration amplitude of the primary mass M with the
optimized HVA may be written as

E½x2�HVA_opt

onS0
¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

mg2
�1

s
(B8)

As discussed in Section 2.2, a stable dynamic system of the HVA requires

mg2�2a40 (B9)

Substituting Eq. (B6) into (B9), we may write

mg2o2 (B10)

Using Eqs. (B8) and (B10), we may write

E½x2�HVA_opt

onS0
4

1

2
(B11)
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