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1. Introduction

Passive dynamic vibration absorber (PVA) is an auxiliary mass-spring-damper system which, when correctly tuned and
attached to a vibrating system subject to harmonic excitation, causes to cease the steady-state motion at the point to
which it is attached. The first research conducted at the beginning of the twentieth century considered an undamped PVA
tuned to the frequency of the disturbing force [1]. Such an absorber is a narrow-band device as it is unable to eliminate
structural vibration after a change in the disturbing frequency.

Finding the optimum parameters of a viscous friction PVA in a SDOF system drew the attention of many scholars. One
of the optimization methods is H,, optimization which aims to minimize the resonant vibration amplitude. The optimum
design method of a PVA is called “Fixed-points theory”, which was well documented in the textbook by Den Hartog [2].
Another optimization method proposed by Warburton [3,4] for PVA is H, optimization which aims to minimize the mean
square vibration amplitude of the dynamic structure over the entire frequency range. If the system is subjected to random
excitation rather than sinusoidal excitation, the H, optimization is more desirable than the H_, optimization. However, the
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major disadvantage of PVA is that its vibration absorption performance depends on the mass ratio [5] and it is quite
limited when the mass ratio is small.

In order to improve the performance of a PVA, some researchers added a force actuator to the PVA to form a hybrid
vibration absorber (HVA) in order to provide an active force to counteract the vibration of the controlled structure.
However, most of the designs of HVA found in literature are complicated with focus on the control of the active element
only. Some common methods for controlling the active force in the HVA are neural network [6], delayed resonator [7],
modal feedback control [8-12] and closed-loop poles by modal feedback [13,14].

In this article, a hybrid vibration absorber (HVA) which is proposed and optimized by Chatterjee [15] recently for
suppressing resonant vibration of a single degree-of-freedom system is re-optimized for suppressing wide frequency band
vibration under stationary random force excitation. H, optimization is applied to the proposed absorber such that the
mean square vibration amplitude of the dynamic structure over the entire frequency range is minimized, i.e., the total area
under the power spectrum response curve is minimized in this criterion. Damping in the primary vibrating structure was
ignored by Chatterjee [15] before but its effect on the optimization process is reported in this article. It is found that
optimum values of the system parameters do not exist if the damping in the primary system is relatively high.

2. HVA applied to a single degree-of-freedom system
2.1. Mathematical model

Fig. 1 shows three different configurations of vibration absorbers mounted on a SDOF vibrating system for suppressing
the vibration of the primary mass M. Case A in Fig. 1 is the one proposed and optimized by Chatterjee [15] for suppressing
resonant vibration of the primary mass M. Case B in Fig. 1 is similar to Case A but a viscous damper is added in the primary
system so that the effect of damping in the primary system to the optimization of the absorber can be studied. Case B
becomes Case A if damping coefficient in Case B, C, equals to zero. Since Case B is more general than Case A, the
mathematical model of Case B is established and presented in the following. Case B as shown in Fig. 1 has a HVA coupled
with a primary system where x, M, C and K denote, respectively, displacement, mass, damping and spring coefficients of
the primary system and x,, m and k represent those of the absorber. The equations of motion of the dynamic system may
be written as

Mk = —Kx—Cx—k(x—xq)—f4+F
{ (¢ )—f 1)

Mg = —k(Xg—X)+f,
where F is the exciting force and the active force f,=ax,—bx, is proposed by Chatterjee [15]. Performing Laplace

transformation of Eq. (1), the transfer function of the vibration response of the primary mass M may be written in term of
dimensionless parameters as

X
0= i
_ 1y =20+ 2fp+up? 2)
(1+2{p+p?)(uy? =200+ 2fp+ pp?) + p2y2p?
where
—i —E w—\/K w—\/E —% "’——C g(—i
P=% = TV TV TS e T avmk YT 2K
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The frequency response function of mass M can be obtained by replacing p in Eq. (2) by j4 where A= w/w, and j>=—1
and it may be written as

X w2 —20— 2% +2j B2

H) = = . .
F/K (=22 42§00y (uy? — 20— pi2 + 2j ) — 292 22

(3)

The mean square vibration amplitude of the primary mass M may be written as [16]
Bl = | IHES @)do (4)

where H is the frequency response function of the primary mass and Sy(w) is the input mean square spectral density
function.
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Fig. 1. Schematic diagrams of three different configurations of vibration absorber. Case A: Vibration control of a (M-K) system using the proposed hybrid
vibration absorber (HVA), Case B: Vibration control of a (M-K-C) system using the proposed hybrid vibration absorber (HVA) and Case C: Vibration
control of a (M-K) system using a passive vibration absorber (PVA).
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If the input spectrum is assumed to be ideally white, i.e., Sy(w) = So, a constant for all frequencies, Eq. (4) can then be

rewritten as
E[x*] =So/ |H(w)|*dw
The non-dimensional mean square vibration amplitude of mass M may be defined as [16]

/7 H()2d2

E[¥] = ‘”7;:‘0

2

A useful formula of Gradshteyn and Ryzhik [17] written as Eq. (7) below is used for solving Eq. (6).

If

—jw3B3 —C(Jsz +jwBq +By
CO4A4 —jCO3A3 —(})ZAZ +j(1)A1 +Ao

H(w)=
then

/_. }H(a))\zdw

. BihshsMiAe) | 4o (B2 2BoBy) -+ Aq (B3 —2B; By)+ B Aok
A1(ArA3—A1Ag)—~AoAs

Comparing Eq. (3) with Eq. (7a), we may write
Ag=py? =20, Ay =2p+2uly*—4al, Ay =p+uy*+uPy?—20+4(p,

As=2ul+2f, Ai=p, Bo=py*’-20, Bi=2f, By=u, B3=0.

Using Eqgs. (7) and (8), Eq. (6) may be rewritten as

E[Xz} _ wnSO C0V4+C1 72+C2
~ 2 \Doy*+D1y?+D;

where

Co =2/ (WL +puB+P)

C1 = —ap (ol + (1 +a=20) Bu+2p—p0))

C= 2ﬂ<u2 + (40— 80 + 4P+ 4o +4ﬂ2—8a[f§)

Do = 42L(WP L+ pB+p)

Dy = 4y (el ~PL? + 2ol + 2040 ~ P+ 4BLo—pD)
Dy = 4 (12 +(40—8aL” + 4BL)u+ 402 + 4> -8 )

2.2. Stability analysis of the proposed HVA (Case A)

According to Eq. (2), the characteristic equation of the control system may be written as
(4P +20p)(py> =200+ pp?® +2ip) + 129*p* = 0
where

vy, o, e RY

(5)

(6)

(7a)

(7b)

(8)

(9)

(10)

(11)

The dynamic system is stable if the real parts of all the roots of Eq. (11) are negative. Applying the Routh’s stability

criterion [18], the array of coefficient of Eq. (11) with { =0 may be written as

P H prpy’ + 1yt =20 oy’ -2a
P’ 2p 2B 0
| w1+ u)-2a py’ =2a
2pu’y?
P P 0
py*(1+ ) -2a
1 uy® —2a

(12)
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If y?—20 > 0 is assumed then all the terms in the array above will be positive and therefore the control system must be
stable according to the Routh’s stability criterion.

2.3. Optimization of HVA

The proposed HVA is optimized based on the H, optimization criterion. The objective of the optimal design is to reduce
the mean square vibration amplitude of the dynamic structure over the entire frequency range, i.e., the total area under the
vibration response spectrum is minimized. The optimum parameters of the HVA for undamped primary structure are
derived analytically while those with a damped primary structure are derived numerically.

2.3.1. Optimum design of the HVA for an undamped SDOF vibrating system (Case A)
Substituting (=0 into Eq. (9), the mean square vibration amplitude of the mass M may be written as

21 WnSo
[ ] - 4Bu2q/2
There are four variables y, y and o and f in Eq. (13). The existence of an optimum set of these four variables requires
that (6/0y)E[x?] = (6/60)E[x?] = (0/0B)E[X?] = (8/dp)E[x?] = 0. Since the possible range of the mass ratio y of the HVA is small
in practice, it is chosen as a basic variable in the following optimization process of the HVA and the optimum values of
other three variables are derived and expressed in terms of 4 whenever possible.
If (8/8y)E[x*] = (8/8P)E[x*] = 0 can be solved the HVA will have an optimum set of tuning frequency y and feedback gain
p in term of o and u. We may therefore write

(12 + oy =2 g+ 207 + 40 + 47 + Aot 112 (13)

GEp?) | @nSo (202(1+ )y —2(402 +-4° + dopi+ 1)

) 42y =0 (142)
OEX?]  @nSo (—u2(1 1Y 2 o+ 20072 +4/32—4c<2—4om—u2) o (14b)
op 4% 22 -
Using Eq. (14a), we may write
_ A+ oyt —4o2 —4op— i
B= 7 (15a)
Using Eq. (14b), we may write
2 4 _ 2 2 2
f— \/u (14 )y 2,u(u+ocu:2a)y +402 + Aot + it (15b)

The optimum tuning ratio y,,. can be obtained by equating Eqgs. (15a) and (15b) and solving for y and it can be written

in term of « and u as
402 +4orp+ p?
_ 16
Tort =\ (i op 20 (16)

Substituting 7y, from Eq. (16) into Egs. (15a) or (15b), the optimum velocity feedback may be written as

W20+ )/ [+ 200—0?
ﬂopt = (17)
2(U+op+20)

Bopt €Xists when u+20—c > 0. The dimensionless mean square vibration amplitude of the primary mass M may be
written using Eq. (13) as

E[X*luva _
nSo 4fu2y?

<u2(1 + 1Y =20+ o+ 200)% + 4o + 45 +4ocu+u2> (18)

Substituting Egs. (16) and (17) into (18), the mean square vibration amplitude of the primary mass M with the
optimized HVA may be written as

EX*Jhva opt /I +20—02 (19)
nSo - 420

Taking the partial derivative of Eq. (19) with respect to o, we may write

5 <E[X2]HVA_opt> _ P20+ pio <0 (20a)

oo @nSo T 2(u+20 /it 2002
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Taking the partial derivative of Eq. (19) with respect to u, we may write

0 E[X*Juva opt | _ _ +200—202 (20b)
op @nSo 2(u+20)% i+ 20— 2z

The proof of u+2x—20? > Ois shown in Appendix A. Egs. (20a) and (20b) show that no optimum displacement feedback
gain o and mass ratio y exist and the mean square vibration amplitude of the primary mass M, E[x*]yya_opt/@nSo, can be
reduced when the mass ratio u or the displacement feedback gain « is increased.

To illustrate the variations of E[xZ]HVA_Opt /wnSo with the tuning ratio y and velocity feedback gain f3, E[xz]]_,vA_OPt /Wn Sois
calculated according to Eq. (18) with u=0.2 and «=0.3 and then plotted in Fig. 2. It can be observed in Fig. 2 that
E[X?1pya_opt/@nSobecomes a minimum at f,, ~0.08 and y,,, ~ 1.93.

It can be derived as shown in Appendix A that o < 1++/1+2u/2 if y,,, from Eq. (16) is substituted into wy*>—20>0.The
root locus of Eq. (11) is plotted with o increasing from zero to oimax = (1++/1+2u)/2 and u=0.2 in Fig. 3 for illustration.
As shown in Fig. 3, the control system has four complex roots when the feedback of the displacement « is small and it has
two complex poles and two negative real poles when o approaches omax. Substituting omax into Eq. (19), the minimum

0
Fig. 2. Contour plot of E[x?]yya/®wnSoof Case A with different tuning ratio y and velocity feedback gain . u=0.2, «=0.3. * —Point of minimum
of E[X?]yya/®nSo-
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mean square vibration amplitude of the primary mass M may be written in terms of u as

EPJhva optmin _ i <E[X2]“V’L°Pt> = ! <1 21
nSo 2=ama\ WnSo 200+t /T2 2

Eq. (21) shows that the larger the mass ratio y, the smaller the minimum mean square vibration amplitude E[xz]HVA_Opt_mm,
and E[x?]pya_opt_min/@nSo is smaller than 0.5 and it reduces as the mass ratio y increases.

It is derived as shown in Appendix B that if the optimization process is started by solving (8/8))E[x*] = (8/80)E[x*] =0
no real solution of u, y and f can be obtained. On the other hand, if the optimization process is started by solving
(6/00)E[X?] = (8/6f)E[x?] = 0 the minimum mean square vibration amplitude E[x?Jyya_opt_min/@nSo in that case becomes 0.5
as showed by Eq. (B11) of Appendix B. Comparing Eq. (21) with Eq. (B11), the proposed y,,; and 8, as shown in Egs. (16)
and (17), respectively, are the best choice of optimum parameters among the three cases of optimization considered in this
Section.

2.3.2. Effect of primary damping on the optimum design of the HVA (Case B)
In Case B, the mean square vibration amplitude of mass M, E [XZ}HVA /®ySo, has a minimum if (8/6y)E[x*] = (8/0B)E[x*]1=0,
the HVA has an optimum set of y and f in terms of o. So we may write using Eq. (9)

OE[X*] _ 1642 By(B+ 1O (Eoy* +E1) _

0 22a
oy (Doy*+D1y2 +D,)? (223)

OE[x*] _ 8122 (Foy* + F1y* +F) —0

22b
6ﬁ (Do”/4+D1"/2+D2)2 ( )

where

Eo = 12 (B+puf+120)

Ey = —B (12 + (do+ 4PC—8al i+ 40 + 4% 8o )

Fo=12(B* + up* + 212 L+ 1> C%) (23)
Fi= —2u(2a/32+u/32(1 +oc)+2,uzocﬁC+oc,u3C2)

Fy = B2 (20t+ =20l —2B) 200+ pu+ 2l +2Pp)

Using Eq. (22a), we may write

(24a)

ﬁ(,uz+(4a+4[3§—8a§2)u+4a2+4[32—8aﬂ<§) :
/= PP+ uf+u20)

Using Eq. (22b), we may write

—F1—+/F>—4FF
B el (24b)

7= 2F,

The optimum feedback gain of velocity .y 4 can be obtained by equating Egs. (24a) and (24b) and solving for 8 in
terms of u, o and (. The optimum tuning ratio y,,_4 can then be derived by substituting S, 4 into either Eqgs. (24a) or
(24Db). To illustrate the effect of primary damping on the variation of the mean square vibration amplitude of mass M,
E[X*1qva/®nSo are calculated according to Egs. (9) and (10) with {=0.1 for different values of velocity feedback gain f and
tuning ratio 7. The results are plotted in Fig. 4 for the illustration of the optimum frequency y,, 4 and feedback gain f, 4
of the HVA. In comparison between Figs. 2 and 4, the minimum point of E[x?]yx/®nSo is further reduced because of the
primary damping { in Case B and it also causes a saddle point in the contour plot in Fig. 3. It is found that f,, 4 does not
exist if the primary damping ratio ( is high such that the square roots terms in Egs. ((22a) and (22b)) cannot be solved.
Figs. 5 and 6 show the variations of B, 4 and y,, 4, respectively with the primary damping ¢ at 4=0.2 and four different
values of o for illustration. Both Figs. 5 and 6 show that the optimum tuning ratio y,,. 4 and the optimum feedback gain of
velocity fB,p 4 decrease as the primary damping { increases. The dimensionless mean square vibration amplitude of mass
M, E[X*qya_opt/@nSo, Which is then calculated using Eq. (9) with foy: 4, Yopt_a» #£=0.2 and four different values of o is plotted
in Fig. 7 for illustration. It shows that the mean square vibration amplitude of the primary mass M decreases as primary
damping { increases.
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2.4. Comparison to a dynamic vibration absorber with passive damping (Case C)

Case A in Fig. 1 is compared to a passive dynamic vibration absorber (PVA), shown as Case C in Fig. 1 in this section. The
frequency response function of the PVA in Case C may be written as [2]

where

X P2 =32 +2iCaph
F/K (=222 =22) =222 + 24 ay (1 =22 —pa?)

Cc

RRENT:

The H, optimum tuning frequency and damping of the PVA may be written as [3]

241 . 1 uGu+4)
=, =T d L B v G o 7
4 \/ 21+ w? e ta=3 \/ 2@+ mA+w

(25)

(26)
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The mean square vibration amplitude of the primary mass may be written as [3]

1 443
EX*Jpva_opt = 5 “,UU—-I-Z) (27)

Eq. (27) shows that the minimum mean square vibration amplitude of Case C, E[x?]pys_op, tends to infinity as the mass ratio
u tends to zero while Eq. (21) shows that the minimum mean square vibration amplitude of Case A, E[X*]yya_opt_min/@nSo tends
to 0.5 as the mass ratio u tends to zero. These results show that the proposed HVA but not the PVA can produce significant
vibration suppression of the SDOF vibrating system if the mass ratio is low.

The ratio between the mean square vibration amplitude of the primary mass of PVA and that of the undamped HVA can
be derived using Eqs. (19) and (27) and written as

1+ 20—o2
E[X*Juva opt % 2 ¢u(1 T L) (U4 20—02) o8)
E[x? B ) 443
[X“Ipva_opt 1 \/m (n+20) +3u

The mean square vibration amplitude motion ratio E[x?]yya_opt/E[X*]pya_opt iS calculated for different values of displacement
feedback gain o and mass ratio ¢ and the results are plotted as contours in Fig. 8 for illustration. As shown in Fig. 8, the ratio
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EX*Tuva_opt/E[X*Ipya_opt Teduces as the displacement feedback gain « increases. The frequency response functions of the mass M
in Case A, |[H(2)|, is calculated using Eqs. (3), (16) and (17) with mass ratio ¢=0.01 and feedback gain &:=0.1, 0.5 and otmax and
the results are plotted in Fig. 9 for illustration. The corresponding frequency response function of in Case C with an optimized
PVA is calculated using Egs. (25) and (26) and the result is also plotted as the dotted line in Fig. 9 for comparison. As shown in
Fig. 9, the resonant vibration amplitude of the primary mass M in Case C using an optimized PVA is about fourteen times of that
in Case A using the proposed HVA with o= omax. Moreover, mean square vibration amplitudes of the primary mass M in Case C
is 43% of that of Case A with ot=amax. These results show that the proposed HVA can significantly reduce both the resonant
vibration amplitude and the mean square vibration amplitude of a SDOF vibrating system even when the mass ratio u is small.

2.5. Comparison of the proposed design (Case A) with the design by Chatterjee [15]
H., optimum control of the HVA was proposed by Chatterjee [15] to minimize the resonant vibration of the primary

mass M of Case A as illustrated in Fig. 1a. Chatterjee derived the optimum o« and  and then derived the optimum 7 in
terms of oo and u. The optimum tuning frequency ) and velocity feedback gain f§ of the HVA by [15] may be written in

terms of u and « as
, _JAo+2u
Yopt_ [15] = w2+ and (29a)
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the present method (Eqs. (16) and (17)); *— %, and fop: proposed by Chatterjee [15] (Egs. (29a) and (29b)).

D p(Dg(x.y)
?$Q®C‘ff>f>"Df’DfM 000000000000 00000880 $$$NM@?
w
L1
Xo N \
e L N
AN ~
——x
E p(Hgx.y)
00000008800 0400000080S000000000DLOOOHN
PaN PN
& L
L1
Xo N
- 7
L
L

Fig. 11. Schematics of a simply supported beam with the proposed HVA or a PVA excited by a uniform disturbed force. Case D: Vibration control of a
simply-supported beam using the proposed hybrid vibration absorber (HVA). Case E: Vibration control of a simply-supported beam using a passive

vibration absorber (PVA).
[3u2(p+20
Bopt 151 = ljl((2'u7+,u)) where o<1 (29b)

To illustrate the variations of E[x*]ys_opt/®@nSo With the tuning ratio y and velocity feedback gain S, E[x*Jyya_opt/@nSo is
calculated according to Eq. (18) with #=0.2 and «=0.7 and then plotted in Fig. 10. It can be observed in Fig. 10 that
E[x2]HVAiopt/wnSO becomes a minimum at f,, =0.097 and 7, =2.712. The optimum tuning frequency y and velocity
feedback gain f are calculated according to Egs. (29a) and (29b) as B, 115 = 0.148 and 7y, (15 = 2.697and they are marked
by the asterisk in Fig. 10 for comparison to the proposed set of optimum 7 and  which marked by the small circle. The
mean square motion of the primary mass M, E[X*Juya_opt/@nSo With HVA tuned according to the proposed y and § is found
to be 9.8% lower than that using the optimum parameters f, (15 and Y, 15) Proposed by Chatterjee [15].
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3. HVA applied to suppressing vibration of flexible beam structure
3.1. Mathematical model

In this section, Case A is compared with Case C but the primary vibrating system is changed from a SDOF system to a
continuous beam structure as illustrated by Case D and Case E in Fig. 11. The mean square displacement response of a
simply supported beam excited by an uniform distributed force as shown in Fig. 11 is to be suppressed using either the
proposed HVA (Case D) or a PVA (Case E) attached on the beam at x=x,.

Assuming the beam behaves like an Euler-Bernoulli beam, the equation of motion of the beam may be written as [16]

4
Pw
PA=T +EI =pt)gX)+ Fr()o(x—Xo) (30)
where p(t)g(x) is the externally applied forcing function and Fj is the force acting by the HVA onto the beam. The
eigenfunction and the eigenvalues of the beam may be written as

@;(x)= sm([f,x) where f;= % ieN (31)
The spatial parts of the forcing functions and the Dirac delta function may be expanded in Fourier series and written as
g = > ap;x), and (32a)
i=1
d(x—Xo) =Y _ bip;(x) (32b)

i=1
where the Fourier coefficients a; and b; are, respectively
ai=34, i=2n—-1 neN

else a;=0, and (33a)

2 iTXg
b; = I51n< T ) (33b)

Assuming the HVA (Case D) is tuned to suppress the first vibration mode of the beam. The frequency response of the
beam can be derived using a similar approach of Ref. [19] and written as

uLb iaqwq{xo)

ap— = 7/7 .
722 "+2 2 brorxg
Whva(,4) _ > B A Zl 20
P(J) pAw ; V2 2 gop(x) (34)
where
BBy _[EB o _om o _api(xo)
Wy = A’ Wy = pA” /r—aTHV H—ﬁ, &= upiX), o= ZEILB?
and

. bwn(f)%(xo)
f=—
2EILf;

Using Eq. (34), the spatial average mean square vibration amplitude of the beam may be written as

o 2
uLby Z 9q v'q{xo)

Pl
WHVA(x 7) dx 222 2"+ ’/” ol Zbrtﬁr(XO?

T <pAw2> i e (35)

p=1

ap—

I

The optimum tuning frequency and velocity feedback gain can be derived using a similar approach of Ref. [19]and
written similar to Eqs. (16) and (17), respectively as

402 +4oe + 2
Thvab = \ ee+oe+2a)’ and (36a)
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Fig. 12. Mean square vibration amplitude response of the whole beam with ¢ =0.05 and o =1. —(1/L) jé Wiva(x,4)/P(2)? dx of Case D;———(1/L) ij Wpva
(x,2)/P(J)? dx of Case E in Fig. 11.

eRo+e)Ve+20—02

2(e+oe+20) (36D)

ﬁ HVA b =

The spatial average mean square vibration amplitude of the beam with the PVA (Case E) may be written as [16]

N ag@q(xp) 2
uLbp Z 2

a —
/4
Whpya(X,4) 252 4 2jtyi br(/'r(xo)
fO Pl‘;?) ‘ dx _ ( 1 >ZZ P 2+2]H;+ LZ (37)
L PAW?2 = Vﬁ—/t

The optimum tuning frequency and damping of the PVA may be written, respectively as [19]

2+¢
Vpva b = \/ﬁ (38a)
1 | eBe+4)
Ca_PVA_b = j m (38b)

and

3.2. Numerical example

Assuming the length of the beam is L =1 m and the absorber is attached at x =xy = 0.5 m of the beam. The dimensions
of the cross section area are 0.025 m x 0.025 m. The material of the beam is aluminium with density p=2710 kg/m> and
modulus E=6.9 GPa. The mass ratio u is 0.05. The feedback gain of the displacement signal is assumed to be o = 1. The
optimum tuning ratio yyy, , and the optimum feedback gain of velocity fya , are calculated according to Eqgs. (36a) and
(36b) to be 3.1754 and 0.1004, respectively. Similarly, the optimum tuning ratio ypy, ;, and the optimum damping {, pya »
are calculated according to Eqgs. (38a) and (38b) to be 0.8740 and 0.2087, respectively. The mean square vibration
amplitude response of the whole beam, (1/L) fé }WHVA(X,)L)/P(A)de and (1/L) jé \WPVA(X,)V)/P(A)}de with p=0.05 and
o« =1 are calculated according to Eqgs. (35) and (37), respectively and the results are plotted in Fig. 12 for comparison.
As shown in Fig. 12, The maximum value of (1/L) fé |WHVA(X.),)/P(),)\2dx of Case D is about 4 times less than the maximum

of (1/L) fé |WPVA(x,/1)/P(X)|2dx of Case E. Moreover, the area under the curve of Case D is found to be about 40% less than
that of Case E in Fig. 12. These results show that using the proposed optimized HVA can suppress the spatial average mean
square vibration amplitude of the whole beam at resonance as well as over the entire frequency range of interest.
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4. Conclusion

A hybrid vibration absorber (HVA) which is recently proposed and optimized by Chatterjee [15] for suppressing resonant
vibration of a single degree-of-freedom (SDOF) system is re-optimized for suppressing wide frequency band vibration of SDOF
system under stationary random force excitation. H, optimization is applied to the proposed absorber such that the mean
square vibration amplitude of the vibrating structure over the entire frequency range is minimized, i.e., the total area under the
power spectrum response curve is minimized. A methodology in the optimization to include damping in the primary vibrating
structure is proposed and the effect of this damping on the optimization process is reported. It is found that optimum values of
the system parameters do not exist if the damping in the primary system is relatively high.

The active element of the proposed HVA helps further reduce the vibration of the controlled structure and it can provide
significant vibration absorption performance even at a low mass ratio between the absorber and the primary structure. Both
the passive and active elements are optimized together for the minimization of the mean square vibration amplitude of the
primary system. It has been proved analytically in Sections 2.3 and 2.4 that the minimum mean square vibration amplitude in
Case C, E[x?]pya_opt» tends to infinity as the mass ratio 4 tends to zero while that in Case A, E[x?gya_opt_min/@nSo tends to 0.5 as
the mass ratio u tends to zero. These results show that the proposed HVA but not the PVA can produce significant vibration
suppression of the SDOF vibrating system if the mass ratio is low. The proposed HVA has been tested numerically on both SDOF
and continuous vibrating structures and it provides much better suppression results than the passive vibration absorber.

Appendix A
According to Eq. (16),
402 + 4o+ u?
- Al
Yoot =\ i+ o +-200) (A1)

Substituting y,,, into the inequality wy*>—20 >0, we may write

2 2
(44“ Ao )—2u>0 (A2)
Mo+ 20)
2 2

:>4oc +4op+ p= =200+ o+ 200) -0 (A3)

Htop+2o0

2 2_ _ 2, 2

é4oc +4op+ ps—2ou—20° p—4o -0 (A4)

worp+ 2o

2 92
200+ e =20 -0 (A5)

Hu+ou+2o
= 2o+ u?—-202u>0 (" p+op+20>0) (AB)
= u+20—20% >0 (A7)
- 1+\/21+2M . 1—\/;+2p (AS)
S IV a0 (a0 (A9)
o v+ v21+2u _ (A10)

Appendix B. B1: Searching for optimum o and y
According to Eq. (13),
WnS

¥] = 4ﬁ;2;2 <,u2(1+,u)y4—2,u(,u+oc,u+2a)y2+4oc2+4,82+4oc,u+,u2) (B1)

Consider the case if 2E[x?] = £ E[x?] =0, the HVA will have an optimum set of tuning frequency y and feedback gain
o in term of f and u. We may therefore write
OE[X*]  wnSo
oo 4fuy?

(2722 + 1)+ 80+ 4pt) =0 (B2a)
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OEp2] OnSo (2021 + oyt =2 (402 + 4% + 4o+ 1)) o

oy 4puzy? (B2b)
Using Eq. (B2a), the displacement frequency feedback gain may be written as
»2 —
g BT CH=2p (B3)
4
Substituting Eq. (B3) into Eq. (B2b), we may write
1 44, 0p2_
SHiy 857 =0 (B4)

Eq. (B4) shows that there are no positive real root of mass ratio x, y and feedback gain f# and hence no optimum values
of i, y and feedback gain f exists in this case.

B2: Searching for optimum « and f

Consider the case if § E[x*] = S E[x*] = 0, the HVA will have an optimum set of feedback gains o and f in term of y and
1. We may therefore write

OE[x*] _ wnSo

20 2 -
o = Apuy (—2py* 2+ +80+4u) =0 (B5a)
OE?] @nSo( =2+ 0yt + 2+ o+ 20077 +45° ~402 Aoy~ 112 . -
p 42 22 = (B5b)
Using Eq. (B5a), the displacement frequency feedback gain may be written as
)2 —
o= /“‘/(2";17“)2“ (B6)

Substituting Eq. (B6) into Eq. (B5b), we may write

Y/ A U— 22
BZWVZMV (B7)

Substituting Eqgs. (B6) and (B7) into Eq. (B1), the mean square vibration amplitude of the primary mass M with the

optimized HVA may be written as
E[XZ]HVA_opt 1 4
oS 2\ w? 1 (B8)

As discussed in Section 2.2, a stable dynamic system of the HVA requires

wy?—20>0 (B9)
Substituting Eq. (B6) into (B9), we may write
uy? <2 (B10)
Using Eqgs. (B8) and (B10), we may write
ElX*Tava opt _ 1
Cl)nSO > 5 (Bl ! )
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