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a b s t r a c t

The influence of a nonlinear damping which is a function of both the velocity and

displacement is investigated for a single degree of freedom (sdof) isolator. The analytical

relationships between the force or displacement transmissibility and the nonlinear

damping coefficient are developed in the frequency domain for the isolator systems

nonlinear damping can produce much better isolation performance, i.e., obvious peak

suppression at resonant frequency and very close transmissibility to system linear

dampingover non-resonant frequencies under both force and base displacement excita-

tions. Moreover, when only the pure cubic order nonlinear damping is used without

linear damping, the force or displacement transmissibility is even better. The results are

compared with the other nonlinear damping terms previously studied in the literature.

Numerical studies are presented to illustrate the results.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Inserting the vibration isolator between the vibration source and the vibration receiver is one of the fundamental ways
to reduce the unwanted vibrations and to protect the equipments from disturbance. The basic concept of the vibration
isolator is that, when the frequency of the excitation O is larger than

ffiffiffi
2
p

o0, where o0 is the undamped natural frequency
of the isolator, the transmitted force, Ft (or the transmitted displacement, Xt) reaches a value less than the excitation force,
Fi (or the excitation displacement, Xi) [1]. The ratio Ft/Fi and Xt/Xi are denoted as force transmissibility and displacement
transmissibility respectively. There is a well-known dilemma associated with linear viscous damping systems. That is
when the linear damping coefficient is increased, the force transmissibility under both base excitation and force excitation
when excitation frequency Oo

ffiffiffi
2
p

o0 is further reduced, but the performance when excitation frequency O4
ffiffiffi
2
p

o0 is
contrarily deteriorated [2,3]. In order to overcome this dilemma, isolators with nonlinear stiffness and nonlinear damping
have been studied by many authors in exploring the potential nonlinear benefits in vibration control [1,4–9]. Another
reason of the study on nonlinear stiffness and nonlinear damping is that almost all the isolators in practical vibration
systems are inherently nonlinear [10,11]. Therefore, it is important to take into account the existence of the nonlinearity in
order to reach a better isolation performance.

Ravindra and Mallik [4] analyzed the vibration isolators having nonlinearity in both stiffness and damping terms under
both force and base excitations. The transmissibility was obtained by the method of harmonic balance, and the effects of
various types of damping to the transmissibility were also studied. The jump phenomenon was observed in the
. All rights reserved.
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transmissibility curve when nonlinear stiffness was introduced in the isolator. Based on nonlinear output frequency
response of the Volterra-class nonlinear systems [5,12,13], nonlinear dampings (which usually are pure functions of
velocity) under force excitation are studied in [6,14,15] for vibration isolators. It was shown that the cubic nonlinear
viscous damping can produce an ideal vibration isolation that only the force transmissibility over the resonant region is
modified but it remains almost unaffected over the non-resonant regions. Milovanovic et al. [16] studied the vibration
isolators with linear and cubic nonlinearities in stiffness and damping terms under based excitation. The influence of the
nonlinear parameters on the displacement transmissibility was studied, and they presented that the absolute displace-
ment transmissibility of the isolator with cubic damping tends to unity as O-N, which corresponds to a rigidly connected
system.

In the present study, a cubic nonlinear damping (i.e., ( � )2(d( � )/dt)), which is a function of both the displacement and
velocity, is investigated in vibration isolators. Although the nonlinear damping which is usually a pure function of velocity
such as (d(U)/dt)3 has been studied in the literatureas mentioned before [6,14,15], the nonlinear damping relating to both
the displacement and velocity are not well developed and understood [17]. By using the concept of output frequency
response function, the analytical relationship between the force and absolute displacement transmissibility and the
nonlinear damping coefficient of the vibration isolator are derived. It is theoretically shown that, the introduction of
( � )2(d( � )/dt) can produce much better vibration isolation performance for the isolator under both force excitation and base
displacement excitation. System equivalent damping can be very high around the resonant frequency but would be similar
to system linear dampingover non-resonant frequencies. Therefore, the transmissibility is significantly suppressed around
the resonant frequency but remain almost the same as when only the linear damping is used. Moreover, when only the
pure cubic order nonlinear damping term ( � )2(d( � )/dt) is used in the system with the linear damping coefficient x1¼0,
both the force and displacement transmissibilities are even better. This may provide an ideal damping characteristic in
practical applications. Simulation results are provided to illustrate the results.
2. Nonlinear vibration isolators and transmissibility functions

In this section, nonlinear isolators subjected to force excitation and base excitation, are investigated. The nonlinear
isolator is modeled as a parallel combination of a linear spring with stiffness k and a nonlinear damper. The nonlinear
damping force is given as

Fnd ¼ c
d Uð Þ

dt
þc2 Uð Þ

2 d Uð Þ

dt
þc4

d Uð Þ

dt

� �3

(1)

where c is the linear damping coefficient, and c2, c4 are the cubic order nonlinear damping characteristic parameters.
In Fig. 1, the force excitation

FðtÞ ¼ AsinðotÞ (2)

is directly exerted on the mass M with amplitude A and frequency o. Fout(t) is the force transmitted to the base, and x1(t) is
the absolute displacement of the mass M.

In Fig. 2, the input base excitation is

uðtÞ ¼ AsinðotÞ (3)

where A is the amplitude and o is the excitation frequency.
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Fig. 1. Isolator subjected to force excitation.
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Fig. 2. Isolator subjected to base excitation.
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The governing equations and the non-dimensional transmissibility expressions are derived separately in what follows.

2.1. The isolator subjected to force excitation and the force transmissibility

From Fig. 1, the governing equation of the isolator under force excitation can be given as

m €x1 ¼�kx1�c _x1�c2x2
1
_x1�c4 _x

3
1þAsinðotÞ (4)

The force ratio Tfr(t) is defined as

T fr tð Þ ¼
Fout

A
¼

kx1

A
þ

c _x1

A
þ

c2x2
1
_x1

A
þ

c4 _x
3
1

A
(5)

By defining the following non-dimensional parameters:

o0t¼ t, o0 ¼

ffiffiffi
k
m

q
, O¼ o

o0

z1 tð Þ ¼ x1 tð Þ ¼ x1
t
o0

� �
, _x1 tð Þ ¼o0 _z1 tð Þ, €x1 tð Þ ¼o2

0
€z1 tð Þ

y1 tð Þ ¼ kz1ðtÞ
A

, y2 tð Þ ¼ Tf tð Þ,

x1 ¼
cffiffiffiffiffi
km
p , b2 ¼

c2A
2ffiffiffiffiffiffiffi

k5m
p , b4 ¼

c4A
2ffiffiffiffiffiffiffiffiffi

k3m3
p

(6)

the governing equation (4) and the force ratio (5) can be expressed as the following non-dimensional form:

€y1þy1þx1 _y1þb2y2
1
_y1þb4 _y

3
1 ¼ sinðOtÞ

y2 ¼ y1þx1 _y1þb2y2
1
_y1þb4 _y

3
1

8<
: (7)

Denote Tf(O) as the force transmissibility of the vibration isolator in terms of the normalized frequency O, it can be
expressed as

Tf ðOÞ ¼ 9Y2ðjOÞ9 (8)

where Y2(jO)¼Y2(jo)9o¼O, the output spectrum of the second output of system (7).

2.2. The isolator subjected to base excitation, and the force and displacement transmissibility

From Fig. 2, the isolator model under base excitation can be written as

m €x1 ¼ k u�x1ð Þþc _u� _x1ð Þþc2 u�x1ð Þ
2 _u� _x1ð Þþc4 _u� _x1ð Þ

3 (9)

The force ratio Tfr(t) in this case is denoted by

Tfr tð Þ ¼
�Fout

kA
¼
�1

A
u�x1ð Þ�

c

kA
_u� _x1ð Þ�

c2

kA
u�x1ð Þ

2 _u� _x1ð Þ�
c4

kA
_u� _x1ð Þ

3 (10)

Denote the relative displacement x of the isolator as

x¼ x1�u (11)

Then Eqs. (9,10) can be rewritten as

m €xþkxþc _xþc2x2 _xþc4 _x
3
¼mAo2sinðotÞ

Tf r ¼
1
A

xþ c
kA
_xþ c2

kA
x2 _xþ c4

kA
_x3

8<
: (12)
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Define the following non-dimensional parameters:

o0t¼ t,o0 ¼

ffiffiffi
k
m

q
, O¼ o

o0

z tð Þ ¼ x tð Þ ¼ x t
o0

� �
, _x tð Þ ¼o0 _z tð Þ, €x tð Þ ¼o2

0
€z tð Þ

y1 tð Þ ¼ zðtÞ
A

, y2 tð Þ ¼ Tf tð Þ,

x1 ¼
cffiffiffiffiffi
km
p , b2 ¼

c2A
2ffiffiffiffiffi

km
p , b4 ¼

c4

ffiffi
k
p

A
2ffiffiffiffiffi

m3
p

(13)

Then Eq. (12) can be rewritten as the following non-dimensional form:

€y1þy1þx1 _y1þb2y2
1
_y1þb4 _y

3
1 ¼O2sinðOtÞ

y2 ¼ y1þx1 _y1þb2y2
1
_y1þb4 _y

3
1

8<
: (14)

Similar to Section 2.1, the force transmissibility of the vibration isolator in terms of the normalized frequency O, Tf(O),
can also be expressed as

Tf ðOÞ ¼ 9Y2ðjOÞ9 (15)

where Y2(jO) is the output spectrum Y2(jo) of the second output of system (14) evaluated at frequency o¼O.
While comparing the equations in (7) with the equations in (14), it can be seen that the base displacement excitation is

equivalent to a force excitation when the strength of disturbing force is proportional to the square of exciting frequency,
and the force transmissibility under the force excitation and that under the base displacement excitation have the same
expression.

In the following, the absolute displacement transmissibility is derived. In this case, the governing equation is given in
Eq. (9), and the displacement ratio is defined by

Tdr tð Þ ¼ x¼
x1

A
(16)

Then Eq. (9) can be rewritten as

m €xþkxþc _x�ku1�c _u1 ¼ c2A
2

u1�xð Þ
2 _u1� _xð Þþc4A

2
_u1� _xð Þ

3 (17)

where x is the displacement ratio and u1 is given by

u1 ¼
u

A
¼ sin otð Þ (18)

Using the following non-dimensional variables:

o0t¼ t, o0 ¼

ffiffiffi
k
m

q
, O¼ o

o0

y tð Þ ¼ x tð Þ ¼ x t
o0

� �
, _x tð Þ ¼o0 _y tð Þ, €x tð Þ ¼o2

0
€y tð Þ

u2 tð Þ ¼ u1 tð Þ ¼ u1
t
o0

� �
¼ sin Otð Þ, _u1 tð Þ ¼o0 _u2 tð Þ

x1 ¼
cffiffiffiffiffi
km
p , b2 ¼

c2A
2ffiffiffiffiffi

km
p , b4 ¼

c4

ffiffi
k
p

A
2ffiffiffiffiffi

m3
p

(19)

Eq. (17) can be written into the following non-dimensional form:

€yþyþx1 _y�u2�x1 _u2 ¼ b2 u2�yð Þ
2 _u2� _yð Þþb4 _u2� _yð Þ

3 (20)

Thus, the displacement transmissibility of the vibration isolator in terms of the normalized frequency O, Td(O), can be
expressed as

TdðOÞ ¼ 9X jOo0ð Þ9¼ 9YðjOÞ9 (21)

where Y(jO) is the output spectrum Y(jo) of system (20) evaluated at frequency o¼O.
In the next section, an explicit and analytical relationship between the force or displacement transmissibility and the

nonlinear damping coefficients b2 and b4 will be developed in the frequency domain for the nonlinear isolators.

3. The force and displacement transmissibility in the frequency domain

The nonlinear output frequency response concept is recently proposed [5,12,13] for the frequency domain study of the
nonlinear Volterra systems, which represent a wide classes of nonlinear systems whose input and output can be expressed
as the Volterra series around the equilibrium. One of the advantages of this concept is that it can give an explicit analytical
relationship between the output frequency response and the parameters of the nonlinear systems which can be described
by differential equation models. Therefore, the analytical relationships between the force transmissibility Tf(O)or
displacement transmissibility Td(O) and the nonlinear damping coefficients b2 and b4 are established in this section.
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3.1. The force transmissibility Tf(O)

From systems (7) and (14), the base displacement excitation is basically equivalent to a force excitation, and the force
ratio under base displacement excitation has the same form as that under force excitation. In this section, the force
transmissibility in the frequency domain under both two excitation types will be developed.

According to [15,18,19], systems (7) and (14) can be regarded as a one-input-two-output system, the output spectra
can be obtained as

YJ joð Þ ¼
XN

n ¼ 1

1

2n�1

X
o1þ���þon ¼ o

HJ
n jo1,. . .,jonð ÞU o1ð Þ � � �U onð Þ, J¼ 1,2 (22)

where HJ
nðjo1,. . .,jonÞ is the nth order generalized frequency response function (GFRF) between the input and the Jth

output of the system, N is the maximum order of nonlinearity in the Volterra series expansion of the system outputs. U(oi)
is the input Fourier transform. For system (7),

U oið Þ ¼

�j when oi ¼O, i¼ 1,. . .,n

0 otherwise

j when oi ¼�O, i¼ 1,. . .,n

8><
>: (23a)

For system (14),

U oið Þ ¼

�jO2 when oi ¼O, i¼ 1,. . .,n

0 otherwise

jO2 when oi ¼�O, i¼ 1,. . .,n

8><
>: (23-b)

Eq. (22) involves the computation of the nth order GFRFs HJ
nðjo1,. . .,jonÞ. The explicit expression and its derivation for

H2
n jo1,. . .,jonð Þ can be referred to Appendix A. With this result, the output spectrum Y2(jo) of the second output of system

(7) and system (14) can be written as

Y2ðjoÞ ¼ P0ðjoÞþP10ðjoÞb2þP11ðjoÞb4þ � � � þ
Xn

m ¼ 0

PnmðjoÞbn-m
2 bm

4

þ � � � þ
X½N=2�

m ¼ 0

P½N=2�mðjoÞb
½N=2��m
2 bm

4 (24)

where

P0ðjoÞ ¼H2
1ðjoÞUðjoÞ (25)

Pnm joð Þ ¼ 1

22n

�ðjoÞ2

LðjoÞ
X

o1þ���þo2nþ 1 ¼ o

Y2nþ1

i ¼ 1

H1
1 joið ÞU oið Þ

XNn

z ¼ 1

Q n-mð Þþ3m
k ¼ 1 ½joz

lkð1Þ
þ � � � þ joz

lk jn
kð Þ
�Qn-1

i ¼ 1 L½joz
lið1Þ
þ � � � þ joz

li jn
ið Þ
�

(26)

The definition of L(jo) is given in Appendix A. Eq. (24) presents an analytical relationship between the second output
spectrum and the nonlinear characteristic parameters b2 and b4. According to Eqs. (8) and (15), the force transmissibility
can be given by

Tf ðOÞ ¼ 9Y2ðjOÞ9¼ P0ðjOÞþ
X½N=2�

n ¼ 1

Xn

m ¼ 0

PnmðjOÞb
n�m
2 bm

4

�����
����� (27)

It can be seen that Eqs. (25)–(27) are explicit functions of the input and first-order GFRF. Substituting Eq. (23a) into Eqs.
(25) and (26), for system (7) (nonlinear isolator subjected to force excitation) it can be obtained that

P0 jOð Þ ¼
j 1þ jx1Oð Þ

LðjOÞ
(28)

Pnm jOð Þ ¼
1

22n

jO2

9LðjOÞ92n
½LðjOÞ�2

X
o1þ���þo2nþ 1 ¼ O

XNn

z ¼ 1

Q n-mð Þþ3m
k ¼ 1 ½joz

lkð1Þ
þ � � � þ joz

lk jnkð Þ
�Qn�1

i ¼ 1 L½joz
lið1Þ
þ � � � þ joz

li jn
ið Þ
�

(29)

where oi 2 f�O,Og,i¼ 1,. . .,2nþ1.
Similarly for system (14) (the nonlinear isolator subjected to base displacement excitation), it can be obtained that

P0 jOð Þ ¼
jO2 1þ jx1Oð Þ

LðjOÞ
(30)
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Pnm jOð Þ ¼
1

22n

jO4nþ4

9LðjOÞ92n
½LðjOÞ�2

X
o1þ���þo2nþ 1 ¼ O

XNn

z ¼ 1

Q n-mð Þþ3m
k ¼ 1 ½joz

lkð1Þ
þ � � � þ joz

lk jn
kð Þ
�Qn-1

i ¼ 1 L½joz
lið1Þ
þ � � � þ joz

li jn
ið Þ
�

(31)

where oi 2 f�O,Og,i¼ 1,. . .,2nþ1.
From Eq. (27), when there is no nonlinear damping coefficients, i.e., b2¼0 and b4¼0, the nonlinear sdof vibration

isolatorbecomes a linear isolator. The force transmissibility will be easy to obtain.
For system (7), the linear isolator is under force excitation,

Tf Oð Þ ¼ 9Y2 jOð Þ9¼ 9P0 jOð Þ9¼
j 1þ jx1Oð Þ

LðjOÞ

����
����¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x1Oð Þ

2

1�O2
� �2

þ x1Oð Þ
2

vuuut (32)

For system (14), the linear isolator is under base displacement excitation,

Tf Oð Þ ¼ 9Y2 jOð Þ9¼ 9P0 jOð Þ9¼
jO2 1þ jx1Oð Þ

LðjOÞ

�����
�����¼O2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x1Oð Þ

2

1�O2
� �2

þ x1Oð Þ
2

vuuut (33)

3.2. The displacement transmissibility Td(O)

In this case, the displacement transmissibility is given by Eq. (21).In order to obtain the output spectrum Y(jo) of
system (20), Eq. (20) is expanded as

€yþyþx1 _y�u2�x1 _u2�b2u2
2
_u2�b4 _u

3
2þ2b2yu2 _u2þb2 _yu2

2

þ3b4 _y _u
2
2þb2y2 _u2�2b2y _yu2�3b4 _y

2 _u2�b2y2 _yþb4 _y
3
¼ 0 (34)

According to Ref. [20], the coefficients of the nonlinear differential Eq. (34) can be expressed in the general form as

C1,0ð2Þ ¼ 1,C1,0ð1Þ ¼ x1,C1,0ð0Þ ¼ 1,C0,1ð1Þ ¼ �x1,C0,1ð0Þ ¼ �1

C0,3 0,0,1ð Þ ¼�b2,C0,3 1,1,1ð Þ ¼�b4

C1,2 0,0,1ð Þ ¼ 2b2,C1,2 1,0,0ð Þ ¼ b2,C1,2 1,1,1ð Þ ¼ 3b4 else Cp,q Uð Þ ¼ 0

C2,1 0,0,1ð Þ ¼ b2,C2,1 0,1,0ð Þ ¼�2b2,C2,1 1,1,1ð Þ ¼�3b4

C3,0 0,0,1ð Þ ¼�b2,C3,0 1,1,1ð Þ ¼ b4,

(35)

In order to obtain the output spectrum Y(jo) of system (34), the following propositions are given.

Proposition 1. The (2nþ1)th GFRF H2nþ1 jo1,. . .,jo2nþ1ð Þ of system (34) when there exists only one nonlinear term with

nonlinear coefficient Cp,q(l1,l2,l3), where, pþq¼ 3,p,q¼ 0, � � � ,3,l1,l2,l3 ¼ 0,1 , under the assumption that there is m terms of 1,

i.e. (3-m) terns of 0, in l1,l2,l3, can be determined as

H1
2nþ1 jo1,. . .,jo2nþ1ð Þ ¼

Cn
p,q l1,l2,l3ð Þ

L jo1þ � � � þ jo2nþ1ð Þ

XNn,p

z ¼ 1

Yp-1ð Þnþ1

i ¼ 1

H1
1 joji

� 	 Qmn
k ¼ 1½joz

lkð1Þ
þ � � � þ joz

lk jn
kð Þ
�Qn-1

i ¼ 1 L½joz
lið1Þ
þ � � � þ joz

li jnið Þ
�

(36)

Proof. See Appendix B &.
When only one nonlinear term is introduced in Eq. (34), Proposition 1 states that the high order GFRF can be represented

as a straightforward function of the nonlinear coefficient and the linear transfer function. So when the linear transfer
function and the nonlinear coefficient introduced are known, the high order GFRF can be obtained directly according to Eq.
(36). Proposition 1 also shows how the output nonlinear degree p and the order of the derivative of both input and output
affect the high order GFRF.

Proposition 2. The (2nþ1)th GFRF H2nþ1 jo1,. . .,jo2nþ1ð Þ of system (34) when there exists L nonlinear terms with nonlinear

coefficients Cpi ,qi
l1,l2,l3ð Þ, where piþqi ¼ 3,pi,qi ¼ 0,. . .,3,i¼ 1,. . .,nl , l1,l2,l3¼0,1, under the assumption that there is mi terms of

1, i.e. (3-mi) terms of 0, in l1,l2,l3 for Cpi ,qi
l1,l2,l3ð Þ , can be determined as:

H1
2nþ1 jo1, � � � ,jo2nþ1ð Þ ¼

PnL

j ¼ 1

Cpj ,qj

L jo1þ � � � þ jo2nþ1ð Þ

X1

n
S

nL
i ¼ 1

nji ¼ n-1
,L,njnL

¼ 0,n�1
YnL

i ¼ 1

C
nji
pi ,qi

li1,li2,li3ð Þ
XNn,pj

z ¼ 1

Ypj�1ð Þþ
PnL

i ¼ 1
pi�1ð Þnjiþ1

k ¼ 1

H1
1 joki

� 	Q
PnL

i ¼ 1
njmimi

k ¼ 1 ½joz
lkð1Þ
þ � � � þ joz

lk jn
kð Þ
�Qn�1

i ¼ 1 L½joz
lið1Þ
þ � � � þ joz

li jn
ið Þ
�

1
CA

0
B@ (37)

where nji¼njmi, iaj, njjþ1¼njmj,
PnL

i ¼ 1 nji ¼ n�1,
PnL

i ¼ 1 njmi ¼ n.
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Proof. See Appendix C &.
Proposition 2 considers the case that more than one nonlinear term exist in Eq. (34), which is an extension of Proposition

1. It implies how the nonlinear coefficient Cpiqi
, the output nonlinear degrees pi and the order of the derivate of both input

and output li1,li2,li3 influence the high order GFRF analytically.
System (20) or (34) can be seen as a single-input-single-output system, so the output spectrum can be obtained via Eq.

(22) with J¼1 using the input stated in Eq. (19) or its Fourier transformin Eq. (23a). The (2nþ1)th order GFRF can be
obtained from Proposition 2. Therefore the output spectrum can be written as

YðjoÞ ¼ P0ðjoÞ

þ
X½N=2�

n ¼ 1

Xn

njm1
,...,njmnL

¼ 0 ,
PnL

i ¼ 1

njmi ¼ n

YnL

i ¼ 1

C
njmi
pi ,qi

li1,li2,li3ð ÞPnkðjoÞ
 !0

BBBB@

1
CCCCA (38)

P0 joð Þ ¼ 1þ jox1

LðjoÞ U jo½ � (39)

Pnk joð Þ ¼ 1

22n

Q2nþ1

i ¼ 1

UðjoÞ

LðjoÞ
X

o1þ���þo2nþ 1 ¼ o

XNn,pj

z ¼ 1

YPnL
i ¼ 1

pi�1ð Þnjmi þ1

k ¼ 1
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1 joki

� 	Q
PnL

i ¼ 1
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lk jn
kð Þ
�Qn�1

i ¼ 1 L½joz
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þ � � � þ joz

li jn
ið Þ
�

(40)

According to Eq. (21), the displacement transmissibility can be obtained by substituting Eq. (23a) into Eqs. (39) and (40):
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�
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where

P0 jOð Þ ¼
�jð Þ 1þ jOx1ð Þ

LðjOÞ
(42)

Pnk jOð Þ ¼ 1
22n

�jð Þ
LðjOÞ

P
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li jn
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,oz
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,oz

liðiÞ

2 fO,�Og (43)

4. The effects of nonlinear damping coefficients on vibration isolation

In Section 3, the force transmissibility under both force and base excitations and the absolute displacement
transmissibility under base displacement excitation are derived. All of them have an explicit analytical relationship with
the nonlinear damping coefficients introduced. The following results can be obtained.

Proposition 3. For force excitation, the nonlinear damping ( � )2(d( � )/dt) can produce the following performance in force

transmissibility:
(I)
 When Ob1 or O51,

T Oð Þ � 9P0 jOð Þ9¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðx1OÞ

2

ð1�O2
Þ
2
þðx1OÞ2

s
(44)
(II)
 When OE1, there exists a b such that the force transmissibility can be expressed in an alternating series with respect to the

nonlinear coefficient b2 if 0ob2ob. The force transmissibility can therefore be suppressed by exploiting the properties of

alternating series.
Proof. See Appendix D &.
Proposition 3 indicates that the nonlinear damping term ( � )2(d( � )/dt) has almost no effect on the force transmissibility

over the non-resonant frequency regions where the frequency is much lower or much higher than the resonant frequency,
while the force transmissibility is obviously suppressed at the resonant frequency due to the introduction of the nonlinear
damping term under force excitation.

Proposition 4. When the isolator is under base displacement excitation, the force transmissibility with the nonlinear damping

(d( � )/dt)3 is dramatically deteriorated thigh frequency, while the nonlinear damping ( � )2(d( � )/dt) can make the force
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transmissibility very close to the low-damping linear referenced case at the same frequency. The introduction of any one of these

two cubic degree nonlinear terms can both make the force transmissibility very close to the low-damping linear referenced case

at low frequency:
(I)
 When O51, both ( � )2(d( � )/dt) and (d( � )/dt)3 can make

T Oð Þ � 9P0 jOð Þ9¼O2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðx1OÞ2

ð1�O2
Þ
2
þðx1OÞ2

s
(45)
(II)
 When Ob1, only ( � )2(d( � )/dt) term can make

T Oð Þ � 9P0 jOð Þ9¼O2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðx1OÞ

2

ð1�O2
Þ
2
þðx1OÞ2

s
(46)

While the nonlinear term (d( � )/dt)3 will make

T Oð Þc9P0 jOð Þ9¼O2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x1Oð Þ

2

1�O2
� �2

þ x1Oð Þ
2

vuuut (47)
(III)
 When OE1, there exists a b such that the force transmissibility can be expressed in an alternating series with respect to the

nonlinear coefficient b2(b4) if 0ob2ob(0ob4ob). The force transmissibility can therefore be suppressed by exploiting the

properties of alternating series.
Proof. See Appendix E &.
Proposition 4 shows that both the two nonlinear damping terms can significantly reduce the force transmissibility over

the resonant frequency and remain the force transmissibility almost unaffected at low frequency. However, at high
frequency the nonlinear term (d( � )/dt)3 dramatically increases the force transmissibility while the nonlinear damping
term ( � )2(d( � )/dt) keeps the force transmissibility very close to the low-damping linear referenced case. These indicates
that the nonlinear damping term which is a function of both displacement and velocity produce much better force
transmissibility performance than the nonlinear damping term which is only velocity-dependent under base displacement
excitation.

For the displacement transmissibility under base displacement excitation, it is very similar to the force transmissibility
discussed above.

Proposition 5. Consider the displacement transmissibility under base displacement excitation. The performance at high

frequency with the nonlinear damping (d( � )/dt)3 is dramatically deteriorated, while the nonlinear damping (U)2(d(U)/dt) can

make the displacement transmissibility very close to the low-damping linear referenced case over this frequency region. Both of

these two cubic order nonlinearities can make the displacement transmissibility very close to the low-damping linear case aglow

frequency:
(I)
 When O51, both ( � )2(d( � )/dt) and (d( � )/dt)3 can make

T Oð Þ � 9P0 jOð Þ9¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðx1OÞ2

ð1�O2
Þ
2
þðx1OÞ2

s
(48)
(II)
 When Ob1, only ( � )2(d( � )/dt) term can make

T Oð Þ � 9P0 jOð Þ9¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðx1OÞ

2

ð1�O2
Þ
2
þðx1OÞ2

s
(49)

while the nonlinear term (d( � )/dt)3 will make

T Oð Þc9P0 jOð Þ9¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x1Oð Þ

2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�O2
� �2

þ x1Oð Þ
2

r (50)
(III)
 When OE1, there exists a b40 such that

d½TðOÞ�2

db2

o0 or
d½TðOÞ�2

db4

o0

 !
(51)

if 0ob2ob (or 0ob4ob)
Proof. See Appendix F &.
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5. Simulation studies and discussions

The following simulations using the Runge–Kutta method are given to verify the theoretical results above.
Fig. 3 represents the force transmissibility for the isolator subjected to force excitation under different linear damping

coefficients and different cubic order nonlinear damping terms. The solid line and dash line represent the force
transmissibility when only linear damping coefficient is introduced in the isolator where x1¼0.1 and x1¼0.325
respectively. The dot line shows the performance when the linear damping coefficient and cubic order damping term
(d( � )/dt)3 are introduced in the isolator where x1¼0.1 and b4¼0.028, while the star line represents the performance when
linear damping coefficient and cubic order nonlinear term ( � )2(d( � )/dt) are introduced in the isolator where x1¼0.1 and
b2¼0.4. In Fig. 3, it is shown that the star line and the dot line are almost superimposed on the solid line at both low
frequency and high frequency, and have the force transmissibility much smaller than the solid line around the resonant
frequency. So it is clear that the cubic order nonlinear damping terms ( � )2(d( � )/dt) and (d( � )/dt)3 can both produce the
ideal isolation performance, that is, the force transmissibility over the resonant frequency is obviously suppressed while
keeping almost unaffected over the non-resonant regions. The dash line is presented as a reference, from which it can be
seen that in order to get the same force transmissibility in the resonant frequency with that when the cubic order
nonlinear term is introduced in the isolator, the linear damping coefficient x1 is increased from 0.1 to 0.325, and then the
force transmissibility at high frequency increases obviously.

In Fig. 4 the force transmissibility under base displacement excitation produced by the cubic order nonlinear term
( � )2(d( � )/dt) (where the linear damping coefficient x1¼0.1 and the cubic order nonlinear coefficient b2¼0.1) is presented
in star line. The force transmissibility has been significantly suppressed over the resonant frequency and over the non-
resonant regions remains very close to the performance presented in solid line when only linear damping coefficient is
introduced where x1¼0.1. The performance when cubic order damping term (d( � )/dt)3 is introduced in the isolator where
x1¼0.1 and b4¼0.03 is shown in dot line, from which it can be seen that the force transmissibility at high frequency is
dramatically deteriorated compared with that when there only exists the linear damping coefficient where x1¼0.1. The
performance deterioration at high frequency limits the practical use of the cubic order damping term (d( � )/dt)3 although
the force transmissibility is also suppressed over the resonant frequency. The dash line is also presented as a reference
where only the linear damping term with the coefficient x1¼0.306 is introduced, from which it can be seen that in order to
reach the similar force transmissibility to the case that the cubic order nonlinear damping term ( � )2(d( � )/dt) is introduced
at resonant frequency, the force transmissibility increases obviously at high frequency.

In Fig. 5 the star line stands for the absolute displacement transmissibility when the cubic order nonlinear term
( � )2(d( � )/dt) is introduced where the linear damping coefficient x1¼0.1 and the cubic order nonlinear damping coefficient
b2¼0.1. The transmissibility is significantly suppressed at the resonant frequency and over the non-resonant frequency it
remains very close to the solid line which represents the linear damping case with linear damping coefficient x1¼0.1. The
absolute displacement transmissibility produced by the cubic order damping term (d( � )/dt)3 with x1¼0.1 and b4¼0.03 is
shown in dot line, which tends to be 0 dB as O tends to be infinity, and this corresponds to a rigidly-connected system. The
dash solid line shows that when the linear damping coefficient is increased from 0.1 to 0.306 in order to achieve the
similar absolute displacement transmissibility over the resonant frequency to the case that the cubic order nonlinear
terms are introduced in the isolator, the performance at high frequency increases obviously.
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Fig. 3. The force transmissibility for an sdof isolator subjected to force excitation with different linear damping coefficients and different cubic order

nonlinear terms.
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From Figs. 3 to 5, the cubic order nonlinear term ( � )2(d( � )/dt) can produce ideal isolation performance, that is, significant
vibration suppression over the resonant frequency and low damping effect over non-resonant frequencies, under both force and
base displacement excitations. In order to have a more straightforward insight into the nonlinear mechanism in vibration
suppression, the equivalent damping coefficients of the vibration isolator system under different cases are provided in Fig. 6. As
shown in Fig. 6, the cubic order nonlinear terms ( � )2(d( � )/dt) and (d( � )/dt)3 have equivalent linear damping coefficient very close
to 0.306 at resonant frequency. Therefore, these two nonlinear terms have the transmissibility very close to the case when the
linear coefficient x1¼0.306 at resonant frequency as presented in Figs. 4 and 5. At high frequency, the nonlinear term (d( � )/dt)3

has a very large equivalent linear damping coefficient, which corresponds to the deteriorated isolation performance in Figs. 4 and
5, but the equivalent linear damping coefficient of the nonlinear term ( � )2(d( � )/dt) remains very small, which is close to 0.1. The
better isolation performance of the nonlinear term ( � )2(d( � )/dt) at high frequency presented in Figs. 4 and 5 is therefore produced
by this small equivalent damping effect. It is known that the ideal isolation performance requires the damping coefficient to be
larger at resonant frequency but smaller at high frequency. Fig. 6 shows that the nonlinear damping characteristic ( � )2(d( � )/dt)
can achieve this objective much better than the other cases.

In what follows, the case when only the cubic order nonlinear damping term ( � )2(d( � )/dt) is introduced in the isolator
with the linear damping coefficient x1beingzero, is studied since it has much better damping effect over all frequencies as
discussed above.

In Fig. 7 the star line represents the force transmissibility for the isolator with only the cubic order nonlinear term
( � )2(d( � )/dt) and b2¼0.1subjected to the base displacement excitation. The dash line indicates the case that the linear
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damping coefficient is increased from 0.1 to 0.22 in order to obtain the same force transmissibility as that when only the
cubic order nonlinear term is introduced in the isolator. It can be seen that when the linear damping coefficient is
increased to suppress the transmissibility around the resonant frequency, the transmissibility at high frequency increases
obviously. This is the famous dilemma in vibration isolations. Comparing the star line with the solid line, it is evidently
that the cubic order nonlinear term ( � )2(d( � )/dt) can overcome the dilemma and produce an ideal isolation performance
that the transmissibility is suppressed at both resonant frequency and high frequency and keep almost unaffected at low
frequency.

In Fig. 8 the absolute displacement transmissibility for the isolator subjected to base displacement excitation when only
the cubic order nonlinear term ( � )2(d( � )/dt) is introduced in the isolator with b2¼0.1 is presented in star line, compared
with the cases with linear damping coefficient x1¼0.1 and x1¼0.306 respectively. Similarly, the cubic order nonlinear
term ( � )2(d( � )/dt) can also overcome the dilemma in absolute displacement transmissibility and produce a much better
isolation performance.

6. Conclusions

In this paper, the influence of a cubic order nonlinear damping term ( � )2(d( � )/dt) is studied for an sdof isolator system.
It is shown that the proposed nonlinear damping can overcome the dilemma in vibration isolation that when the linear
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damping coefficient is increased to reduce the transmissibility over the resonant frequency it at the same time increases
the transmissibility at high frequency. The force transmissibility and the absolute displacement transmissibility for the
isolator subjected to both force excitation and base displacement excitation when cubic order nonlinear terms are
introduced are established, from which the analytical and explicit relationship between the transmissibility and the cubic
order nonlinear coefficients can be obtained. Much better isolation performance is produced with the cubic order
nonlinear damping term ( � )2(d( � )/dt), and numerical studies are given to verify the theoretical results. The following
conclusions can be made:
(I)
 The cubic order nonlinear damping term ( � )2(d( � )/dt) can produce better isolation performance for an isolator
under both force excitation and base displacement excitations. While the known cubic nonlinear damping which is
only a pure function of velocity is limited in vibration control subjected to base excitations. This may imply that the
optimal nonlinear damping could be dependent not only on velocity but also on displacement.
(II)
 The proposed cubic order nonlinear damping term can obviously suppress the transmissibility over the resonant
frequency and remains very close to the low-damping linear referenced case over the non-resonant frequency
regions. It can demonstrate even better performance when the system linear damping is zero. This provides a fairly
ideal damping characteristic in practical applications.
(III)
 The nonlinear frequency domain method adopted in this study provides a powerful tool for the analysis and design
of nonlinear damping systems. It can provide a straightforward expression for the relationship between nonlinear
output spectrum and any characteristic parameters which define the nonlinearity of the system and thus facilitate
the nonlinear analysis and design. Further study will focus on more general optimal analysis and design of
nonlinear stiffness and damping characteristics in vibration control.
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Appendix A

The specific expression of HJ
nðjo1,. . .,jonÞ can be obtained according to [15] considering the one-input-two-output

nonlinear differential model as follows:

H2
1 jo1ð Þ ¼ 1þ jo1x1ð ÞH1

1 jo1ð Þ (A-1)

H2
n jo1,. . .,jonð Þ ¼� jo1þ � � � þ jonð Þ

2H1
n jo1,. . .,jonð Þ n¼ 2,. . .,N (A-2)

H1
1 jo1ð Þ ¼

�1

L jo1ð Þ
(A-3)
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H1
3 jo1,jo2,jo3ð Þ ¼ b2

Q3
i ¼ 1 H1

1 joið Þ

L jo1þ jo2þ jo3ð Þ
jo1ð Þ

þb4

Q3
i ¼ 1 H1

1 joið Þ

L jo1þ jo2þ jo3ð Þ

Y3

i ¼ 1

joið Þ (A-4)

H1
2n jo1,. . .,jo2nð Þ ¼ 0, n¼ 1,. . .,bN=2c (A-5)

H1
2nþ1 jo1, � � � ,jo2nþ1ð Þ ¼

Xn

m ¼ 0

bn�m
2 bm

4

Q2nþ1
i ¼ 1 H1

1 joið Þ

L jo1þ � � � þ jo2nþ1ð Þ

XNn

z ¼ 1

Q n�mð Þþ3m
k ¼ 1 ½joz

lkð1Þ
þ � � � þ joz

lk jn
kð Þ
�Qn�1

i ¼ 1 L½joz
lið1Þ
þ � � � þ joz

li jn
ið Þ
�

n¼ 1,. . ., N=2

 �

(A-6)

where

jn
i 2 f3,5,. . .,2n�1g i¼ 1,. . .,n�1,nZ2

jn
k 2 f1,3,. . .,2n�1g k¼ 1,. . .,n�1,nZ2

oZ

li j
� 	 2 fo1,. . .,o2nþ1g, i¼ 1,. . .,n�1,j¼ 1,. . .,jn

i ,nZ2

oZ

lk j
� 	 2 fo1,. . .,o2nþ1g, k¼ 1,. . .,n�1,j¼ 1,. . .,jn

k ,nZ2

Yn�1

i ¼ 1

L½joz
lið1Þ
þ � � � þ joz

li jn
ið Þ
� ¼ 1 for n¼ 1

(A-7)

Nn is an n dependent integer:

L½ jo1þ � � � þ jonð Þ� ¼�½1þx1 jo1þ � � � þ jonð Þþ jo1þ � � � þ jonð Þ
2
� (A-8)

Appendix B. Proof of Proposition 1

According to Ref. [12], Cp,q l1,l2,l3ð Þ,pþq¼ 3,p,q¼ 0,. . .,3,l1,l2,l3 ¼ 0,1 will only exist in the (2nþ1)th GFRF (generalize
frequency response function) H2nþ1 jo1,. . .,jo2nþ1ð Þ, where n¼ 1,2,. . ., this means that the even order GFRF
H2n jo1,. . .,jo2nð Þ ¼ 0. Assume that all the GFRF whose order less than (2nþ1) all satisfy proposition 1. The (2nþ1)th
GFRF can be obtained [13]:

H1
2nþ1 jo1,. . .,jo2nþ1ð Þ ¼

Cp,q l1,l2,l3ð Þ

L jo1þ � � � þ jo2nþ1ð Þ
jo2nþ1�qþ1

� 	lpþ 1
� � � jo2nþ1ð Þ

lpþ q ¼ 3 H1
2nþ1�q,p jo1, � � � ,jo2nþ1�q

� 	
(B-1)

H1
2nþ1-q,p jo1,. . .,jo2nþ1�q

� 	
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P
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Because
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Substitute Eq. (B-2) into Eq. (B-1), then the Proposition 1 holds.

Appendix C. Proof of Proposition 2

Similar to the Proof of Proposition 1,

H1
2nþ1 jo1,. . .,jo2nþ1ð Þ

¼
XnL

j ¼ 1

Cpj ,qj
l1,l2,l3ð Þ

L jo1þ � � � þ jo2nþ1ð Þ
jo2nþ1�qjþ1

� �lpj þ 1

� � � jo2nþ1ð Þ
lpj þ qj ¼ 3 H1

2nþ1�qj ,pj
jo1,. . .,jo2nþ1-qj

� �

H1
2nþ1�qj ,pj

jo1,. . .,jo2nþ1�qj

� �
¼

X2n�1

r1P
rk ¼ 2nþ 1�qj

���rpj
¼ 1

Ypj

k ¼ 1

H1
rk

joXþ1,. . .,joXþ rk

� 	
joXþ1þ � � � þ joXþ rk

� 	lk

where X ¼
Pk�1

x ¼ 1 rx.Hrk
joXþ1,. . .,joXþ rk

� 	
can be expressed as

H1
rk

joXþ1,. . .,joXþ rk

� 	

¼
XnL

kj ¼ 1

Cpkj ,qkj

Pnrk�1

n
rk1,...,nrknL

¼ 0PnL
i ¼ 1

nrki ¼ nrk�1

QnL

i ¼ 1

Cnrki
pi ,qi

li1,li2,li3ð Þ
PNnrk ,pkj

z ¼ 1

Qpkj�1ð Þþ
PnL

i ¼ 1
pki�1ð Þnrkiþ1

k ¼ 1

H1
1 joki

� 	Q
PnL

i ¼ 1
nrkmi mi

k ¼ 1
½joz

lk ð1Þ
þ ���þ joz

lk jn
kð Þ
�Qnrk�1

i ¼ 1
L½joz

li ð1Þ
þ ���þ joz

li jn
ið Þ
�

0
B@

1
CA

L joXþ1þ � � � þ joXþ rk

� 	
where rk¼2nrkþ1,

PnL

i ¼ 1 nrkiþ1¼ nrk ,
PnL

i ¼ 1 nrkmi ¼ nrk , nrkmj¼nrkjþ1, nrkmi¼nrki, iaj. Then,

Ypj

k ¼ 1

H1
rk

joXþ1,. . .,joXþ rk

� 	

¼
Ypj

k ¼ 1

Cpkjk
,qkjk

PQnL

i ¼ 1 C

Ppj

k ¼ 1
nrki

pi ,qi
li1,li2,li3ð ÞQpj

k ¼ 1 L joXþ1þ � � � þ joXþ rk

� 	

�
XNP
nrk ,
P

pkj

z ¼ 1

YPpj

k ¼ 1
pkjk
�1

� �
þ
Ppj

k ¼ 1

PnL
i ¼ 1

pi�1ð Þnrkiþpj

k ¼ 1

H1
1 joki

� 	Q
Ppj

k ¼ 1

PnL
i ¼ 1

nrkmimi

k ¼ 1 ½joz
lkð1Þ
þ � � � þ joz

lk jn
kð Þ
�

QPpj

k ¼ 1
nrk�pj

i ¼ 1 L½joz
lið1Þ
þ � � � þ joz

li jn
ið Þ
�

Because

Xpj

k ¼ 1

rk ¼
Xpj

k ¼ 1

2nrkþ1ð Þ ¼ 2
Xpj

k ¼ 1

nrkþpj ¼ 2nþ1�qj

so

Xpj

k ¼ 1

nrk ¼ n�1



Z. Xiao et al. / Journal of Sound and Vibration 332 (2013) 1335–1354 1349
Denote

Xpj

k ¼ 1

nrki ¼ n0ji
Xpj

k ¼ 1

nrkmi ¼ n0jmi

Ypj

k ¼ 1

H1
rk

joXþ1,. . .,joXþ rk

� 	

¼

Qpj

k ¼ 1 Cpkjk
,qkjk

PQnL

i ¼ 1 C
n0

ji
pi ,qi

li1,li2,li3ð ÞQpj

k ¼ 1 L joXþ1þ � � � þ joXþ rk

� 	 XNn,pj

z ¼ 1

YPpj

k ¼ 1
pkjk
�1

� �
þ
PnL

i ¼ 1
pi�1ð Þn0jiþpj

k ¼ 1

H1
1 joki

� 	Q
PnL

i ¼ 1
n0

jmi
mi

k ¼ 1 ½joz
lkð1Þ
þ � � � þ joz

lk jn
kð Þ
�Qn-1-pj

i ¼ 1 L½joz
lið1Þ
þ � � � þ joz

li jnið Þ
�

Assume that jk¼ j, then

Cpkjk
,qkjk

YnL

i ¼ 1

C
n0

ji
pi ,qi

li1,li2,li3ð Þ ¼ Cpj ,qj

YnL

i ¼ 1

C
n0

ji
pi ,qi

li1,li2,li3ð Þ ¼
YnL

i ¼ 1

C
n00

ji
pi ,qi

li1,li2,li3ð Þ

pkjk
�1

� �
þ
XnL

i ¼ 1

pi�1
� 	

n0jiþpj ¼ pj�1
� �

þ
XnL

i ¼ 1

pi�1
� 	

n0jiþpj ¼
XnL

i ¼ 1

pi�1
� 	

n00jiþpj

where n00jj ¼ n0jjþ1, n00ji ¼ n00ji, iaj. Because nrkmj¼nrkjþ1, nrkmi¼nrki, iaj, it can be obtained that

XnL

i ¼ 1

n0jiþpj ¼
XnL

i ¼ 1

n0jmi

Assume that there are ki terms of Cpi ,qi
in
Qpj

k ¼ 1 Cpkjk
,qkjk

,
PnL

i ¼ 1 ki ¼ pj, then

n0jiþki ¼
Xpj

k ¼ 1

nrkiþki ¼
Xpj

k ¼ 1

nrkmi ¼ n0jmi

so,

Ypj

k ¼ 1

H1
rk

joXþ1,. . .,joXþ rk

� 	

¼
Xn�1

nj1 ¼ 0,...,njnL
¼ 0;
PnL

i�1
nji ¼ n�1

YnL

i ¼ 1

C
nji
pi ,qi

li1,li2,li3ð Þ
XNn,pj

z ¼ 1

YPnL
i ¼ 1

pi�1ð Þnjiþpj

k ¼ 1

H1
1 joki

� 	Q
PnL

i ¼ 1
n0

jmi
mi

k ¼ 1 ½joz
lkð1Þ
þ � � � þ joz

lk jn
kð Þ
�Qn�1

i ¼ 1 L½joz
lið1Þ
þ � � � þ joz

li jn
ið Þ
�

0
BB@

1
CCA

where nji ¼ n0jiþki ¼ n0jmi, then,

jo2nþ1�qjþ1

� �lpj þ 1

� � � jo2nþ1ð Þ
lpj þ qj ¼ 3

Ypj

k ¼ 1

H1
rk

joXþ1,. . .,joXþ rk

� 	
joXþ1þ � � � þ joXþ rk

� 	lk

¼
Xn�1

nj1 ¼ 0,...,njnL
¼ 0;
PnL

i�1
nji ¼ n�1

YnL

i ¼ 1

C
nji

pi ,qi
li1,li2,li3ð Þ

XNn,pj

z ¼ 1

YPnL
i ¼ 1

pi�1ð Þnji þpj

k ¼ 1

H1
1 joki

� 	Q
PnL

i ¼ 1
n0

jmi
mi

k ¼ 1 ½joz
lkð1Þ
þ � � � þ joz

lk jn
kð Þ
�Qn-1

i ¼ 1 L½joz
lið1Þ
þ � � � þ joz

li jn
ið Þ
�

0
B@

�
Ypj

k ¼ 1

joXþ1þ � � � þ joXþ rk

� 	lk jo2nþ1�qjþ1

� �lpj þ 1

� � � jo2nþ1ð Þ
lpj þ qj ¼ 3

!

¼
Xn�1

nj1 ¼ 0,...,njnL
¼ 0;
PnL

i�1
nji ¼ n�1

YnL

i ¼ 1

C
nji
pi ,qi

li1,li2,li3ð Þ
XNn,pj

z ¼ 1

YPnL
i ¼ 1

pi�1ð Þnjiþpj

k ¼ 1

H1
1 joki

� 	Q
PnL

i ¼ 1
n0

jmi
miþmj

k ¼ 1 ½joz
lkð1Þ
þ � � � þ joz

lk jnkð Þ
�Qn�1

i ¼ 1 L½joz
lið1Þ
þ � � � þ joz

li jn
ið Þ
�

0
BB@

1
CCA

¼
Xn�1

nj1 ¼ 0,...,njnL
¼ 0;
PnL

i�1
nji ¼ n�1

YnL

i ¼ 1

C
nji
pi ,qi

li1,li2,li3ð Þ
XNn,pj

z ¼ 1

YPnL
i ¼ 1

pi�1ð Þnjiþpj

k ¼ 1

H1
1 joki

� 	Q
PnL

i ¼ 1
n0

jmi
mi

k ¼ 1 ½joz
lkð1Þ
þ � � � þ joz

lk jn
kð Þ
�Qn-1

i ¼ 1 L½joz
lið1Þ
þ � � � þ joz

li jn
ið Þ
�

0
BB@

1
CCA

where njmi ¼ n0jmi ¼ nji, miamj, njmj ¼ n0jmjþ1¼ njjþ1 :

Xpj

k ¼ 1

nrk ¼
Xpj

k ¼ 1

XnL

i ¼ 1

nrkmi ¼
XnL

i ¼ 1

Xpj

k ¼ 1

nrkmi ¼
XnL

i ¼ 1

n0jmi ¼
XnL

i ¼ 1

nji ¼ n�1



Z. Xiao et al. / Journal of Sound and Vibration 332 (2013) 1335–13541350
so,
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This completes the proof &.

Appendix D. Proof of Proposition 3
(I)
 When only the nonlinear term ( � )2(d( � )/dt) is introduced in the isolation system, i.e. b2a0 and b4¼0, only the term
Pn0(jO) is needed to be considered in the force transmissibility under force excitation, Eq. (26):
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So conclusion (I) of Proposition 3 holds.

(II)
 The proof is given in Theorem 3 of Ref. [17].
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Appendix E. Proof of Proposition 4
When only ( � )2(d( � )/dt) term is introduced in the isolator, only Pn0(jO) is needed to be considered in the force
transmissibility under base displacement excitation. Similarly, only P0n(jO) is needed to be consider when only (d( � )/dt)3 is
introduced:
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is a bounded constant which is dependent on n but independent of O. So when Ob1, the upper limit of 9P0n(jO)9 is
proportional to the square of the exciting frequency, and then the force transmissibility when (d( � )/dt)3 term is
introduced in the isolator under base excitation in high frequency is much larger than that in linear case.
(III)
 The proof is given in Ref. [17].
Appendix F. Proof of Proposition 5
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(II)
 When Ob1, 9Pnk(jO)9 is considered when only ( � )2(d( � )/dt) term or only (d( � )/dt)3 is introduced in the isolator
respectively. The upper limits of 9Pnk(jO)9 under different conditions are presented in Table F1 where
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Table F1
Upper limit.

( � )2(d( � )/dt) (d( � )/dt)3

pi¼0, n¼1 (1/O)C_const(1) OC_const(1)

pi¼1 [1/(Onþ1)]C_const(n) [On�1]C_const(n)

pi¼2 [1/(O2nþ1)]C_const(n) [1/O]C_const(n)

pi¼3 [1/(O3nþ1)]C_const(n) [1/(On�1)]C_const(n)
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In the table above, the second column is the upper limit when only ( � )2(d( � )/dt) is introduced, and the third column is
the upper limit when only (d( � )/dt)3 is introduced. The second row represents the upper limit of the pure cubic input
nonlinearity, and the third to fifth rows represent the upper limit when all the n terms of nonlinear coefficients having
the same degree of output nonlinearity pi. It can be seen from the second column that the upper limit of the pure cubic
input nonlinearity is proportional to1/O, which tends to zero the slowest while comparing to the third to fifth row. So
the absolute displacement transmissibility when only ( � )2(d( � )/dt) is introduced in the isolator is very close to that in
the linear case, i.e., only a little larger than the linear absolute displacement transmissibility.
In the third column, the upper limit of the cubic pure input nonlinearity is proportional to the frequency O, and the
upper limit when all the nonlinear coefficients are composed of C1,2(1,1,1)is proportional to On�1, so the absolute
displacement transmissibility in high frequency when only (d( � )/dt)3 term is introduced in the isolator under base
excitation is much larger than that in linear case.
(III)
 Consider firstly that only ( � )2(d( � )/dt) is introduced in the isolator:
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Therefore, when OE1, there must exist a b40 such that
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When only the nonlinear term (d( � )/dt)3 is introduced in the isolator, the proof can be done by following the same
procedure. Then Proposition 5 holds.
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