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An Optimal PID Control Algorithm for Training
Feedforward Neural Networks

Xingjian Jing and Li Cheng

Abstract—The training problem of feedforward neural net-
works (FNNs) is formulated into a proportional integral and deriv-
ative (PID) control problem of a linear discrete dynamic system in
terms of the estimation error. The robust control approach greatly
facilitates the analysis and design of robust learning algorithms
for multiple-input–multiple-output (MIMO) FNNs using robust
control methods. The drawbacks of some existing learning algo-
rithms can therefore be revealed clearly, and an optimal robust
PID-learning algorithm is developed. The optimal learning pa-
rameters can be found by utilizing linear matrix inequality opti-
mization techniques. Theoretical analysis and examples including
function approximation, system identification, exclusive-or (XOR)
and encoder problems are provided to illustrate the results.

Index Terms—Feedforward neural networks, linear matrix
inequality (LMI), proportional integral and derivative (PID)
controller, robust learning.

I. INTRODUCTION

T RAINING of a feedforward neural network (FNN) has
been extensively studied in the literature [1], [2], [16],

[20], [24]–[29]. The gradient descent algorithm such as back
propagation (BP), as a basic method for training FNNs in
many areas, for example function approximation, system iden-
tification, pattern recognition and control, etc., searches the
parameter space (weights and thresholds) of the network in
the steepest descent way to minimize the error between the
network output and the desired output. The main drawbacks
could be its slow convergence speed (unstable in some cases)
and its inability to ensure global minimum. For the noisy
input-output data in system identification and function approx-
imation, the performance of a traditional BP may be even
worse. Improvement methods, including introduction of a mo-
mentum term, utilization of standard optimization techniques
[e.g., quasi-Newton, conjugate-gradient, recursive least square,
and Levenberg-Marquardt (LM)], and adaptability of learning
rates, have been frequently reported in the literature [2]–[7].
However, many improved methods may incur additional limita-
tions for the algorithms, for example, dependence on heuristic
knowledge, high storage and memory requirements, complex
computation costs, or difficulty in scheduling the learning rate
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or ensuring stability, etc. The methods based on Lyapunov
stability are also studied recently such as in [8] to guarantee
the global convergence of the learning algorithm but without
considering noise effects. Importantly, the learning problem is
still treated as an optimization but not as a control problem.
Extended Kalman filter and H∞ filter methods are also utilized
for the development of new learning algorithms to cope with
noisy data and more robust convergence [9], [10]. However,
the computation cost is obviously increased, and the global
convergence is not ensured.

In this paper, the robust learning problem of FNNs is treated
by a novel robust proportional integral and derivative (PID)
control approach in order to achieve faster, global, and more
robust convergence (for noisy data particularly in function ap-
proximation and nonlinear system identification). The training
problem of FNNs is formulated into a robust control problem
of a linear discrete dynamic system in terms of the estimation
error of the network. The weight update law is transformed into
a “virtual” control to be designed, while the noise in the data is
mapped into bounded uncertainties. Therefore, this can greatly
facilitate the analysis and design of robust learning algorithms
for FNNs using many available robust control methods and
optimization techniques such as linear matrix inequality (LMI).
With this approach, an optimal PID training algorithm is con-
sequently proposed, and the learning parameters can be deter-
mined optimally by minimizing a performance index using LMI
techniques. Compared with existing learning algorithms such
as BP and LM-BP, etc, the new optimal PID-learning (PID-L)
algorithm can provide more robust and faster convergence par-
ticularly in dealing with noisy data in function approximation
and system identification, and is easy to implement as a BP
algorithm. Several existing BP-type algorithms can be regarded
as special cases of the new PID-L algorithm. Simulations and
comparisons are provided to illustrate the effectiveness of the
proposed PID-L method.

It should be noted that the PID robust control approach
proposed in this study is different from the existing techniques
used in the design of adaptive controllers or filters using FNNs
[17]. In the latter methods, the FNN model is usually incorpo-
rated in a closed-loop feedback control system such that online
adaptive parameter estimation can be achieved in the context of
Lyapunov stability. However, the proposed approach is aimed
at directly training the FNN in an open-loop situation with
only the available input output data and therefore can be used
for any purposes (e.g., system identification, function approxi-
mation, pattern recognition, and control, etc). Moreover, PID-
like learning algorithms for SIMO NNs were already studied
in [23] and [26], where either the NNs were reconstructed to
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act as a PID form function, or the PID is used in a simple
gradient descent manner. However, the PID training algorithm
of this study is developed in a novel robust control scheme by
casting the FNN training into a “virtual” control system. The
robust control approach was already preliminarily investigated
in [30]. The PID-L in this study is much simpler and easier
to implement, generic, and flexible to different training tasks,
applicable to MIMO FNN problems, and shown to be globally
convergent.

II. PID-LEARNING APPROACH

A. Problem Formulation

PID controllers are extensively accepted in practice for its
simplicity in design and implementation and robustness to noise
and disturbance. A faster and more robust learning algorithm
for FNNs is derived by applying the PID control method in this
section.

Consider a FNN with p inputs and r outputs described by

y = f(C1, C2,X) (1)

where X = [x1, x2, . . . , xp]T is supposed to be in a compact set
U ⊂ Rp, y ∈ Rr, C1 and C2 are real-valued vectors denoting
different weights of the network, which can be different weights
in different layers or just different weights by heuristic grouping
or simply written into one vector denoted by C. Equation (1)
may represent any multilayer FNN with appropriate nonlinear
activation functions of bounded derivatives (with respect to X ,
C1 and C2). It is supposed that for any nonlinear function h:
U → Rr and εq > 0, there exist optimal weights C∗

1 and C∗
2

such that

|h(X) − f (C∗
1, C

∗
2,X)| < εq (2)

(| ∗ | is the Euclidean norm). This is a reasonable assumption
based on the approximation theory [11], [18], [22]. At time n,
the measured output of the nonlinear function can be written as

y(n) = f (C∗
1, C

∗
2,Xn) + ε(n) (3)

where ε(n) is a noise process. Suppose ε(n) is uncorrelated
to the input and upper bounded. Given a series of input-output
data, the task is to find a weight update law

Ĉ1(n + 1) = Ĉ1(n) + ΔĈ1(n) (4a)

Ĉ2(n + 1) = Ĉ2(n) + ΔĈ2(n) (4b)

with any initial values Ĉ1(0) and Ĉ2(0) for the estimated FNN
ŷ(n) = f̂(Ĉ1(n), Ĉ2(n),Xn) such that the estimation error

e(n) = ŷ(n) − y(n) (5)

is asymptotically convergent to a small region around zero.
For a variable x(n), Δx(n) = x(n + 1) − x(n) in this study.

It can be derived from (5) that

e(n + 1) = e(n) + ŷ(n + 1) − ŷ(n) − y(n + 1) + y(n)

= e(n) + f̂
(
Ĉ1(n + 1), Ĉ2(n + 1),Xn+1

)

− f̂
(
Ĉ1(n), Ĉ2(n),Xn

)
− Δy(n). (6)

The term Δy(n) is unknown at n. Noting that (4a) and
(4b) and Xn+1 = Xn + ΔXn, the term f̂(Ĉ1(n + 1), Ĉ2(n +
1),Xn+1) can be expanded by Taylor series around the previ-
ous estimated weights and input (Ĉ1(n), Ĉ2(n),Xn) as

f̂
(
Ĉ1(n + 1), Ĉ2(n + 1),Xn+1

)

= f̂
(
Ĉ1(n), Ĉ2(n),Xn

)
+ f̂Ĉ1

ΔĈ1(n) + f̂Ĉ2
ΔĈ2(n)

+ f̂Xn
ΔXn + σn

(
Ĉ1(n), Ĉ2(n),Xn

)
(7)

where f̂x = ∂ŷ(n)/∂x(n), σn(Ĉ1(n), Ĉ2(n),Xn) represents
all the remaining terms in Taylor series expansion. To ensure the
accuracy of the linear approximation in (7) with Taylor series,
the difference terms ΔĈ1(n), ΔĈ2(n), and ΔXn should be
around zero. However, the residual σn(·) can always be upper
bounded in the compact setU (see more discussions in [12],
[19]). Then, from (6) and (7), it can be derived that

e(n + 1) = e(n) + B(n) · u(n) + w(n) (8)

where B(n) = [B1(n)B2(n)] = [f̂Ĉ1
f̂Ĉ2

]

u(n) = [ΔĈ1(n)T ΔĈ2(n)T ]T ,

w(n) = f̂Xn
ΔXn − Δy(n) + σn(·).

Equation (8) can be regarded as a discrete, linear, time-varying
system. The control input u(n) to be designed is the weight
update law. The term σn(·) denotes an unknown disturbance
input, which can be designed as small as possible if the control
law u(n) is properly chosen and ΔXn is sufficiently small.
Since ΔXn and Δy(n) are usually not known at n, the term
f̂Xn

ΔXn − Δy(n) can be regarded as the other disturbance
input. Obviously, w(n) inevitably affect the dynamic evolution
of the error system. From the control point of view, a simple
control law u(n) (i.e., the weight update law) without careful
consideration of these disturbance effects will definitely result
in bad performance including instability.

To illustrate this point, consider (8) when the control input
u(n) is designed as

u(n) = −ηBP B(n)T e(n). (9)

This is the traditional BP algorithm. For convenience in dis-
cussion, consider (8) as a scalar system first. Clearly, if the
term w(n) can be neglected and |(1 − ηBP B(n)B(n)T )| ≤
λ < 1(∃λ) holds, the learning algorithm (9) can work well,
because in this case, the error dynamics will be

e(n + 1) ≈
(
I − ηBP B(n)B(n)T

)
e(n)

which is asymptotically stable if |(1 − ηBP B(n)B(n)T )| ≤
λ < 1 holds. For dynamic system identification or function
approximation with changing input-output and noisy data,
the term w(n) cannot be simply neglected, and it is practi-
cally difficult to find an appropriate ηBP to guarantee |(1 −
ηBP B(n)B(n)T )| < 1 all the time. Similarly, when e(n) in
(8) is a vector instead of a scalar, it will be more difficult
for (9) to stabilize such an uncertain time-varying system.



JING AND CHENG: OPTIMAL PID CONTROL ALGORITHM FOR TRAINING FEEDFORWARD NEURAL NETWORKS 2275

Thus, the convergence of the algorithm (9) could not always
be guaranteed with a simple setting for the learning rate ηBP .
Obviously, (8) provides a useful insight into the drawbacks of
the existing learning algorithms for FNNs such as some BP-
type algorithms. The robust control point of view offers the
possibility of addressing these important (but not fully inves-
tigated or nearly neglected) issues by adopting robust control
techniques.

B. Robust PID-Learning Algorithm

As discussed before, a better controller for (8) should con-
sider carefully the effects incurred by the uncertain disturbance
term w(n). For this reason, the PID controller is adopted
for its well-known simplicity and robustness in practice. It is
known that the PID controller is an extensively used method in
practical applications of many fields, which is robust to noise
and disturbance of different properties and easy to implement.
A PID controller has three terms, i.e., proportional (P), integral
(I), and derivative (D) parts. Properly tuning the controller
parameters can result in satisfactory performance for many
linear or nonlinear systems. The continuous PID controller can
be written as

V (s) = (Kp + ki/s + kds)E(s) (10)

where V(s) and E(s) are the Laplace transforms of v(t) and
e(t), respectively, Kp, ki, and kd are all real-valued diagonal
matrices of r dimensions. To apply it to the discrete system (8),
considering the commonly used backward difference method,
i.e., s = (1 − z−1)/Ts, the corresponding discrete PID is

v(n) = v(n − 1) + Kp [e(n) − e(n − 1)] + kiTse(n)

+ (kd/Ts) [e(n) − 2e(n − 1) + e(n − 2)] (11a)

which can be rewritten as

v(n) = v(n − 1) + KpΔe(n − 1) + Kie(n)

+ Kd [Δe(n − 1) − Δe(n − 2)] (11b)

where Ki = kiTs, Kd = kd/Ts, Δe(n−1) = e(n)−e(n−1).
With the PID controller (11b), the PID-L algorithm for the

error dynamic system (8) is given by

u(n) = −
[

(1 − α)BT
1

(
B1B

T
1

)−1 · Ir,r

αBT
2

(
B2B

T
2

)−1 · Ir,r

]
v(n) (12)

where Ir,r represents a unit diagonal matrix of r × r dimen-
sions, and 1 > α > 0. Note that the network weights to be esti-
mated are divided into different groups with different weighting
parameters α and 1 − α in the learning rate in (12) (when
α = 0.5 it will be the usual case). In case that (B1B

T
1 (n))−1

is singular, it can be replaced by (B1B
T
1 (n) + δ · I)−1

, where
δ is a small positive number.

An important task in the implementation of the weight update
law (12) is to determine the optimal PID parameters such that
the controlled error dynamics in (8) is robust to the unknown
disturbance represented by the term w(n). Note that Δy(n)

can be approximated by the first-order Taylor series expan-
sion fXn

ΔXn. Thus, it can be obtained that w(n) = (f̂Xn
−

fXn
)ΔXn + σn(·). If the input is slowly changing or the es-

timated weights are around the real values, (f̂Xn
− fXn

)ΔXn

will be around zero. The terms |ΔXn| and |f̂Xn
− fXn

| can
both be bounded in the compact setU, which is a common
assumption in the literature [11], [12]. Therefore, it can be
supposed that

w(n) ∈ L2e. (13)

It is noted that w(n) will go to zero when the network weights
approach to the ideal weights. Thus, it could also hold that
w(n) ∈ L2. It should be noted that, with different knowledge
on w(n), different robust control strategy can be attempted to
design a robust learning algorithm (including static or dynamic
ones) for a specific convergence performance of the error dy-
namics (8). This is an advantage of the methodology proposed
in this paper.

To guarantee the asymptotical stability of the error dynamics
with the learning law (12) and to find the optimal PID pa-
rameters, the following result can be achieved using the PID
controller (11b).

Theorem 1: Given a scalar γ > 0, and sufficient number q
of hidden units in the estimated FNN, the PID-L algorithm in
(11b) and (12) can drive the estimation error in (8) to globally
asymptotically converge to zero satisfying the performance
‖e(n)‖2 < γ‖wn‖2, if there exist any matrices of appropriate
dimensions Q > 0, U1, U2, and Y , such that⎡
⎢⎢⎢⎢⎣

UT
1 +U1 U2−UT

1 +QA
T

+Y T B
T

0 QGT UT
1

∗ −U2−UT
2 B1 0 UT

2

∗ ∗ −γ2I 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −Q

⎤
⎥⎥⎥⎥⎦<0

(14)

and the optimal PID parameters are given as: α is a small
number satisfying 1 > α > 0, and⎡
⎣Kp

Ki

Kd

⎤
⎦ =

⎡
⎣ 0r,r −Ir,r −2Ir,r

Ir,r Ir,r Ir,r

0r,r 0r,r Ir,r

⎤
⎦

×

⎧⎪⎨
⎪⎩

⎛
⎜⎝Y Q−1 −

⎡
⎣ Ir,r

Ir,r

Ir,r

⎤
⎦

T
⎞
⎟⎠

T

−

⎡
⎣−2Ir,r

Ir,r

0r,r

⎤
⎦
⎫⎪⎬
⎪⎭ (15)

where

A =

⎡
⎣ 0 1 1

1 −1 0
0 1 −1

⎤
⎦⊗ Ir,r, B =

⎡
⎣−1

0
0

⎤
⎦⊗ Ir,r,

B1 =

⎡
⎣ 1 −1

0 0
0 0

⎤
⎦⊗ Ir,r,

G =

⎡
⎣ 1

0
0

⎤
⎦

T

⊗ Ir,r, wn =
[

w(n)
w(n − 1)

]
.
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Proof: See Appendix A.
If w(n) ∈ L2e, then the norm in ‖e(n)‖2 < γ‖wn‖2 is L2e

norm. If w(n) ∈ L2, then the norm is L2 norm. Note that
U1, U2, and Y can be any matrix variables and A,B,B1, C
are some auxiliary matrices, which are derived from the error
dynamics (8) for the computation of the PID parameters with
the LMI optimization technique (referred to Appendix A).
Therefore, the optimal robust PID-L algorithm is given by (11),
(12), and (15). Although the PID controller (11b) is focused
in this study, similar results can be established for discrete PID
controllers of other forms (e.g., via the bilinear transformation).

C. Analysis and Discussions

The PID-L algorithm above has the following properties.

(i) The algorithm in (12) includes several existing BP-type
algorithms as special cases. Note that the BP algorithm
in (9) simply acts as a proportional controller with Kp =
ηBP B(n)B(n)T. The PID controllers in (11b) and (11c)
both have a term v(n − 1) or v(n − 2), which correspond
to the momentum terms in the existing momentum BP-
type algorithms [13]. The BP algorithm using Newton’s
method with quadratic approximation can be written as

u(n) = −
(
B(n)T B(n)

)−1
B(n)T e(n)

which can be regarded as a proportional controller in the
PID-L with Kp = B(n)(B(n)TB(n))−1B(n)T. Simi-
larly, the LM-BP algorithm can be simply written as

u(n) = −
(
B(n)T B(n) + μI

)−1
B(n)T e(n).

When μ is small, it is the quasi-Newton’s algorithm
above, and when μ is large, it is a gradient descent one.
Obviously, the LM-BP is also included in the general
PID-L algorithm (12). Therefore, the new PID-L algo-
rithm in (12) provides a general scheme for the learning
algorithm design and takes into consideration the noise
effect and also the uncertain effects that are incurred
by the changing input and output. The weight update
law (12) with the PID parameters given by Theorem 1
can drive the estimated error of the FNN to around
zero satisfying a predefined H∞ level. Hence, the PID-L
algorithm in (12) should have faster and more robust
convergent performance theoretically.

Importantly, improved versions of these BP-type al-
gorithms mentioned above can always be found by re-
placing the error e(n) with the composite PID error v(n)
[in (11b) or (11c)]. In this case, the BP-type algorithms
mentioned above are still included in the corresponding
improved ones as special cases. For example, an im-
proved PID LM-BP can be given by

u(n) = −
(
B(n)T B(n) + μI

)−1
B(n)T v(n).

When Ki and Kd = 0, it becomes the original one.
This provides another new robust control approach to the
design of learning algorithms.

It should be emphasized that although the error dynam-
ics in (8) is a time-varying system, the LMI in (14) is
independent of the time-varying parameters because all
the involved system matrices are constant. That is, the
LMI in (14) needs only run one time to find the optimal
PID parameters before a learning task instead of repeat-
ing computation at each step. Hence, the computation
cost of the proposed PID-L algorithms is as simple as
the well-known gradient descent BP algorithm.

(ii) Substituting (12) into (8) gives e(n + 1) = e(n) −
v(n) + w(n) (also see it in Appendix A). Therefore, it
can be seen clearly that the error dynamics is mainly
dependent on the PID parameters but not directly on the
parameter α. However, by choosing different values of
α, the learning rates for different model parameters of
the neural network will be changed accordingly. Note that
the learning rates for different weights of neural networks
are usually determined by a common parameter in most
existing learning algorithms (e.g., BP algorithms). A
larger value of the parameter will result in larger learning
rates for all the weights. However, a more reasonable
way in practice could be to adjust different learning rates
for different weights. Because it is better to have a slow
learning rate for some sensitive weights in order to avoid
oscillation of the network, while the total convergence
speed of the algorithm is not affected simultaneously.
The PID-L algorithm (12) can achieve this by providing
a method to explore the heuristic knowledge on differ-
ent weights of the neural network. The weights can be
divided into different groups heuristically although only
two groups are shown in (12). The parameters in C1 can
have a higher or lower learning rate than the parameters
in C2. For example, if the parameters in C2 correspond
to sensitive parameters in the neural network, α can be
chosen to be less than 0.5. If α = 0.5 by default, this
corresponds to the commonly used case.

(iii) The results in Theorem 1 provide the best static pa-
rameter values for the PID-L algorithm in (12) such
that an optimal performance and a globally asymptotical
convergence could be achieved by exploiting the LMI
optimization techniques. This is another advantage of the
new method proposed in this paper. This could be the first
result in the literature to address the learning problems of
FNNs by using LMI techniques via a PID robust control
method. Moreover, the parameters Kp, Ki, and Kd can
also be determined such that the characteristic equation
of the controlled error system has the characteristic roots
of smallest magnitudes. After some manipulation, the
controlled error dynamics can be written as (also see in
Appendix A)

e(n+1)+(−2Ir,r+Kp+Ki+Kd)e(n)+(Ir,r−Kp−2Kd)

×e(n−1)+Kde(n−2)=w(n)−w(n−1).

Therefore, the roots of the characteristic equation of the
system above determine the dynamic evolution charac-
teristics of the error system. For convergence, the roots
must be within the unit circle. Obviously, for a faster
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convergence, the roots should have the smaller magni-
tudes. This can be achieved systematically through the
LMI optimization in Theorem 1 considering the distur-
bance effects.

(iv) Assuming that the noise is uncorrelated to the input, a
correlation analysis can show that the noise effects on
the parameter estimation through the PID-L algorithm
in (12) will become trivial as the time going to infinity.
For parameter C1, applying the weight update law (12)
results in

Ĉ1(n) = Ĉ1(0) +
n∑

i=1

α

·
(
f̂Ĉ1(i)

f̂T
Ĉ1(i)

)−1

f̂T
Ĉ1(i)

[e(i) + e(i − 1) + e(i − 2)]

where α is a function of the corresponding coefficients re-
sulting from the recursive expansion. Therefore, the noise
included in the error has a cross-correlation with f̂T

Ĉ1(i)
,

and this cross-correlation has effect on the parameter
estimation. Note that f̂T

Ĉ1(i)
is a function of the input,

which has no relation with the noise that is included in the
error. Therefore, the cross-correlation between the noise
and f̂T

Ĉ1(i)
will approach zero as n → ∞. This implies

that the noise in the error has no effect on the parameter
estimation. For this reason, the estimated parameters can
be further improved by Ĉ(t) = (1/N)

∑t
n=t−N+1 Ĉ(n)

provided that
∑t

n=t−N+1 ε(n) = 0.

III. EXAMPLES

In simulations, the parameters of the PID-L algorithm can be
determined by the following process: 1) determine a sufficiently
large number q; 2) given a disturbance attenuation level γ > 0
(3.6 by default in this paper), find the best PID parameters Kp,
Ki, and Kd according to Theorem 1 (note that they can also
be tuned heuristically); 3) α can be an appropriate value in a
closed set [0 1].

A. Function Approximation

A RBF network is adopted to approximate a 2-D Gabor
function, a bench-mark problem [8], which is given by

g(x1, x2)=
1
cπ

exp
(
−
(
x2

1+x2
2

)
/
(
2(0.5)2

))
cos (2π(x1+x2))

(16)

where c = 0.1. There are two (p = 2) inputs X = [x1, x2]T.
Given q hidden units, the basis function is chosen as
gi(x1, x2) = exp(−(X − ξj)T Σj(X − ξj))(j = 1, . . . , q),
and the output can be written as

Y = f(Γ, ξ,Σ;X) =
q∑

i=1

Γjgj(ζji,Σji;x1, x2) = ΓT g

where Γ, ξ, Σ are the parameters to be tuned, and g is consisting
of gj(ζj ,Σj ;x1, x2). The weights can be divided into two

Fig. 1. Performance with different values of α.

groups, i.e., C1 = Γ and C2 = [ξT ,ΣT ]T , then the matrix B1

and B2 = [BT
21, B

T
22, . . .] in (12) can be achieved, e.g.,

B1 = ∂f̂(·)/∂Ĉ = gT ,

B2j = ∂f̂(·)/∂Σ̂j

= Γjgj(·)
[
−(x1 − ξj1)2 − (x2 − ξj2)2

]T
. . . .

Case (I). The effect of the parameter α on the convergence
performance of the PID-L algorithm is studied. The number
of hidden neurons is q = 30, and the initial weights are given
as: Γj = 1/q; Σj1 = Σj2 = 15; and the input space is regularly
gridded to find q points for ξj (for example, if q = 30, it can be
gridded evenly with six rows and five columns). 2000 training
data X are generated randomly with uniform distribution in
the range [−0.5, 0.5], while 1600 validation data are generated
regularly in the same range with an interval 0.025. The accuracy
of the estimated RBF network is evaluated by the root mean
square (rms) error over the 1600 validation data. Run the PID-L
algorithm with Kp = 0.9989, Ki = 0.9200, Kd = −0.0001
(by Theorem 1, resulting in the poles of the closed-loop system
to be 0.0836, −0.0012 ± 0.0396i) and different values of α, the
results are shown in Fig. 1.

As discussed before, although the value of α has no signifi-
cant effect on the final rmse value after sufficient learning, it has
obvious effect on the convergence speed of the error dynamics.
In this example, a smaller value of α, a faster convergence speed
can the algorithm achieve. However, too small value of α may
result in a large rmse (i.e., approximation error) after learning.
In the following simulations, the parameter α is set to 1/3 by
default. With the same initial weights, the performance of the
PID-L algorithm is compared with the known LM-BP algo-
rithm (mu = 1) and the other newly developed Lyapunov func-
tion (LF)-based algorithm [8] which is shown to outperform
the BP and EKF algorithms. Here, mu represents the learning
rate or a parameter to tune in the corresponding algorithms here
and in what follows, and is chosen to have as fast as possible
convergence speed. The results are shown in Fig. 2, indicating
that the new PID-L algorithm is both faster in convergence
and better in rmse after 10 epochs learning. Note that the LF
with mu = 20 is as good as the LM-BP which has the worst
rmse after 10 rounds of training, and the LF with mu = 30 can
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Fig. 2. Performance comparisons with the same initial weights.

TABLE I
PERFORMANCE OF DIFFERENT ALGORITHMS

reach its smallest rmse after 10 rounds of training but converge
slowly.

Case (II). For more comparisons, the data is generated in the
same way as Case I, but the initial weights are random gener-
ated uniformly in [−1 1], and each algorithm is run 50 times
independently to find the averaged rmse. The parameters of the
PID-L are the same as Case I. The results are summarized in
Table I. The PID-L algorithm is the faster one compared with
those BP-type algorithms and the newly developed LF-based
method in [8]. With the same series of data but adding some
white noise (N(0, 0.32)) into the output, 50 simulations are
conducted for each algorithm with different series of noise. The
simulation results are shown in Fig. 3, indicating that the PID-L
algorithm still converges faster in terms of the averaged rmse
and also has much smaller variation in rmse at each epoch.

Case (III). Another test is conducted to all the mentioned
algorithms above when the parameter c in (16) is set to c =
0.001 and the data is generated in the same way as Case I.
In this case, the output is changing very fast with respect
to the input. The simulation shows that the PID-L algorithm
with the same parameter settings as before can still guarantee
stability, converge much faster, and achieve much better error
performance after several rounds of training, while the other
algorithms either fail to be stable or become obviously worse
even when the corresponding learning rate is changed to a
proper number (see Table II and Fig. 4). This test demonstrates
the highly robust adaptability of the PID-L algorithm with
respect to the fast changing output.

Fig. 3. Comparisons of the rmse (with std) in validation for noisy data
between LF[8], LM-BP, and PID-learning (the learning rate (parameter) is
30 for LF[8], 1 for LM-BP and α = 0.65, Kp = 0.9989, Ki = 0.9200, and
Kd = −0.0001 for the PID learning).

TABLE II
RMSE PERFORMANCE WHEN PARAMETERS ARE CHANGED

Fig. 4. Network output in validation still matches the real output well (rmse =
4.3292) using the PID-learning of the same parameter setting when the
parameter c in (16) is changed from 0.1 to 0.001.
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TABLE III
ESTIMATIONS WITH DIFFERENT ALGORITHMS

B. System Identification With Nonwhite Noise

Consider a system identification example [14], i.e.,

x(t)=u(t−1)+0.5u(t−2)+0.25u(t−1)u(t−2)

−0.3u3(t−1)

y(t)=x(t)+
1

1−0.8q−1
w(t), w(t)∼N(0, 0.022). (17a-b)

The noise process in the output is nonwhite. The input used to
actuate the system is chosen as a low-frequency process, i.e.,
u(t) = 1.6u(t − 1) − 0.6375u(t − 2) + 0.16ζ(t) with ζ(t) ∼
N(0, 1). In this case, it will be more difficult to identify the
real model. A RBF NN model is used for identification

y(n) =
M∑
i=1

κjgj (X(n)) = CT GX(n) (18)

with the basis function vector chosen as

GX(n) =
[
u(t − 1), u(t − 2), u2(t − 1),

u(t − 1)u(t − 2), u2(t − 2), u3(t − 1)
]T

.

The weight vector C is to be determined, whose real value is
C∗ = [1 0.5 0 0.25 0 − 0.3]T according to (17a). The initial
weight is chosen as κj(0) = 1/M for j = 1 . . . M . A data
set of 1000 input-output samples was generated, and the first
500 samples were used for training while the others for model
validation.

Case (I). With the same input-output data but different ad-
ditive noise, the network is trained for more than 50 times
independently to find the estimated Ĉ and terminated when the
training is up to 20 epochs or no obvious improvement in rmse
is observed in successive 5 epochs or the rmse is becoming
worse. The results are summarized in Table III, which indicate
that the estimation of the PID-L is unbiased and much better
than those of the BP (the learning rate is 0.002 in this case), the
LF-based methods [8], [15], and the LM-BP. The result of the
PID-L is also comparable to the result of [14] but with a BP-
level computation. The method in [14] is an improved version

Fig. 5. Comparisons between the LM-BP and the improved PID LM-BP.

of the orthogonal least square method which is known as an
effective algorithm for offline identification of NARX models
but with much computation cost.

Case (II). As discussed before, the new PID-L algorithm inte-
grates all the properties of several existing BP-type algorithms
such as the basic BP, Newton-BP, and LM-BP, etc. This implies
that the PID-L could always behave better or not worse than
those BP-type algorithms. Importantly, improved versions of
these BP-type algorithms can be achieved by replacing the error
e(n) with the composite PID error v(n) [in (11b) or (11c)]. For
example, if the LM-BP is used as u(n) = −(B(n)T B(n) + μ ·
I)−1B(n)T e(n), then an improved PID LM-BP can be written
as u(n) = −(B(n)T B(n) + μ · I)−1B(n)T v(n). If Kp = 1,
Ki = 0, and Kd = 0, then the improved PID LM-BP becomes
the original LM-BP. If appropriately tuning the PID parameters,
then better performance could be achieved. A simulation result
is shown in Fig. 5, where the parameter μ of LM-BP is tuned
to 0.2 first to achieve a better performance, then using the
same setting for μ and additionally tuning the other parameters
of PID LM-BP to Kp = 0.11, Ki = 0 and Kd = 0.07, the
evolution of the estimated model parameter C with the PID
LM-BP is much better than that with the LM-BP.



2280 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 60, NO. 6, JUNE 2013

TABLE IV
EPOCHS IN TRAINING TO ACHIEVE RMSE = 0.0001 IN XOR PROBLEM

C. XOR Problem

For the exclusive-or (XOR) problem, the input series are: 0
0; 0 1; 1 0; 1 1 and the output series are: 0; 1; 1; 0. Consider a
three-layer neural network with two inputs, four hidden neurons
(as that in [8], [10] etc.), and one output for this problem and
the transfer function in the hidden layer is chosen as tangent
sigmoid functions. The network is trained for 100 times with
random initial weights, and the training is terminated when
the rmse per epoch reaches 0.0001 or the maximum epoch
1000 is reached. Several existing BP-type algorithms [21] are
compared with learning rates (or initial learning rate) 0.85 to
have a faster convergence. The (initial) learning rate μ is set
to 0.1 for LM-BP and 0.5 for the LF-based method in [8]
to have a faster convergence. The parameters of the PID-L
are α = 0.5, Kp = 0.9965, Ki = 1.0057, and Kd = 0.0022
(Theorem 1 (γ = 2.6)). The simulation results are given in
Table IV. From Table IV, it can be seen that the new PID-L
algorithm used fewer epochs in average to reach the train-
ing objective. Similar results could be concluded for more
difficult parity-N problem. Moreover, it is noted that for a
given neural network structure with sufficient hidden neurons
and given initial network weights, the PID-L can always be
tuned by its three parameters (Kp,Ki,Kd) to have a better
convergence.

D. 4-2 Encoder

To demonstrate the effectiveness of the new PID-L algorithm
in application to multiple output cases, a 4-2 encoder problem
is considered. The 4-D input series are given as [0 0 0 1; 0 0 1 0;
0 1 0 0; 1 0 0 0], and the 2-D outputs [0 0; 0 1; 1 0; 1 1]. A 4-8-2
FNN structure is adopted for this learning task. The parameters
of the PID-L algorithm are given as α = 0.5, Kp = 1.4720,
Ki = 1.6100, and Kd = 0.1124. Several existing well-known
or newly developed algorithms are compared whose parameters
are chosen in such a way that an as fast as possible speed can be
achieved. For example, the learning rate for the gradient descent
BP algorithm is 0.9, 0.5 for the LF method in [8], and the
initial learning rate is 0.1 for LM-BP. The network is trained
for more than 100 times using each algorithm with random
initial weights, and the training is terminated when the rmse per
epoch reaches 0.0001 or the maximum epoch 1000 is reached.
The results are summarized in Table V, which shows that the
PID-L algorithm is obviously much better than some other well-

TABLE V
EPOCHS USED TO ACHIEVE RMSE = 0.0001 IN ENCODER PROBLEM

known BP-type algorithms. Although the difference among the
performances of the LF method [8], the LM-BP algorithm and
the PID-L algorithms may not be statistically significant, the
PID-L algorithm still used fewer epochs in average to reach the
same learning objective.

Based on the example studies above, it can be seen that the
PID-L algorithm is faster and more robust in learning differ-
ent tasks, particularly for function approximation and system
identification. This could provide a totally new approach to
nonlinear system identification subject to noise corruption. One
advantage of the PID-L compared with the other algorithms
also lies in that the algorithm parameter setting could be given
by Theorem 1 automatically while the parameter setting of the
other algorithms must be tuned manually many times to find
a relatively better one for each specific problem. Improved
versions of some existing BP-type algorithms can be easily
developed as that demonstrated in case II of Example B.
Different robust learning algorithms can also be designed
based on the general robust control approach established
in Section II.

Note that the computation cost of the PID-L algorithm
is basically similar to that of the commonly used BP algo-
rithm. In Matlab, to generate the incremental weight update

term u(n) = [ΔĈ1(n)T ΔĈ2(n)T ]
T

in (12), the code needs
6.2252e-005 ± 6.7889e-005s with the PID learning, while it
needs 4.2997e-006 ± 2.8935e-006s with the BP algorithm. The
PID algorithm needs more memory to carry out the integral and
derivative computations than the BP but is known to be easy to
implement in practice.

IV. CONCLUSION

An optimal PID control approach is proposed in this study to
address the learning problems of FNNs. The training problem
of a FNN is cast into a robust control problem of a linear
discrete dynamic system. This greatly facilitates the analysis
and design of a desired weight update law for the FNN, which
actually acts as a virtual control law for the discrete dynamic
system in terms of the estimation error. The advantages of the
present method include:

(a) The learning problem is cast into a robust control prob-
lem, which demonstrates a powerful insight into the
analysis and design of learning algorithms for FNNs.
The advantage of the robust control approach could be
that many existing robust control theories can readily be
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available to use to cope with different kind of noise or
disturbance in the data. For different noise process of
different properties, the robust control approach provides
a powerful tool or an alternative viewpoint to achieve a
specific design in the learning algorithm.

(b) The determination of learning parameters is transformed
into an optimization problem in terms of a simple
LMI, which can achieve an optimal robust performance.
This could remove the burden in manual tuning of
multiple parameters as those in many existing learning
algorithms.

(c) The robust PID controller is introduced in the robust
control scheme to deal with the learning problem of
FNNs; compared with several existing algorithms, the
new learning algorithm is more generic and robust, par-
ticularly for function approximation and system identifi-
cation with noisy data.

APPENDIX

Proof of Theorem 1

Using the PID-L algorithm (12), (8) can be written as

e(n + 1) = e(n) − v(n) + w(n) (A0)

which yields E(z)(z − 1) = −V (z) + W (z). Note that
(11b) gives V (z)=[Kp+Ki(1/1−z−1)+Kd(1−z−1)]E(z).
Then,

{
(z−1)+

[
Kp+Ki

1
1−z−1

+Kd(1−z−1)
]}

E(z)=W (z).

That is

e(n+1)+(−2Ir,r+Kp+Ki+Kd)e(n)+(Ir,r−Kp−2Kd)

× e(n−1)+Kde(n−2)=w(n)−w(n−1). (A1)

Define

⎡
⎣Kp

Ki

Kd

⎤
⎦ =

⎡
⎣ Ir,r − b − 2c

Ir,r + a + b + c
c

⎤
⎦ . (A2)

Equation (A1) can be written as

e(n + 1) + ae(n) + be(n−1) + ce(n−2) = w(n)−w(n−1)

which further yields

en+1 = (A + BK)en + B1wn

z(n) =Gen (A3)

where

en =

⎡
⎣ e(n)

e(n − 1)
e(n − 2)

⎤
⎦ , A =

⎡
⎣ 1 1 1

1 0 0
0 1 0

⎤
⎦⊗ Ir,r

B =

⎡
⎣−1

0
0

⎤
⎦⊗ Ir,r, K =

⎡
⎣ a + Ir,r

b + Ir,r

c + Ir,r

⎤
⎦

T

B1 =

⎡
⎣ 1 −1

0 0
0 0

⎤
⎦⊗ Ir,r, wn =

[
w(n)
w(n − 1)

]

G =

⎡
⎣ 1

0
0

⎤
⎦

T

⊗ Ir,r.

Now, (A3) is a typical robust control system, and the control
law K is to be designed so that the output z(n) is stabilized.
Note that system (A, B, G), which is the error dynamics of the
learning system in (3)–(5), is fully controllable and observable
through the PID controller. The H∞ robust control theory is
applied to find the optimal control law K, which corresponds to
the optimal parameters of the PID learning. Given a disturbance
attenuation level γ, and supposing zero initial conditions for
(A3), the H∞ robust control is to find the optimal K so that
‖z(n)‖2 < γ‖wn‖2 for any nonzero wn ∈ L2/2e. Define the
LF as

V (n) = eT
nPen (A4)

where P is a positive definite matrix, i.e., P > 0. Letting yn =
en+1 − en and using (A3), it can be derived that

0=(A+BK−I)en−yn+B1wn =(A+BK)en−yn+B1wn

(A5)

where Ā = A − I and I is a unit matrix. Using (A4) and (A5)

ΔV (n)= V (n + 1) − V (n)=eT
n+1Pen+1 − eT

nPen

= yT
n Pyn + eT

nPyn + yT
n Pen

= yT
n Pyn + 2eT

nPyn

+ 2
(
eT
nT1 + yT

n T2

) [
(A + BK)en − yn + B1wn

]
= yT

n

(
P − T2 − TT

2

)
yn

+ 2eT
n

[
P − T1 + (A + BK)T TT

2

]
yn

+ eT
n

[
T1(A + BK) + (A + BK)T TT

1

]
en

+ 2eT
nT1B1wn + 2yT

n T2B1wn

which further yields

ΔV (n)+z(n)T z(n)−γ2wT
n wn

= yT
n

(
P−T2−TT

2

)
yn+2eT

n

[
P−T1+(A+BK)T TT

2

]
yn

+eT
n

[
T1(A+BK)+(A+BK)T TT

1 +GT G
]
en

+2eT
nT1B1wn+2yT

n T2B1wn−γ2wT
n wn

= XT
n ΘXn (A6)
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where

Xn =
[
eT
n yT

n wT
n

]T
, Ξ=T1(A+BK)+(A+BK)T TT

1

Θ=

⎡
⎣Ξ+GT G P−T1+(A+BK)T TT

2 T1B1

∗ P−T2−TT
2 T2B1

∗ ∗ −γ2I

⎤
⎦ .

Obviously, if Θ < 0, then ΔV (n) + z(n)T z(n) − γ2wT
n wn <

0 for any nonzero Xn = [eT
n yT

n wT
n ]T . Then, noting the zero

initial conditions, it can be obtained that

if w(n)∈L2

∞∑
n=0

[
z(n)T z(n)−γ2wT

n wn

]
<V (0)−V (∞)=−V (∞)<0

if w(n)∈L2e,

Nt∑
n=0

[
z(n)T z(n)−γ2wT

n wn

]
<V (0)−V (Nt)=−V (Nt)<0

where Nt is a positive constant. Both cases yield

‖z(n)‖2 < γ‖wn‖2.

Using Schur complement, Θ < 0 is equivalent to

⎡
⎢⎣

Ξ + GT G P − T1 + (A + BK)T TT
2 T1B1 GT

∗ P − T2 − TT
2 T2B1 0

∗ ∗ −γ2I 0
∗ ∗ ∗ −I

⎤
⎥⎦<0.

(A7)

Define

Q =P−1, U1 = −T−T
2 TT

1 Q, U2 = T−T
2

Γ =

⎡
⎢⎣

Q 0 0 0
U1 U2 0 0
0 0 I 0
0 0 0 I

⎤
⎥⎦ .

Premultiplying and postmultiplying both sides of (A7) with
ΓT and Γ, inequality (A7) is equivalent to (see equation
at the bottom of the page), where Ξ1 = U2 − UT

1 + QĀT +
QKT B̄T + UT

1 Q−1U2. Using Schur complement again, the
inequality above is equivalent to⎡
⎢⎢⎢⎢⎣

UT
1 +U1 U2−UT

1 +QA
T

+Y T B
T

0 QGT UT
1

∗ −U2−UT
2 B1 0 UT

2

∗ ∗ −γ2I 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −Q

⎤
⎥⎥⎥⎥⎦<0

where Y = KQ. With K = Y Q−1, the desired PID parameters
can be obtained from (A2).

Moreover, it can be seen that,

ΔV (n) + z(n)T z(n) − γ2wT
n wn < 0

(i.e., ‖z(n)‖2 < γ‖wn‖2) holds for any nonzero Xn =
[eT

n yT
n wT

n t]T . Note that the vector Xn = 0 implies that

e(n) = e(n − 1) = e(n − 2) = 0 (A8)

en+1 = en (A9)

w(n) =w(n − 1) = 0. (A10)

(A8) and (A9) yield that

e(n + 1) = e(n) = e(n − 1) = e(n − 2) = 0. (A11)

Using (A10) and (A11) in (A0) gives

v(n) = v(n − 1) = 0. (A12)

Using (A11) and (A12) in (11b) yields

v(n+1)=v(n)=v(n−1)=u(n+1)=u(n)=u(n−1)=0.
(A13)

Thus, Xn ≡ 0 gives that

e(n + 1) ≡ e(n) ≡ 0 and u(n + 1) ≡ u(n) ≡ 0.

That is, the modeling error keeps being zero, and the network
weights come to constant values. This shows a global minimum
reached. This completes the proof.

ΓT

⎡
⎢⎣

Ξ P − T1 + (A + BK)T TT
2 T1B1 GT

∗ P − T2 − TT
2 T2B1 0

∗ ∗ −γ2I 0
∗ ∗ ∗ −I

⎤
⎥⎦Γ

=

⎡
⎢⎣

UT
1 + U1 + UT

1 Q−1U1 Ξ1 0 QGT

∗ UT
2 Q−1U2 − U2 − UT

2 B1 0
∗ ∗ −γ2I 0
∗ ∗ ∗ −I

⎤
⎥⎦

< 0
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