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a b s t r a c t

Damage identification using wavelet-transform (WT)-processed vibration signals has

been practiced over the years. In most studies, WT was used as an effective signal

analysis tool to filter out noise and bring damage-incurred singularities into promi-

nence. In spite of its proven effectiveness, such a processing is often carried out without

theoretical footstones sustained by solid mechanics models, which are able to link

characteristics of WT with features of damage. In the present work, a multi-scale

pseudo-force model over wavelet domain was developed for vibration-based damage

identification. By canvassing damage-caused local perturbance to dynamic equilibrium

characteristics of a structural component, the underlying hypostasis of the model has

explicit physical implication, addressing features of damage (e.g., a slot or a fine crack)

and enabling a sophisticated solution to multi-scale modeling and identification of

damage. In the model, WT was used as a multi-scale differential operator to acquire

higher-order derivatives of equation of motion for characterizing damage of tiny

dimension. The multi-scale nature brings additional benefits to enhance robustness of

the detection under noisy measurement conditions. Without loss of generality, an

Euler–Bernoulli beam component (EBC) was considered to facilitate understanding of

the principle of the model. As proof-of-concept validation, a fine crack in an EBC was

quantified using the model through numerical simulation and experiment. Satisfactory

results have demonstrated the effectiveness of the model in evaluating fine damage and

enhancing tolerance of the detection to measurement noise.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Most mechanical, aerospace and civil structures continue their services in spite of progressive ageing and accumulative
formation of damage over their lifespan. Damage (e.g., fatigue crack or corrosion) can demolish the integrity of a structure
without timely awareness, jeopardizing the safe operation and reliability of the entire system. To address such a concern,
various nondestructive evaluation (NDE) techniques have been developed, playing an indispensable role in detecting
structural damage in an early stage and subsequently monitoring its further deterioration, whereby failure of the system
can be prevented through appropriate remediation. Intensive research and development of NDE over the past two decades
have led to a formidable number of techniques available with demonstrated success in various applications [1–5].
Amongst them, much effort has been focused on the global vibration-based methods (using for example eigen-frequencies
[6,7], mode shapes [7,8], electro-mechanical impedance [9], frequency response functions [10–12] or damping properties
[13]). The basic premise of global vibration-based identification resides on the fact that occurrence of damage induces
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singularities in structural dynamic characteristics such as mode shapes or impedance, and these singularities are in turn
manifested in vibration responses obtained from the structure (e.g., shift in eigen-frequencies or alternation in model
shapes). Once vibration responses are captured, proper signal processing tools in the time domain [14], frequency domain
[15] or joint time–frequency domain (e.g., short-time Fourier transform, Wigner–Ville distribution and wavelet transform
(WT)) [1,15,16] are applied to extract signal features associated with damage, by benchmarking against baseline signals
obtained from an intact counterpart, for further damage characterization.

Amongst various signal processing tools for NDE, WT has proven cost-effectiveness in dealing with vibration signals
[17–23]. Representatively, Wang and Deng [24] detected a crack in a beam using continuous-wavelet-transform (CWT)-
processed structural responses. Zhong and Oyadiji [25] proposed a damage detection approach to protrude damage-
incurred abnormalities in first four order mode shapes of a beam-like structure using CWT analysis. Also analyzing
CWT-processed mode shapes, Gentile and Messina [26] revealed an open crack in beam structures. Hong et al. [27] employed
the Lipschitz exponent estimated by CWT to measure the abrupt changes in the fundamental mode shape so as to characterize
damage. In most applications, WT has been used as an effective signal processing tool to filter out signal noise and stand out
damage-incurred signal singularity [28–32]. Such a processing, however, is often conducted without a solid backup from
explicit mechanics models or theoretical footstones; as a result there is a clear lack of physical correlation between variation in
damage and distinction in damage-induced singularities in a vibration signal obtained using WT.

On the other hand, traditional global vibration-based damage detection, when implemented in practice, may suffer
from some drawbacks including the following:
(i)
 strong dependence on benchmark counterparts and baseline signals for comparison (the difference in between
indicates the presence of damage) [33];
(ii)
 necessity of global models to bridge changes in structural responses with damage parameters, and therefore the need
of knowledge on boundary conditions beforehand;
(iii)
 requirement of well-controlled excitations to activate the structural vibration;

(iv)
 excessive susceptibility to fluctuating operational and measurement conditions, in which measurement noise may

remarkably modulate dynamic characteristics of the structure under inspection and blur damage-induced singularity;

(v)
 insensitivity to damage before it reaches a conspicuous extent (e.g., 10% of the characteristic dimension/area of the

structure), because damage is a local event, which would not alter global responses phenomenally [34].
All of the above demerits can fairly narrow the application domain of global vibration-based damage detection in practice.
Bearing in mind the above deficiencies of most global vibration-based damage detection methods relying on WT, a

multi-scale pseudo-force model over the wavelet domain was developed in the work. By canvassing damage-incurred local
perturbance to dynamic equilibrium characteristics of the structural component under inspection when subjected to a
mono-frequency excitation, the model presents explicit physical implication addressing key features of specific damage
such as a slot or a fine crack. Differing from a ‘global’ approach, which explores vibration responses at a level of entire
structure, this model examines, ‘locally’, a structural component point-by-point, able to circumvent the aforementioned
problems of conventional vibration-based detection. In the model, WT was not merely used as a signal processing tool, but
a multi-scale differential operator to acquire higher-order derivatives of equation of motion. Characterized by these
higher-order derivatives, damage of fine dimension can be detected with high precision. As proof-of-concept validation,
numerical simulations were carried out, in which a fine crack in a structural beam component was quantified using the
developed model. Experimental verification was then conducted using a scanning laser vibrometer.

2. Pseudo-force model

In principle, the philosophy behind the proposed multi-scale pseudo-force model is applicable to any structural
components such as a beam, a plate or a shell, due to its nature of local examination, provided that the dynamic
characteristics of the structural component under inspection can be locally described. Without loss of generality, an Euler–
Bernoulli beam component (EBC) as shadowed in Fig. 1, which can be a part of a complex system comprising various types
of structural components, was considered for its simplification, to facilitate understanding of the model development.

Given the EBC is subject to a transverse excitation, its governing equation, in an intact status (free of damage), can be described
locally by [35]
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where w(x,t) and f(x,t) are the transverse displacement of the EBC and transverse excitation, respectively, at location x and at
moment t. E(x), I(x), A(x) and r(x) are Young’s modulus, moment of inertia, area of the cross-section and material density at
location x, respectively. Note that Eq. (1) applies to every single point or fragment of the EBC, serving as therefore a local
equilibrium equation and reflecting the local dynamic characteristics of equilibrium between the inertia force of a fragment of the
EBC and the internal forces/moments exerted by its adjacent elements. In this sense, even in the absence of any external force, Eq.
(1) is still able to describe the forced vibration of a fragment of the EBC (i.e., excitation is exerted by its adjacent elements).



Fig. 1. Structural system containing an EBC with a damaged zone (inset: zoomed-in part containing the EBC).
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Consider that the EBC bears a damaged zone symmetric with regard to the beam neutral axis, as seen in Fig. 1. Because Eq. (1)
describes the dynamic characteristics of the EBC locally, there are no particular restraints on the boundaries of the EBC and its
neighboring components (i.e., independent of boundary conditions and rest of the entire system). The above EBC with a damaged
zone can further be depicted using a mechanics model shown in Fig. 2(a), with Fig. 2(b) showing a differential element arbitrarily
selected and isolated from the intact region of the EBC. The boundary restrictions of this isolated element exerted by its
neighboring components include bending moments (M(x,t) and M(x,t)þ(@M(x,t)/@x)dx at left and right boundaries, respectively)
and shear forces (Q(x,t) and Q(x,t)þ(@Q(x,t)/@x)dx at left and right boundaries, respectively).
2.1. Pseudo-force model for EBC bearing a slot

Without losing generality, first consider the case that the damaged zone is a slot and the EBC has a uniform rectangular
cross-section (I(x)¼ I0 and A(x)¼A0) and even elastic properties (E(x)¼E0 and r(x)¼r0). Define the EBC by dividing it into
three segments: a damaged segment containing the slot, and two intact segments. In the damaged segment (x1rxrx2,
where x1 and x2 are the locations of the left and right boundaries of the slot in the coordinate system shown in Fig. 1), the
slot causes reductions in both the cross-sectional stiffness and mass. Eq. (1) can thus be rewritten, if there is no external
force f(x,t) directly applied within the EBC, as
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(



Fig. 2. (a) Mechanics model for an EBC with damage; (b) a differential element isolated from the intact region of the EBC in (a).
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In the above, subscript ‘0’ labels those parameters for two intact segments. A boxcar function, P, differentiates the equation for
three segments. r1¼1�(1�2e/h)3 and r2¼2e/h are associated with the slot-caused reductions in flexural stiffness and mass,
respectively (h being the height of the intact segment and e being the depth of the slot at each side, as indicated in Fig. 1).

Assuming that a harmonic transverse excitation, F0eiotd(xþd), is applied d away from the left end of the EBC as
indicated in Fig. 1 (where F0 and o are the magnitude and angular frequency of the excitation, respectively; d(x) is a Dirac
function; note that o is not necessarily to be one of the resonant frequencies of the structure), solutions to Eq. (2),
describing the transverse motion of the EBC, can be expressed as

wðx,tÞ ¼WðxÞeiot , ð3Þ

where W(x) denotes the transverse displacement magnitude of the EBC along the beam.
Substituting Eq. (3) into (2) yields
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which can further be rewritten as
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The two left-hand-side terms, E0I0ðd
4WðxÞ=dx4Þ and r0A0o2W(x), are the elastic force (EF) and inertia force (IF) at

location x, respectively. The equation, describing an EBC containing a slot, can be condensed as

E0I0
d4WðxÞ

dx4
�r0A0o2WðxÞ ¼RslotðxÞ ¼ pslotðxÞ�GslotðxÞ, ð6aÞ
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where

pslotðxÞ ¼ r1E0I0
d4WðxÞ

dx4
Px1 ,x2

ðxÞ and GslotðxÞ ¼ r2r0A0o2WðxÞPx1 ,x2
ðxÞ: ð6bÞ

The right-hand side of Eq. (6a) implies that the transverse vibration of an EBC bearing a slot-like damaged zone is
equivalent to that of its corresponding intact counterpart subjected to a pseudo-force, denoted by RslotðxÞ, which
distributes over [x1, x2]. Further, as indicated by Eq. (6b), this pseudo-force comprises two components: pseudo-elastic
force (PEF), pslot(x), and pseudo-inertia force (PIF), Gslot(x). When the slot depth e in both r1 and r2 equals zero (no any
damage in the EBC), this pseudo-force vanishes, and Eq. (6a) becomes the equation of motion for an intact EBC. Eqs. (5) and
(6) constitute the footstone of a pseudo-force model for depicting an EBC containing a slot. In particular, Eq. (6), linking slot
depth e to the pseudo-force, can be inversely used to characterize the slot.

For validation, a slotted EBC with free–free boundary conditions, was simulated using the pseudo-force model defined
by Eq. (5). The third-order mode shape of the EBC was substituted into the left-hand-side terms of Eq. (6a); the two terms
EF and IF, as well as their residual (i.e., the value of the left-hand side of Eq. (6a)), are diagramed in Fig. 3(a). In parallel and
independently, the same mode shape was substituted into the right-hand-side terms of Eq. (6a); the two terms PEF

(pslot(x)) and PIF (Gslot(x)), as well as their residual (i.e., the value of the right-hand side of Eq. (6a)) are diagramed in
Fig. 3(b). Two residuals are then combined in Fig. 3(c) for comparison, in which the perfect match between the left-hand
and right-hand sides of Eq. (6a) has demonstrated the correctness of the proposed pseudo-force model.
2.2. Pseudo-force model for EBC bearing a crack

Extending the above discussion to an extreme case when x1Ex2, the slot is degraded to a crack with ignorable span
along the beam axis. The boxcar function in Eq. (2) can thus be squeezed to a Dirac function d(x) at x¼(x1þx2)/2, leading
to a revamped form of Eq. (5) for an EBC bearing a crack:
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dx4
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d4WðxÞ

dx4
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" #
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In light of the properties of Dirac function that W(x)d(x�x)¼W(x)d(x�x), it yields
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Similar to the operation in the above for deriving Eq. (6), one has

E0I0
d4WðxÞ

dx4
�r0A0o2WðxÞ ¼RcrackðxÞ ¼ pcrackðxÞ�GcrackðxÞ: ð9Þ

The right-hand-side term of Eq. (9) alludes to that the transverse vibration of an EBC containing a crack can be depicted
by the transverse vibration of its corresponding intact counterpart subjected to a pseudo-force at x¼(x1þx2)/2; the
pseudo-force, denoted by RcrackðxÞ, is defined as

RcrackðxÞ ¼ pcrackðxÞ�GcrackðxÞ: ð10aÞ

This pseudo-force includes two components:

pcrackðxÞ ¼ r1E0I0
d4WðxÞ

dx4

�����
x ¼ x

dðx�xÞ and GcrackðxÞ ¼ r2r0A0o2WðxÞdðx�xÞ, ð10bÞ

corresponding to the crack-caused PEF and PIF, respectively. Further letting K ¼ r1E0I0ðd
4WðxÞ=dx4Þ9x ¼ x�r2r0A0o2WðxÞ,

a compact form of the pseudo-force model for a cracked EBC can be given as

E0I0
d4WðxÞ

dx4
�r0A0o2WðxÞ ¼ Kdðx�xÞ, ð11Þ

where K and x are associated with the severity and location of the crack, respectively. Eqs. (8)–(11) serve as the rationale of
a pseudo-force model for an EBC bearing a crack, which can be used to quantify the crack.
3. Crack identification using pseudo-force model

The pseudo-force models described by Eqs. (6) and (11) established the basic framework for quantitatively identifying
slots and cracks in an EBC, respectively. In what follows, identification of a fine crack in an EBC using the developed model
is detailed.
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Fig. 3. Validation of the developed pseudo-force model: (a) terms EF, IF and EF–IF of Eq. (6a); (b) terms PEF, PIF and PEF–PIF of Eq. (6a); (c) comparison

between left-hand-side (EF–IF) and right-hand-side (PEF–PIF) terms of Eq. (6a).
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3.1. Principle

For a given EBC, once the transverse displacement magnitude W(x) is obtained across the beam span and substituted to
the left-hand side of Eq. (11), a residual (i.e., the pseudo-force RcrackðxÞ ¼ Kdðx�xÞ) becomes prominent at the location of
the crack, if any, compared with other intact regions. This can be regarded as a local perturbance generated by the damage
to the dynamic characteristics of the EBC. Such a damage-induced residual is reflected by a drastic change described by the
Dirac function, d(x�x), in Eq. (11). That is because, as revealed by the model, the crack is the only contributor responsible
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for the generation of the pseudo-forces. The location at which the Dirac function stands out drastically suggests the
position of the crack, while the magnitude of the change, scaled by K, can further be used to evaluate the severity of
the crack.

Residing on such a mechanics model, the damage detection algorithm based on the developed pseudo-force model
exhibits explicit physical implication addressing damage characteristics, thus possessing unique features compared to
traditional global vibration-based damage detection techniques in the following aspects:
(i)
 characterized by the fourth-order differential equation of motion (d4WðxÞ=dx4, as seen in Eq. (11)), it is anticipated
that detection capability can be improved significantly in comparison with those based on displacement W(x) or its
lower-order derivatives;
(ii)
 the model canvasses a structural component point-by-point at a local level without using a global model, and it is
therefore independent of the rest of the system beyond the inspection region. Without relying on any global model,
such a approach can be extended to other types of structural components provided that their local dynamic
equilibrium relationship is known a priori;
(iii)
 thanks to the local character of the model, knowledge on overall structural boundary conditions is not required
beforehand;
(iv)
 by the same token, the baseline information collected from an intact structure is not required. As long as the pseudo-
forces are detected, damage is anticipated to be present, whose location and severity can be estimated in light of the
Dirac function in Eq. (11);
(v)
 owing to the fact that a global model or a benchmark is not mandatory, influences of varying environmental factors
(e.g., temperature and humidity fluctuation) on structural dynamic properties are naturally avoided;
(vi)
 the algorithm is expected to outperform traditional vibration-based detection in characterizing damage of small size
such as a fine crack. That is because traditional approaches are based on the changes in global structural properties,
which would however not be pronounced until the damage reaches a conspicuous extent; whereas the pseudo-force
model is not limited by the damage size in principle because any damage regardless of its size creates local
perturbance to the structural dynamic characteristics, generating pseudo-forces;
(vii)
 as long as the structural component undergoes steady vibration (e.g., under the normal operation of the system), no
additional excitation source is required, which provides certain flexibility for practical implementation of this
algorithm;
(viii)
 the algorithm is essentially underpinned by a mechanics model, rendering explicit mechanics and physical
justification for conducting damage identification.
3.2. Limitation of the model

In spite of the appealing features enumerated in the above, it is anticipated that the proposed pseudo-force
model can be susceptible to measurement noise, due to the fourth-order derivatives term d4WðxÞ=dx4 in Eq. (11). The
reason can be explained as follows. Letting Fðf Þ be the Fourier counterpart of W(x), the nth-order derivative of W(x) is
expressed as [36]

dnWðxÞ

dxn
2ð�i2pf ÞnFðf Þ, ð12Þ

where notation ‘2’ stands for equivalence. It is understandable that the measurement noise is distributed randomly in a
broad frequency range and more dominantly at higher frequencies. As a result, operation of ‘(� i2pf)n’ by Eq. (12) magnifies
the noise components to a considerable level. By way of illustration, Fig. 4(a) shows W(x) of an EBC containing a crack
(see Damage Scenario I in Table 1) obtained in simulation, to which a white noise with a signal-to-noise ratio (SNR) of 100
was added; Fig. 4(b) presents the fourth-order derivative of the noise-corrupted W(x), d4WðxÞ=dx4, to observe the noise
components become dominant after the differentiation, masking any damage-induced singularity. This example iterates a
common problematic issue in vibration-based damage detection involving higher-order derivatives. To tackle this
problem, one can use a lower sampling rate to acquire W(x), but this is at the expense of sacrificing sufficient
information to describe damage. Although some theoretical justifications are available to help select an optimal sampling
rate [37], it is still case-dependent in practical applications, due to the difficulty in estimating the noise level aforehand.
Such a limitation fairly impairs the applicability and effectiveness of the proposed model, calling for tactic to mitigate
noise influence.
4. Enhanced pseudo-force model using multi-scale wavelet transform

To tackle the noise interference in high-order derivatives, the pseudo-force model in space domain, defined by Eq. (11),
was retrofitted in a WT domain (space-scale domain) using Gaussian WT.
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Table 1

Damage scenarios used in simulation (x¼0.3 m).

Damage
scenario

Crack severity

(b)

Excitation
frequency
(o (Hz))

Modal frequency
before
o (oi (Hz))

Modal frequency
after
o (oj (Hz))

SNR

I 0.1 2105.86 o5¼1787.55 o6¼2596.56 100

II 0.1 1453.05 o4¼1134.74 o5¼1787.55 N

III 0.1 1453.05 o4¼1134.74 o5¼1787.55 85

VI 0.1 2105.86 o5¼1787.55 o6¼2596.56 70

V 0.2 2914.85 o6¼2596.54 o7¼3560.18 65

VI 0.2 2914.85 o6¼2596.54 o7¼3560.18 55

VII 0.3 5080.57 o8¼4682.68 o9¼5950.99 60

VIII 0.3 5080.57 o8¼4682.68 o9¼5950.99 50
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4.1. Gaussian WT

The transverse displacement magnitude, W(x), in space-domain can be transformed into space-scale domain (scale is
inversely proportional to frequency) via CWT [36], in accordance with

WW
c ðs,uÞ ¼/W ,cS¼

1ffiffi
s
p

Z þ1
�1

WðxÞc
x�u

s

� �
dx, ð13Þ

where WW
c ðs,uÞ is the CWT coefficient of W(x) in space-scale domain (denoted by W for short in following CWT and

differentiation equations) with respect to wavelet c(x) (c for short); s and u are the scale (or dilation) and space (or
translation) parameters, respectively.WW

c ðs,uÞ reflects a measure of the similarity between W(x) and c(x). Computationally,
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WW
c ðs,uÞ can be achieved using manipulation of convolution product:

WW
c ðs,uÞ ¼Wnc¼

1ffiffi
s
p

Z þ1
�1

WðxÞc
x�u

s

� �
dx, ð14Þ

where cðxÞ ¼cð�xÞ and the asterisk denotes convolution. According to Eq. (14), it can be seen that WW
c ðs,uÞ actually

calibrates the degree of correlation between W(x) and a scaled and shifted cðxÞ.
To ensure that the inverse transform of CWT is tenable, c(x) has to satisfy the admissibility condition [36]:Z þ1

�1

9ĉðoÞ92

9o9
doo1, ð15Þ

where ĉðoÞ is the Fourier counterpart of c(x). In addition, energy of c(x) is normalized in this study according toZ þ1
�1

c2
ðxÞdx¼ 1: ð16Þ

The above-briefed CWT analysis was then employed to revamp the developed pseudo-force model, so as to enhance its
capacity of noise-tolerance during the procedure to obtain d4WðxÞ=dx4. In the study, the Gaussian wavelet family was
adopted as mother wavelet c(x), because this series of wavelets provides merits including smoothness, differentiability,
localization in space-scale domain, explicit mathematical expressions and flexibility in manipulation. Mathematically, the
Gaussian wavelet family originates from the classical Gaussian function whose energy-normalized form is

g0ðxÞ ¼
1ffiffiffiffiffiffiffiffiffi
2=p4

p e�x2

, ð17Þ

where g0(x) is the classical Gaussian function. Based on Eq. (17), the Gaussian wavelet family can be expressed in a general
form as

gpðxÞ ¼ Cpð�1Þp
dpg0ðxÞ

dxp
, ð18Þ

where Cp is a constant such that gp(x) satisfies Eq. (16), and integer p specifies the number of vanishing moments or
approximation order. If a wavelet has p vanishing moments, then the approximation order of the transform is also p, and
the wavelet is referred to as the pth-order wavelet. The sub-wavelets at scale s can further be derived using g0(x) as

gp
s ðxÞ ¼ Cpð�1Þpsp dg0

s ðxÞ

dxp
, ð19Þ

in which g0
s ðxÞ ¼ ð1=

ffiffi
s
p
Þg0ðx=sÞ . The first six order Gaussian wavelets, gp(x) ðp¼ 1,2,. . .,6Þ, which have often been used as

the wavelets in a variety of damage identification practices [26,30,38], are formulated in Table 2 in terms of Eq. (18). In
particular, the 1st-order (g1(x)) and 5th-order (g5(x)), to be used in the following, are shown in Fig. 5. Applying a selected
wavelet gp(x) to process captured W(x), the CWT coefficient, WW

gp ðs,uÞ, becomes, according to Eq. (14)

WW
gp ðs,uÞ ¼Wngp

¼
1ffiffi

s
p

Z þ1
�1

WðxÞgp x�u

s

� �
dx, ð20Þ

where gp
ðxÞ ¼ gpð�xÞ. WW

gp ðs,uÞ is the CWT coefficient of W(x) over wavelet domain obtained using wavelet gp(x).

4.2. Gaussian wavelet for differential transform

In accordance with Eqs. (19) and (20), as well as the theorem of convolution differentiation

d

du
ðWngpÞðuÞ ¼

dW

dx
ngpðuÞ ¼Wn

dgp

dx
ðuÞ, ð21Þ
Table 2
Mathematic description of the first six order Gaussian wavelets.

gpðxÞ ¼ CpDpg0ðxÞ, ðg0ðxÞ ¼ ð2=pÞ�1=4e�x2
Þ

Cp Dp

g1(x) 1 �2x

g2(x) 1=
ffiffiffi
3
p

�2þ4x2

g3(x) 1=
ffiffiffiffiffiffi
15
p

12x�8x3

g4(x) 1=
ffiffiffiffiffiffiffiffiffi
105
p

12�48x2þ16x4

g5(x) 1=ð3
ffiffiffiffiffiffiffiffiffi
105
p

Þ �120xþ160x3�32x5

g6(x) 1=ð3
ffiffiffiffiffiffiffiffiffiffiffiffi
1155
p

Þ �120þ720x2�480x4þ64x6
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where the qth-order derivative of W(x) can be obtained in virtue of the pth-order Gaussian wavelet as

dqW

dxq
ngp

s ðuÞ ¼Wn
dqgp

s

dxq
ðuÞ ¼

Cpð�1Þpsp

Cpþqð�1Þpþqspþq
Wngpþq

s ðuÞ: ð22Þ

Eq. (22) renders a Gaussian wavelet-based differential transform, to achieve higher-order differentiation involved in the
pseudo-force model in Eq. (11). It tactically acquires high-order derivatives of W(x) by differentiating gp(x) instead of W(x)
itself. Therefore, the magnification of measurement noise contained in W(x) during the procedure of differentiation can be
circumvented. Such a trait is crucial to the mitigation of influence of measurement noise and uncertainties on d4WðxÞ=dx4,
ushering an avenue to enhance the practicability and accuracy of the damage detection algorithm based on the developed
pseudo-force model.

4.3. Enhanced model: multi-scale pseudo-force model

Taking advantage of the noise immunity of high-order derivatives of W(x) obtained via Gaussian wavelet, the pseudo-
force model, developed in one-dimensional space domain and described by Eq. (11), was retrofitted in wavelet domain
using g1(x), as

E0I0
d4W

dW4
ng1

s ðuÞ�r0A0o2Wng1
s ðuÞ ¼ Kdxng1

s ðuÞ: ð23Þ



M. Cao et al. / Mechanical Systems and Signal Processing 28 (2012) 638–659648
In the above, g1
s ndxðuÞ is the convolution between g1

s ðxÞ and dðx�xÞ where dxðxÞ ¼ dðx�xÞ (hereinafter dx standing for
dxðxÞ). Applied with the Gaussian wavelet-based differential transform defined by Eq. (22), ðd4W=dx4Þng1

s ðuÞ in the first left-
hand-side term of Eq. (23) becomes

d4W

dx4
ng1

s ðuÞ ¼Wn
d4g1

s

dx4
ðuÞ ¼

C1ð�1Þ1s1

C5ð�1Þ5s5
Wng5

s ðuÞ ¼
1

C5s4
Wng5

s ðuÞ, ð24Þ

where C1 and C5 are given in Table 2. Substituting Eq. (24) into (23) gives

1

C5s4
E0I0Wng5

s ðuÞ�r0A0o2Wng1
s ðuÞ ¼ Kdxng1

s ðuÞ: ð25Þ

Furthermore, capitalizing on the property of Gaussian wavelet, g1
s ðxÞ ¼ g1

s ð�xÞ ¼ �g1
s ðxÞ, and that of Dirac function,

fndx(u)¼ f(u�x), one has

1

C5s4
E0I0Wng5

s ðuÞ�r0A0o2Wng1
s ðuÞ ¼�Kg1

s ðu�xÞ: ð26Þ

Rearranging Eq. (26) yields

E0I0Wng5
s ðuÞ�C5s4r0A0o2Wng1

s ðuÞ ¼�C5s4Kg1
s ðu�xÞ: ð27Þ

Eq. (27) defines an enhanced two-dimensional pseudo-force model over wavelet (space-scale) domain, derived from
the original one-dimensional model (Eq. (11)).

Apart from the enhanced capacity of noise-immunity, another appealing feature of this enhanced model is its multi-
scale nature. Kept at a given space while shifted along the scale axis over the space-scale domain, Eq. (27) represents a
series of pseudo-force models at various scales (s). This series of models is collectively called multi-scale pseudo-force model

in the work. For the convenience of presentation, the following notations were introduced:

MEF ¼ E0I0Wng5
s ðuÞ

MIF ¼ C5s4r0A0o2Wng1
s ðuÞ

MPF ¼�C5s4Kg1
s ðu�xÞ,

8>><
>>: ð28Þ

to simplify Eq. (27) as

MEF�MIF ¼MPF: ð29Þ

Eq. (29) explicitly and concisely highlights that existence of any damage in EBC induces a multi-scale pseudo-force
(MPF, the right-hand-side term) and such a pseudo-force comprises two components: multi-scale elastic force (MEF) and
multi-scale inertia force (MIF). Once a crack is present, MPF induces prominent changes in signal features at the location
where the crack exists, and the change has the pattern of �C5s4K-scaled g1

s ðu�xÞ centered at u¼x.
Fig. 6 exemplarily shows the results obtained using the multi-scale pseudo-force model for an EBC containing a crack (see

Damage Scenario II in Table 1) from simulation: MEF (containing g5
s ðuÞ) is displayed in Fig. 6(a), MIF (containing g1

s ðuÞ) in
(b) and their difference (viz., MPF) in (c). To facilitate a better view of the results, contour map of Fig. 6(c) is further
represented in Fig. 6(d), to observe a number of zero-crossing lines (i.e., the intersecting lines between the MPF surface and
s�(x/L) plane at MPF¼0). In Fig. 6(c) and (d), the central zero-crossing line is able to pinpoint location of the crack, because
MPF in these figures is featured with pattern of �C5s4K-scaled g1

s ðu�xÞ centered at u¼x, as indicated by Eq. (28). It is
noteworthy that, due to the nature of linear transform of CWT, the properties of the original pseudo-force model in space
domain are preserved in the enhanced model over space-scale domain, and therefore the enhanced model inherits all
those merits of the pseudo-force model enumerated in Section 3.1.

5. Proof-of-concept validation using simulation

As proof-of-concept validation, the enhanced multi-scale pseudo-force model was employed to identify a crack in an
EBC using finite element (FE) simulation.

5.1. Case description and modeling

A simply supported steel structure (E0¼206 GPa;r0¼7800 kg/m3) featuring irregular geometry and containing an EBC
was considered, as shown schematically in Fig. 7. The EBC is 0.67 m long (l¼0.67 m), 0.03 m wide (b¼0.03 m) and 0.03 m
deep (h¼0.03 m). A double-edged fine crack was assumed in the EBC, 0.3 m (x¼0.3 m) away from the left end of the EBC
where the coordinate system was originated. Severity of the crack was defined by b¼2e/h, where 2e stands for the total
reduction in depth due to the crack (e for each side). The entire structure was subject to a transverse mono-frequency
excitation, F0d(xþd)eiot, d (d¼0.08 m) away from the origin, as indicated in Fig. 7.

The entire structure was modeled using Euler–Bernoulli beam finite elements, and the crack was simulated using a
specific crack element with a reduced size in its depth compared with that of the intact region. Mode superposition
method was recalled to solve the system equation. Let Wi

n
ðoiÞ be the ith-order mode shape vector of the structure, and oi
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the corresponding modal frequencies. Then, the transverse displacement magnitude vector of the structure, Wn(o), can be
expressed as [39]

WnðoÞ ¼
X

i

Wi
n
ðoiÞ½W

i
n
ðoiÞF�

o2
i �o2

, ð30Þ

where F is the magnitude vector of excitation force applied to the structure, which is non-zero at and only at x¼�d. From
Wn(o) obtained by Eq. (30), the nodal transverse displacement vector, W(o), can further be extracted, and it corresponds
to W(x) in the enhanced model defined by Eq. (28), under the current excitation with a frequency of o.

A series of damage scenarios was considered, as detailed in Table 1, by changing damage severity e in b¼2e/h, SNR and
frequency of the excitation, so as to examine the accuracy and effectiveness of the developed model in identifying damage
of different severities under the influence of measurement noise. For reference, the modal frequencies of the structure,
right before and after the excitation frequency, were also shown in the table. W(o) in all the damage scenarios were
obtained using the same modeling technique aforementioned. By way of illustration, W(o) for Damage Scenarios III, V and
VIII, as three typical examples, are shown in Fig. 8, from which direct awareness of any perturbance to W(o) due to
existence of damage was vain.

5.2. Multi-scale filter for trend component of W(o)

It is understandable that the damage of relatively small dimension such as a fine crack causes local perturbance to
structural dynamic characteristics more phenomenally at higher frequencies. A captured W(o) manifests collective
contributions from both a low-frequency trend component and a crack-induced local high-frequency perturbance. To
stand out the local perturbance for damage identification, the trend component should ideally be filtered.

In most existing damage identification practices using CWT, the lower-order wavelets with less vanishing moments,
compared to the order of W(o), are often selected. It is however envisaged that these lower-order wavelets may
be insufficient to cancel the trend component of W(o). To benefit understanding, CWT-processed W(o) for Damage



Fig. 7. Cracked EBC contained in a steel structural system for simulation.
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Scenarios III–VIII is displayed in Fig. 9(a)–(f), respectively, as six representatives, in which a lower-order wavelet, the
5th-order Gaussian wavelet, g5(x), was used as the wavelet. It can be seen that the remaining trend component of W(o)
masks the damage-induced perturbance seriously in all scenarios. That is because the approximate order of wavelet g5(x)
is insufficient to screen the low-frequency trend component of W(o). In contrast, if a higher-order wavelet with greater
vanishing moments used, the process suffices to screen the trend components of W(o), as observed in Fig. 10 for the same
six damage scenarios in which g8(x) was used. However, it is relevant to note that the use of higher-order wavelets brings
additional challenges. As observed in Fig. 10, the measurement noise components become highly severe, compared with
those cases shown in Fig. 9 in which g5(x) was used; in some situations such as Damage Scenarios VI and VIII, the noise
corrupts the crack-induced local singularity, making it impossible to locate the crack.

The above deficiencies can be circumvented using the enhanced model. That is because MPF in the enhanced model
depicts the damage-incurred perturbance exclusively, without any contribution from the trend component of W(o); under
such a circumstance lower-order wavelet (g5(x)) suffices to pinpoint the damage precisely. In this sense, the model serves
as a multi-scale filter to screen the trend component while simultaneously retaining the pseudo-force generated by the
damage. To demonstrate such an advantage over conventional CWT analysis, Fig. 11 shows the results obtained using the
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enhanced model for the six damage scenarios. The clear identification results accentuate the capability of the enhanced
model in isolating perturbance associated with damage from the trend components of W(o).

5.3. Multi-scale filter for random noise of W(o)

Apart from the abovementioned merit in filtering low-frequency trend component of W(o), the multi-scale pseudo-
force model additionally presents advantages in removing random measurement noise in W(o). This property can be
explained as follows. Recalling the property descried in Eq. (22), the convolution of W(o) with g5

s ðxÞ in MEF and the
convolution of W(o) with g1

s ðxÞ in MIF in Eq. (28) can be expressed in a general form as

WðoÞngn
s ðxÞðuÞ ¼WðoÞnCnð�1Þnsn dng0

s ðxÞ

dxn
ðuÞ ¼ Cnð�1Þnsn dn

dun
ðWðoÞng0

s ðxÞÞðuÞ: ð31Þ



Fig. 9. CWT coefficients (using lower-order wavelet g5(x)) of W(x) of the EBC under six damage scenarios: (a) III; (b) IV; (c) V; (d) VI; (e) VII;

(f) VIII.
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Focusing on the rightmost-hand-side term, W(o) is first smoothed by g0
s ðxÞ through convolution and then differentiated

with respect to space variable, u, for n times (n is an integer). Thus gn
s ðxÞ can be treated as a multi-scale smoothing-

differential operator. The capacity of smoothing is able to filter random measurement noise while the property of
differentiation facilitates to protrude the local perturbance caused by damage.

On the other hand, W(o) can be deemed as the combination of a substantial signal component, Wsingal(o), captured
under noise-free conditions, and a random noise component, Wnoise(o). Described by the enhanced model, the amplitudes
of absolute value of CWT coefficients of these two components ð9WWsignal

gn ðs,uÞ9 and 9WWnoise
gn ðs,uÞ9Þ, obtained using Gaussian

wavelet gn(x), exhibit different characteristics across scales. For Wsingal(o), it has

9WWsignal

gn ðs,uÞ9rAsaþ1=2, ð32Þ

where A is a constant, and a is the Lipschitz exponent [36]; while for Wnoise(o), one has

Eð9WWnoise
gn ðs,uÞ92

Þ ¼
:gn:2

s
, ð33Þ

where function E denotes mathematical expectation. Eqs. (32) and (33) allude to that 9WWsignal

gn ðs,uÞ9 increases whereas
9WWnoise

gn ðs,uÞ9 decreases with the increase of scale, as explained by an example (Damage Scenario I) shown in Fig. 12. Thus,
gn

s ðxÞ can serve as a joint multi-scale operator to suppress noise and meanwhile strengthen damage-induced singularity in
W(o) gradually with the increase of scale.



Fig. 10. CWT coefficients (using higher-order wavelet g8(x)) of W(x) of the EBC under six damage scenarios: (a) III; (b) IV; (c) V; (d) VI; (e) VII; (f) VIII.
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Endowed with the capacities of multi-scale filtering for low-frequency trend component and high-frequency noise
components in a captured W(o), respectively detailed in Sections 5.2 and 5.3, the enhanced pseudo-force model is
inherently able to put crack-induced local perturbance prominence while at the same time tolerate various measurement
noise and uncertainties.
6. Experimental validation

The proposed damage identification algorithm based on the enhanced multi-scale pseudo-force model was testified
experimentally with the assistance of a scanning laser vibrometer (SLV). An aluminum structural system (aluminum 6061,
r0¼2700 kg/m3) containing an EBC was prepared. The structural system had one fixed end and one free end of irregular
shape, as seen in Fig. 13, with all dimensions indicated in the figure. A through-width crack, measuring 1.2 mm long (along
beam span) and 2 mm deep, was introduced to the EBC, 220 mm away from the clamped end. An out-of-plane mono-
frequency excitation force at 2 kHz was applied along z-direction at a point 25 mm from the free end edge, using an
electromechanical shaker (B&K 4809). The current selection of excitation frequency was based on a pre-spectrum analysis.
In the EBC, out-of-plane velocities at all measurement points along the central line of the beam (evenly distributed with a
spacing interval of 2.6 mm) were captured using an SLV (Polyteciss PSV-400). Note that the velocity was acquired from
the intact surface of the beam, opposite to which lay the damage. The experiment set-up was photographed in Fig. 14. The
captured velocities were mathematically integrated to achieve the out-of-plane displacement responses of the beam (i.e.,
W(o)) using a FAST-SCAN function provided by the SLV system.



Fig. 11. MPF in the pseudo-force model for the EBC under six damage scenarios: (a) III; (b) IV; (c) V; (d) VI; (e) VII; (f) VIII.

M. Cao et al. / Mechanical Systems and Signal Processing 28 (2012) 638–659654
6.1. Using traditional CWT-based analysis

For comparison, traditional CWT-based analysis was first applied to process W(o) for identifying the crack. The original
W(o) and its corresponding CWT-processed results using g5(x) and g8(x) wavelets are displayed in Fig. 15(a)–(c),
respectively. In original W(o), Fig. 15(a), characteristics associated with damage are imperceptible. In Fig. 15(b), owing to
the fact that g5(x) has a lower approximate order compared to that of W(o), such a wavelet is unable to screen the low-
frequency trend component of W(o) as explained in Section 5.2. The trend component overwhelms crack-induced
perturbance largely, failing to indicate the presence of any damage. In Fig. 15(c), although g8(x) suffices to remove the
trend component because it has a higher approximate order comparable with that of W(o), the high-frequency noise
components in W(o) become pronounced after the transform, masking crack-induced perturbance as well. Neither of the
two wavelets is able to deliver satisfactory identification results.

6.2. Using enhanced multi-scale pseudo-force model

Using the enhanced multi-scale pseudo-force model, the identification results are shown in Fig. 16. Fig. 16(a) and (b)
shows terms MEF and MIF of the model, respectively. Due to the inherent capacities of the model in isolating
low-frequency trend component and high-frequency measurement noise, MPF exhibits prominent changes only at the
location where damage exists, as clearly observed in Fig. 16(c). Characterized by MPF (MPF ¼�C5s4Kg1

s ðu�xÞ), in Eq. (28),
the model presents the pattern of �C5s4K-scaled g1

s ðu�xÞ in identification results, where damage location can be
determined by finding the zero-crossing lines on s�x plane at u¼x.



Fig. 12. Variations of CWT coefficient modulus of (a) Wsingal(o) and (b) Wnoise(o) (for Damage Scenario I).

Fig. 13. A clamped-free structural system containing an EBC with a through-width crack for experimental validation.

M. Cao et al. / Mechanical Systems and Signal Processing 28 (2012) 638–659 655



Fig. 14. Experimental setup for acquiring W(x) using an SLV from the intact beam surface (i.e., the surface opposite to which lay the damage).
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To further protrude characteristics of the damage, g1
s ðxÞ was employed to convolute the s-scale vector of MPF across the

x axis, to generate a series of correlation coefficients at very single scale s, giving rise to Fig. 16(d). Each coefficient
represents the degree of similarity between g1

s ðxÞ and local components of s-scale vector of MPF centered at x. The damage
could be located more clearly when the correlation coefficient reached its maximum. In Fig. 16(d), the major ridges across
the scale axis, comprising large correlation coefficients at every single scale, point out possible locations of the damage. On
the other hand, it is noticed that, as scale increases, the damage-induced perturbance is strengthened progressively (i.e.,
better noise-tolerance), whereas at the expense of reduced degree of localization due to the wider supports of sub-
wavelets (i.e., reduced accuracy). Allowing for this, damage locating should ideally be conducted at smaller scale, by
tracking the major ridges of correlation coefficient surface in Fig. 16(d) from larger to smaller scales, so as to achieve the
best localization. This can be conveniently accomplished by finding the peak values of contour lines of correlation
coefficient surface on the s–x plane. At the smallest scale of 2 in the discussed scale range for this validation, the crack was
located at 218 mm away from the clamped end, in good agreement with the real location of the damage (220 mm).
7. Conclusions

In spite of its popularity in a large variety of applications pertaining to vibration-based damage detection, wavelet
transform has often been used as an effective tool for noise removal and signal feature extraction only, performed without
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concrete footstones of explicit mechanics models. The present study was dedicated to the development of a mechanics
model for identification of structural damage and fine cracks in particular with explicit physical and mechanics
implication, inherently addressing damage features. By quantifying damage-caused local perturbance to dynamic
characteristics (higher-order differential equation of motion) of the structural component under inspection, a multi-scale
pseudo-force model over wavelet domain was proposed. Residing on this mechanics model, a multi-scale damage
identification algorithm was formulated, able to provide solutions to multi-scale modeling and identification of structural
damage. The intrinsic combination between the wavelet transform and the mechanics model has endowed the detection
algorithm with attractive features conducive to damage identification, including explicit revelation of damage character-
istics, high sensitivity to fine damage of small dimensions, strong immunity to measurement noise and therefore enhanced



Fig. 16. Identification results obtained using enhanced model: (a) MEF (g5(x)); (b) MIF (g1(x)); (c) MPF; (d) correlation coefficients between g1
s ðxÞ and MPF

(containing contour lines of correlation coefficient surface on s–x plane).
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robustness in varying measurement environment and exemption of baseline data. The principle of the model was
demonstrated using an Euler–Bernoulli beam component (EBC). As proof-of-concept validation, a fine crack in an EBC was
identified with satisfactory precision using the model, in both numerical simulation and experiment. It is relevant to stress
that the proposed methodology explores local dynamic equilibrium characteristics of a structural component irrespective
of the complexity of the entire system beyond the inspection region. In that sense, the approach is potentially applicable to
a complex structural system, provided that the dynamic characteristics of the individual structural components of interest
can be locally described. It is also relevant to mention that lower-order derivatives of the captured dynamic response are
currently under investigation to be integrated into the model, so as to achieve an optimal compromise between versatility
of the model and desired identification accuracy, to be reported.
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