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a b s t r a c t

Previously, an inverse damage characterization framework was proposed by quantifying

the perturbation to local dynamic equilibrium of a beam-like structure, showing

advantages in some aspects over the traditional global vibration-based and local

guided-wave-based methods. Residing on the plate theory, this framework was

using high-order spatial derivatives this approach has proven effectiveness in quantita-

tively characterizing damage of small dimension, regardless of its number and type. In

addition, the approach requires no benchmarks, baseline signals, global models, addi-

tional excitation sources, pre-modal analysis nor prior knowledge on structural bound-

ary. A damage imaging algorithm using the quantified dynamic perturbation was further

established, enabling presentation of damage characterization results in an intuitive and

prompt manner. Integrating the detection capacities in one- and two-dimensional

domains, a hybrid damage visualization strategy was developed, for systems comprising

structural components of different types, various geometries and diverse boundary

conditions. Two independent de-noising techniques (low-pass wavenumber filtering and

adjustment of measurement density), together with a hybrid data fusion algorithm, were

proposed as auxiliary means to enhance the robustness of the strategy in noisy

measurement conditions. The strategy was applied experimentally to the evaluation of

multi-damage in a plane structure comprising beam and plate components, showing

satisfactory results.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

By perceiving and quantifying the perturbation to local dynamic equilibrium of a beam-like structure, a damage
characterization framework was developed in authors’ previous work [1]. The underlying philosophy behind is that a beam
component satisfies, locally at its every single fragment, a sort of dynamic equilibrium conditions (e.g., equation of
motion). Upon occurrence of damage, such equilibrium is disturbed at the fragments with damage, manifesting as certain
changes in the captured dynamic responses; in turn, this perturbation, if detected properly, can indicate the damage
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occurrence. Development of the framework was largely motivated by the recognition of some obvious deficiencies of the
currently prevailing nondestructive evaluation techniques [2,3] based on either changes in global properties of structural
vibration [4] (e.g., eigen-frequencies [5–7], mode shape [8,9], modal curvature [9,10], electro-mechanical impedance [11],
flexibility matrix [12–14] and damping properties [15]) or abnormity in local characteristics of guided waves (e.g., plate
waves [16–23]). Although recent technical breakthroughs such as three-dimensional laser scanning vibrometry and
advanced signal processing have retrofitted conventional global vibration-based or local guided-wave-based detection
with the use of sparse piezoelectric sensor network [24–26], that proposed framework has been demonstrated to have,
compared with conventional approaches:
(1)
 higher sensitivity to damage of small dimension, owing to the use of higher-order equation of motion (global
properties can be insensitive to damage before it reaches a conspicuous extent; guided waves can suffer from the
wavelength of a selected mode);
(2)
 capability of local interrogation in accordance with a point-by-point inspection manner (theoretically it can be
infinitesimal), thus independent of a global model;
(3)
 no need of prior information on structural boundaries (viz., complexity of a system would not downgrade the
applicability of the approach) nor request of modal analysis (i.e., a deliberately generated mode shape of the system is
not of necessity);
(4)
 no prerequisite for benchmark structures nor baseline signals, therefore immune from the interferences of fluctuating
environment conditions (e.g., temperature variation);
(5)
 insensitivity to sensor arrangement (in guided wave-based detection, meticulous and strategic arrangement of sensor/
actuator is often required); and
(6)
 applicability to detection of multi-damage, regardless of the damage type and number, thanks to the nature of local
canvassing.
This framework was developed based on the theory of Euler–Bernoulli beam, and its applicability to two-dimensional
structural components (e.g., plates or shells) and more complex systems warrants further investigation. In this study,
based on the plate theory, this framework was projected to a two-dimensional domain for plate-like structural
components. Sharing the same rationale, all the merits enumerated in the above are inherited. To present damage
characterization results in an intuitive way, a damage imaging algorithm was introduced, whereby detailed depiction of
the damage (e.g., number, shape and size) can directly be observed in constructed images. Combining the detection
capacities in one- and two-dimensional domains, a hybrid damage visualization strategy was established for systems
comprising structural components of different types, various geometric parameters and diverse boundary conditions. In
addition, envisaging possible susceptibility of the approach to measurement noise (due to the involvement of higher-order
derivatives), two independent de-noising techniques (low-pass wavenumber filtering and adjustment of measurement
density), along with a hybrid data fusion algorithm, were proposed, to enhance noise immunity of the approach in
practical implementation. The strategy was then applied experimentally to the evaluation of multi-damage in a plane
structure comprising beam and plate components.
2. Rationale

In authors’ previous study [1], a one-dimensional damage index (DI) for a beam-like component was derived based on
the Euler–Bernoulli beam theory, by quantifying the perturbation to local dynamic equilibrium of the beam, which is
defined as

DI¼ EI
d4wðxÞ

dx4
�rSo2wðxÞ, (1)

where wðxÞ is the flexural displacement of the beam at location x along the beam span when the beam vibrates at an
angular frequency of o ; E, r, I, and S are the complex modulus of elasticity (comprehending material damping), density,
cross-sectional moment of inertia and area of the cross-section for a pristine beam, respectively. Both theoretical analysis
and numerical validation have demonstrated that DI presents drastic changes on damage boundaries as a result of the
discontinuity in material and geometric properties therein. Thus, DI can serve as an indicator of the presence of damage.

Likewise, a two-dimensional damage index can be derived based on the plate theory for a plate-like component bearing
a damaged zone (Y), as shown schematically in Fig. 1(a). Irrespective of the boundary conditions, the local dynamic
equilibrium of a fragment extracted from the plate component (infinitesimal in principle), as shown in Fig. 1(b), with a
homogeneous and isotropic material nature, can be expressed in a harmonic regime, in terms of the internal moments and
external load applied to this fragment, as [27]
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Fig. 1. Schematics of (a) a plate component bearing a damaged zone and (b) a fragment extracted from the component shown in (a) with internal forces

and moments.
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where

Mxðx,yÞ ¼�D
@2wðx,yÞ
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, (3a)
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Mxyðx,yÞ ¼�Dð1�nÞ @
2wðx,yÞ

@x@y
(3c)

In the above (as indicated in Fig. 1(b)), Mxðx,yÞ and Myðx,yÞ are the internal bending moments with regard to x- and
y-axes, respectively; Mxyðx,yÞ and Myxðx,yÞ (Mxyðx,yÞ ¼Myxðx,yÞ) are the internal torsion moments. wðx,yÞ is the flexural
displacement of the plate fragment at ðx,yÞ when it undergoes a steady vibration with an angular frequency of o , which
can, for example, be the ‘natural excitation’ incurred from the normal operation of the system or an ambient excitation.
In the case that a ‘natural excitation’ is not harmonic, a frequency component in the frequency domain after Fourier
Transform can be selected. h and r represent the thickness and density of the fragment, respectively; qðx,yÞ is the external
load per unit area applied to the fragment at ðx,yÞ. D¼ Eh3=12ð1�n2Þ, the bending stiffness of the plate, where E and n stand
for the complex modulus of elasticity and Poisson’s ratio of the material, respectively. Provided the fragment has a free



H. Xu et al. / Journal of Sound and Vibration 332 (2013) 3438–3462 3441
surface (qðx,yÞ ¼ 0), Eq. (2) becomes
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" #
�rh o2wðx,yÞ ¼ 0 (4)

Note that, although the isolated fragment described by Eq. (4) is free of external force, the internal forces and moments
exerted by its adjacent fragments of the plate are still present on their sharing boundaries.

Now extend the above derivation to the entire plate containing a damaged zone (Y) in Fig. 1(a). Without loss of the
generality, Y takes an arbitrary geometry. Then define

D¼Dc½1�Hðx,yÞ�, (5a)

rh¼ rchc½1�Gðx,yÞ�, (5b)

where

Hðx,yÞ ¼
0 ðx,yÞ =2Y
a ðx,yÞ 2 Y and Gðx,yÞ ¼

0 ðx,yÞ =2Y
b ðx,yÞ 2 Y:

((
(6)

Here Hðx,yÞ and Gðx,yÞ are two two-dimensional Heaviside functions, each of which holds a non-zero constant within Y
but is zero outside Y. Dc and pchc are the bending stiffness and the product of density and thickness of the plate
component, respectively (both are for the intact region of the component); a and b (0rar1 and 0rbr1) are the relative
reductions in Dc and rchc within Y with regard to those in the intact region, respectively. The attributes of Heaviside
functions appropriately reflect the discontinuity at boundary of Y, introducing perturbation to Eq. (4).

Substituting Eqs. (3) and (5) into Eq. (4) gives rise to, for the entire plate,
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�rchc½1�Gðx,yÞ�o2wðx,yÞ ¼ 0: (7a)

With Eqs. (5) and (6), Eq. (7a) can further be expanded according to the differential rule, as
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In Eq. (7b), H is the abbreviation of Hðx,yÞ; H0x ¼ ð@=@xÞHðx,yÞ, H0y ¼ ð@=@yÞHðx,yÞ, H00xx ¼ ð@
2=@x2ÞHðx,yÞ, H00yy ¼ ð@

2=@y2ÞHðx,yÞ
and H00xy ¼ ð@

2=@x@yÞHðx,yÞ. Because H is either a non-zero constant within Y or zero outside of Y, it is anticipated that the
derivatives of H (H0x, H0y, H00xx, H00yy and H00xy) are zero across the entire plate except at the boundary of Y where singularity is
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present, leading to prominent peaks (associated with H0x and H0y) and drastic oscillations (associated with H00xx, H00yy and H00xy)
at the boundary of Y.

Furthermore, substituting Eqs. (3) into (7b) yields
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On the other hand, according to the local equilibrium of a plate component [27], one has

Qxðx,yÞ ¼
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@x
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@Myxðx,yÞ

@y
, (9a)

Qyðx,yÞ ¼
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@y
þ
@Mxyðx,yÞ

@x
, (9b)
Fig. 2. FE models for damage scenarios (a) A and (b) B used in proof-of-concept validation.
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where Qxðx,yÞ and Qyðx,yÞ are the shear forces along x- and y-axes, respectively, as indicated in Fig. 1(b), exerted by
adjacent fragments of the plate. With them, Eq. (8) can be rearranged as

Dc
@4wðx,yÞ

@x4
þ2
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þ
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The left-hand side of Eq. (10) is namely the damage index (DI) for the entire plate, a two-dimensional index, defined as

DI¼Dc
@4wðx,yÞ

@x4
þ2

@4wðx,yÞ

@x2@y2
þ
@4wðx,yÞ

@y4

 !
�rchco2wðx,yÞ: (11)

It is noteworthy that Eq. (11), a localized equilibrium equation, applies to every single point of the plate including both
the intact and damaged zones. It depicts local equilibrium between the inertia forces of a plate fragment and the forces/
moments exerted by its adjacent elements. For an explicit expression, DI is split as follows in terms of Eq. (6),

DI¼ 0, ððx,yÞ=2YÞ (12a)

DI¼�H00xxMxðx,yÞ�2H00xyMxyðx,yÞ�H00yyMyðx,yÞ

�2H0xQxðx,yÞ�2H0yQyðx,yÞ ðat boundary of YÞ (12b)
Fig. 3. (a) Flexural vibration displacement (wi,j) of the damaged plate in scenario A at 1100 Hz (l¼ 0:16 m); (b) schematic of measurement points

involved in two-dimensional finite difference calculation for target point ði,jÞ; and accordingly constructed DIi:j over inspection region in (c) two- and

(d) three-dimensional presentations.
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DI¼ aDc
@4wðx,yÞ

@x4
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@4wðx,yÞ

@x2@y2
þ
@4wðx,yÞ

@y4

 !
�brchco2wðx,yÞ ððx,yÞ 2 YÞ (12c)

Inherently, distribution of DI over the plate presents explicit physical meanings:
(1)
Fig.
cont
in the intact region (defined by Eq. (12a)), DI is, in principle, zero, although it may not be the case in practice due to
measurement noise and uncertainties (to be discussed in subsequent sections);
(2)
 along boundary of Y (defined by Eq. (12b)), DI exhibits certain fluctuation with a magnitude subjected to damage-
induced shear forces (Qxðx,yÞ and Qyðx,yÞ), bending (Mxðx,yÞ and Myðx,yÞ) and torsion moments (Mxyðx,yÞ) along the
boundary. This is a preferable feature to depict the damaged zone; and
(3)
 within Y (defined by Eq. (12c)), DI smoothly varies with a magnitude subjected to a and b, provided the material and
geometry are still continuous within Y (but they are different from those outside of Y).
Eq. (12) alludes to that the vibration of a plate-like component bearing a damaged zone can be equivalent to that of its
pristine counterpart subject to concentrated ‘external’ shear forces, bending and torsion moments applied along the
boundaries of the damaged zone. These ‘external’ forces and moments are actually due to the singularities arising from the
discontinuity in the material and geometry (due to damage presence), which are exerted by adjacent fragments of the
plate, instead of true external forces. Thus, they are called pseudo-forces and pseudo-moments incurred by the damage in
this study. According to Eq. (12), DI can be developed using the material and geometric parameters of the intact region;
any drastic oscillation in DI, if perceived, indicates existence of damage therein; and its distribution can further facilitate
quantitative characterization of the damage.
4. Constructed DIi:j over inspection region of the damaged plate in scenario B at 1100 Hz (l¼ 0:16 m) using (a) noise-free and (b) noise-

aminated nodal displacements.



Fig. 5. Two-dimensional FFT spectra of (a) DIexact
i,j and (b) DInoisy

i,j for the damaged plate in scenario B; and (c) combined presentation of (a) and (b) by

setting ky ¼ 0.
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It is relevant to note that the above derivation is based on the Kirchhoff–Love hypothesis, requiring the uniformity of
the material and geometric properties, as well as the de-coupling between the in-plane and out-of-plane motion of the
discussed plate. For more general scenarios in which the material properties are not uniform or the thickness of the plate
component varies, the rationale of DI development is still tenable, provided that the motion of the plate component under
investigation can be mathematically modeled.

In practical manipulation, DI (Eq. (12)) can be constructed using a finite difference method as follows. The inspection
region is first discretized using N �M measurement points, and for each point ði,jÞ (i¼ 1,2,. . .,N; j¼ 1,2,. . .,M), DI is
calculated in accordance with

DIi,j ¼Dcðw4x
i,j þ2w2x2y

i,j þw
4y
i,j Þþphco2wi,j (13)

In the above, wi,j is the flexural displacement of the plate measured at ði,jÞ, and

w4x
i,j ¼

@4w

@x4
¼

1

D4
x

ðwiþ2,j�4wiþ1,jþ6wi,j�4wi�1,jþwi�2,jÞ (14a)
Fig. 6. Re-constructed (a) DIexact
i,j ; and (b) DInoisy

i,j for the damaged plate in scenario B via inverse two-dimensional FFT (kc ¼ 300 rad=m).



Fig. 7. Constructed DIexact
i,j (left column) and DInoisy

i,j (right column) for the damaged plate in scenario B when dm=l is (a) and (b) 0.047; (c) and (d) 0.092;

(e) and (f) 0.123; (g) and (h) 0.185.
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w4y
i,j ¼

@4w

@y4
¼

1

D4
y

ðwi,jþ2�4wi,jþ1þ6wi,j�4wi,j�1þwi,j�2Þ (14b)

w2x2y
i,j ¼

@4w

@2x@2y
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1

D2
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2
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ðwiþ1,jþ1�2wiþ1,jþwiþ1,j�1�2wi,jþ1

þ4wi,j�2wi,j�1þwi�1,jþ1�2wi�1,jþwi�1,j�1Þ, (14c)

where Dx and Dy are the intervals between two adjacent measurement points along the x- and y-axes, respectively. Note
that determination of the number of measurement points for the above finite difference calculation is to be discussed in
Section 3.3.2. It is also relevant to know that to construct DI across the whole inspection region, the vibration responses in
the inspection region boundary must be captured, which may lead to erroneous results therein due to insufficient
measurement points.
Fig. 8. Illustration for definition of (a) equivalent estimation region (EER) and (b) AD.
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3. Proof-of-concept validation using numerical simulation

Feasibility of using the developed two-dimensional damage index to characterize damage in plate components was first
examined through finite element (FE) simulation. A rectangular aluminum plate (450�350�3 mm3; density: 2.7 kg/m3;
Young’s modulus: 70� ð1þ10�3iÞ GPa), simply supported at its four edges was considered, as shown in Fig. 2. The effect of
material damping was comprehended in the complex modulus of elasticity. A point-force source was applied to generate
harmonic excitation perpendicular to the plate with an arbitrarily selected frequency of 1100 Hz. To eliminate possible
singularity near the force source, an inspection region (300�300 mm2) was defined (highlighted in Fig. 2), excluding the
vicinity of the source.

Two damage cases (scenarios A and B), in Fig. 2(a) and (b), respectively, were hypothesized: in scenario A, the plate
contained a relatively large damaged zone centered at (310, 230) (measuring 60�40 mm2, accounting for ca. 1.5% of the
overall area of the plate); in B, the plate had a relatively small damaged zone centered at the same location (10�10 mm2,
being approximately 0.06% of the overall area of the plate). The former was aimed at comprehending the distribution
characteristics of DI, while the latter at gauging the capacity of DI in characterizing damage small in size. For both
scenarios, the damage was simulated by a reduction in the thickness by one-third of that in the intact region. Two
damaged plates were uniformly meshed using three-dimensional brick elements, 5�5�1 mm3 each, with three layers
across the plate thickness. The flexural displacements, wi,j, at all FE nodes (an FE node is corresponding to a measurement
point in experiment) on the intact plate surface, opposite to which lay the damaged zone, was obtained using the
commercial FE code ANSYSs.
3.1. Construction of damage index (ideal case without measurement noise)

For scenario A, the calculated wi,j over inspection region is shown in Fig. 3(a), from which no straightforward
information associated with the damage can be captured. To construct DIi,j using Eq. (13), thirteen points were selected for
finite difference calculation, as illustrated in Fig. 3(b), where a uniform difference interval, dm, along x- and y-axes was
adopted (i.e., Dx ¼Dy ¼ dm). The accordingly constructed DIi,j across inspection region was two- and three-dimensionally
presented in Fig. 3(c) and (d), respectively. It can be seen that DIi,j remains null in the intact region of the plate, but
drastically deviates from zero at the boundary of the damaged zone. The evidenced boundary is able to accurately depict
the location, shape and even rough size of the damaged zone. It is noteworthy that DIi,j varies along each edge of the
damaged zone, clearly reflected in the insert of Fig. 3(d). Such a variation can be attributed to the dependence of DIi,j on
Mxðx,yÞ, Myðx,yÞ, Mxyðx,yÞ, Qxðx,yÞ and Qyðx,yÞ according to Eq. (12), which are distinct at different spatial locations of the
plate. Processed in a same fashion, the constructed DIi,j for scenario B is exhibited in Fig. 4(a). Down to such a tiny scale,
individual edges of this small damaged zone are not isolated clearly, but it suffices to signal the existence, location, shape
and overall size of the damaged zone.
Fig. 9. Variation in AD and NI for the damaged plate in scenario B at different dm=l (rc ¼ 0:4, Xc ¼ 0:8).
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3.2. Construction of damage index (realistic case with measurement noise)

It is however envisaged that the captured wi,j can be prone to the contamination from measurement noise and
uncertainties, boundary effects and error of finite difference calculation, potentially dimming those damage-associated
features in wi,j and leading to compromised or even erroneous identification. Moreover, it is foreseen that DIi,j in Eq. (12)
can be fairly susceptible to noise interference, because the noise in wi,j can become dominant upon fourth-order
differentiation (e.g., @4wðx,yÞ=@x4). It is thus of vital necessity to gauge the tolerance of the proposed damage index to
measurement noise. To this end, the calculated nodal flexural displacement was numerically polluted by

wnoisy
i,j ¼wexact

i,j epþeb, (15)

where

ep ¼DwejDj and eb ¼ eR
bþ jei

b

In the above, wexact
i,j and wnoisy

i,j are the flexural displacement at ði,jÞ in the absence of noise and its corresponding noise-
polluted counterpart, respectively; the measurement error, ep, is proportional to wexact

i,j (where Dw and Dj are two
Gaussian random real numbers related to the magnitude and phase of wexact

i,j , respectively); eb, the background noise, is
constituted by eR

b and eI
b (another two Gaussian random real numbers associated with the real and imaginary parts of

wexact
i,j , respectively, subject to measurement equipment).

For comparative discussion, assuming that (i) the average of Dw is one, and the averages of Dj, eR
b and eI

b are zero, and
(ii) their corresponding standard derivations are: s fDwg ¼ 1%, s fDsg ¼ 11 and sfeR

bg ¼ sfe
I
bg ¼ 10�10 m; and (iii) all other

parameters in simulation remain unchanged, then the constructed damage index for scenario B using wnoisy
i,j (denoted by
Fig. 10. Variation in AD–NI curves for the damaged plate in scenario B subject to different levels of measurement noise in (a) magnitude and (b) phase

(rc ¼ 0:4, Xc ¼ 0:8).
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DInoisy
i,j hereinafter) is shown in Fig. 4(b). It can be seen that under the noise interference, recognition of signal features

pertaining to damage becomes intractable, because the measurement noise, even tiny (1% in this example), is considerably
boosted upon the fourth-order differentiation.

3.3. De-noising Techniques

The connatural vulnerability of the proposed damage index to measurement noise entailed de-noising treatment. Two
independent de-noising techniques were developed: Low-pass Wavenumber Filtering (LWF) and Adjustment of Measurement

Density (AMD).

3.3.1. LWF

LWF is a post-processing initiative based on spectrum analysis, motivated by the observation that the signal features
relating to random noise and to the damage are clustered in different regions in the wavenumber domain [1]. By way of
illustration, Fig. 5 shows the spectra of DIexact

i,j (Fig. 4(a)) and DInoisy
i,j (Fig. 4(b)) obtained using the two-dimensional Fast

Fourier Transform (FFT), to notice that the majority of wavenumbers of DIexact
i,j are concentrated in a relatively lower

wavenumber region (Fig. 5(a)), whereas the noise influence plays a dominant role in a relatively higher wavenumber
region (Fig. 5(b)). For further comparison, two-dimensional FFT results of DIexact

i,j and DInoisy
i,j by setting ky ¼ 0 were

combined in Fig. 5(c), manifesting an overlap between two indices only in a certain range (�kc okxokc , where kx is the
wavenumber along x-axis). Because of the isotropic material properties of the plate, a similar overlap at �kc okyokc (by
setting kx ¼ 0, where ky the wavenumber along y-axis) is foreseen. Based on this, an LWF function was designed to screen
out noise interference at the higher wavenumber region while maintaining signal features in the lower region, which is
Fig. 11. Variation in AD–NI curves for the damaged plate in scenario B when W=l is (a) 0.028; (b) 0.056; (c) 0.113; and (d) 0.170 (thickness reduction:

0.33, rc ¼ 0:4, Xc ¼ 0:8).
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defined as

~h kx,ky

� �
¼

1 when kx

�� �� rkc and ky

�� ��rkc

� �
0 otherwise

(
(16)

where ~hðkx,kyÞ is a filtering function, and kc the cutoff wavenumber with a unit of rad m�1. Similar to a Heaviside function,
Eq. (16) eliminates signal features outside of the range in which DIexact

i,j and DInoisy
i,j overlap in the wavenumber spectrum.

Upon application of LWF, the residual signal features can be re-constructed back to the spatial domain using the inverse
two-dimensional FFT. Furthermore, to avoid numerical errors near the fringe of the inspection region due to insufficient
measurement points for finite difference calculation (known as the Gibbs phenomenon [28]), a two-dimensional Hanning

window in the spatial domain was applied prior to LWF [1]. Subsequently applied with the Hanning window, LWF and
inverse two-dimensional FFT, the re-constructed DIexact

i,j and DInoisy
i,j are displayed in Fig. 6(a) and (b), respectively, showing

a substantially improved resolution compared with Fig. 4. Both highlight not only the location of the damaged zone but its
approximate size, even under the interference of measurement noise (Fig. 6(b)).

3.3.2. AMD

Independent of LWF, AMD is an alternative to enhance the robustness of the proposed damage index in noisy
measurement conditions, residing on a correlation between the degree of noise influence and the density of measurement
points (viz., the distance between two adjacent measurement points, dm, i.e., the differential interval Dx or Dy in Eq. (14)).
It is anticipated that with an increase in dm, the accuracy of finite difference calculation decreases as a result of the
increasing truncation errors, and in the meanwhile the noise interference is alleviated, giving rise to enhanced noise
Fig. 12. Variation in AD–NI curves for the damaged plate in scenario B when THR is (a) 0.20; (b) 0.25; (c) 0.33; and (d) 0.50 (W=l¼ 0:056, rc ¼ 0:4

and Xc ¼ 0:8).
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immunity, and vice versa. Thus, it is crucial to strike a balance between the accuracy of finite difference calculation and the
noisy immunity of damage index, through optimizing dm. Considering that the damage index makes use of harmonic
vibration signals which exhibit periodical patterns in the spatial domain, a dimensionless parameter, dm=l, was
established (l: wavelength of the vibration of the plate at a given harmonic excitation).

For illustration, DIexact
i,j and DInoisy

i,j for damage scenario B (Fig. 2(b)), constructed at four exemplary dm=l
(dm=l¼ 0:047, 0:092, 0:123, 0:185), are compared in Fig. 7. It can be seen that as dm=l increases, the damage
identification accuracy reduces, implying that both DIexact

i,j and DInoisy
i,j progressively lose their capabilities of predicting

damage. On the other hand, such a reduction in accuracy is accompanied with an enhanced immunity to measurement
noise, evidenced by an increasing similarity between DIexact

i,j and DInoisy
i,j . This observation alludes to a dual-effect of dm=l:

using less measurement points (greater dm=l) can enhance the noise immunity of the damage index, but this is at the
expense of sacrificing the accuracy of finite difference calculation, and vice versa. In particular, for the discussed case, the
option in which dm=l¼ 0:123 (Fig. 7(e) and (f)) contributes to a reasonable balance, and with it the damage location can be
identified directly from the distribution of DInoisy

i,j without any de-noising treatment such as LWF. This option of dm=l can
therefore be deemed as an optimal configuration to match the current excitation. It is interesting to note that this selection
(dm=l¼ 0:123) corresponds to roughly nine measurement points per wavelength.

To quantify the above dual-effect, two normalized signal parameters, AD (Accuracy of finite Difference) and NI (Noise

Influence), were introduced.

3.3.2.1. Accuracy of Finite Difference (AD). For illuminating the nature of AD, use DIexact
i,j when dm=l¼ 0:123 (Fig. 7(e)) and

define an equivalent estimation region (EER) as highlighted in Fig. 8(a). EER embraces all the peaks of DIexact
i,j at the boundary

of damaged zone, and its size is in principle larger than the actual damaged zone because construction of DIexact
i,j at damage

boundary involves neighboring measurement points beyond the damaged zone (subject to dm). Letting the peak value of
DIexact

i,j within and outside of EER be c and t, respectively, as illustrated in Fig. 8(b), and the ratio of t=c be r, then a
dimensionless parameter AD is defined as

AD¼
r

rc
¼

t

c rc
, (17)

where rc is a threshold. The numerator r depicts the degree of protrusion of DIexact
i,j induced by damage in the damaged

zone with regard to DIexact
i,j in intact region. Damage incurs variation in DIexact

i,j , and accordingly AD has the capability of
Fig. 13. (a) Two and (b) three-dimensional presentations of fused ultimate image for the damaged plate in scenario B.
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reflecting the identification accuracy. Provided r is greater than rc (i.e., AD41), the accuracy is deemed unacceptable, and
vice versa. In other words, the accuracy is satisfactory only when AD falls in the range of ½0,1�. In the following discussion,
rc was set to be 0.4, which has been demonstrated effective to judge the identification accuracy.

3.3.2.2. Noise influence (NI). NI, also a dimensionless index, is defined in the light of a quantitative resemblance between
DIexact

i,j and DInoisy
i,j at a specific spatial location. The resemblance is calibrated using a two-dimensional correlation

coefficient, X, given by

X¼
N
PNy

i ¼ 1

PNx

j ¼ 1 DIexact
i,j DInoisy

i,j �
PNy

i ¼ 1

PNx

j ¼ 1 DIexact
i,j

PNy

i ¼ 1

PNx

j ¼ 1 DInoisy
i,jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N
PNy

i ¼ 1

PNx

j ¼ 1 DIexact
i,j

� 	2
�
PNy

i ¼ 1

PNx

j ¼ 1 DIexact
i,j

� 	2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N
PNy

i ¼ 1

PNx

j ¼ 1 DInoisy
i,j

� 	2
�
PNy

i ¼ 1

PNx

j ¼ 1 DInoisy
i,j

� 	2
r , (18)

where Nx and Ny are the numbers of measurement points along x- and y-axes within the inspection region, respectively.
Theoretically, X varies in the range of ½0,1�, and in particular the unity of X (X¼ 1) indicates a perfect matching between
DIexact

i,j and DInoisy
i,j (i.e., the ideal case without noise influence). Similar to the way of defining AD, a threshold, Xc ,

is introduced to evaluate the acceptability of noise influence, with which NI is defined as

NI¼
1�X
1�Xc

(19)

Provided X is less than Xc (i.e., NI41, indicating a low similarity between DIexact
i,j and DInoisy

i,j ), the influence of noise is
considered unacceptable, leading to poor recognizability of signals and making identification impossible without proper
de-noising treatment. Similar as AD, an acceptable NI should fall in the range of ½0, 1�. Xc was set to be 0.8 hereinafter,
demonstrated sufficient to screen noise influence.

Simultaneous consideration of AD and NI via Eqs. (17) and (19) provides a straightforward means to balance the accuracy of
finite difference calculation with noise immunity. Ideally, both AD and NI should concurrently fall in the range of ½0, 1�, and such a
range is called ‘ideally acceptable region’ in what follows, in which 0oADr1 and 0oNIr1. For illustration, Fig. 9 shows AD and
 

Excitation 
Beam I Beam II Beam III 

Damaged zones

Fig. 14. Experimental application: (a) experimental setup (front view); (b) dimensions of the front panel and five damaged zones (back view);

and (c) experimental setup (back view) ((c) and (d) also indicate location of the point-force excitation source).
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NI distributions at a number of selected dm=l (dm=l¼ 0:016, 0:031, 0:047, 0:062, 0:076, 0:092, 0:123, 0:154, 0:185) for
scenario B. This concurrent presentation of AD and NI curves is called ‘AD–NI curve’, in which the location of the intersection
between two curves (denoted by po) in the ideally acceptable region (shadowed area in Fig. 9) suggests the most optimal dm=l,
and with it satisfactory identification without relying on any signal de-noising treatment can be achieved. The AD–NI curve can
simply be presented graphically against the ideally acceptable region in the same diagram, indicating the accuracy of different
selection of dm=l. It is interesting to note that the above recommended configuration (dm=l¼ 0:123) based on the observation
from Fig. 7(e) and (f) is very close to the location of po in Fig. 9, well demonstrating the effectiveness of AD–NI curves in selecting
an optimal measurement configuration. In the contrast, other options lead to either low accuracy of finite difference calculation
(e.g., dm=l¼ 0:185, with identification results in Fig. 7(h)) or poor noise immunity (e.g., dm=l¼ 0:047, with results in Fig. 7(b)).

3.3.3. Discussions on AD–NI curve

The position of po in the ideally acceptable region can be affected by a variety of factors, amongst which the level of
measurement noise and the damage severity were explored.

3.3.3.1. Measurement noise. Letting the averages of eR
b and eI

b be zero and sfeR
bg ¼ sfe

I
bg ¼ 10�10 m in the background noise

(defined by Eq. (15)), Fig. 10 exhibits the AD–NI curves for scenario B subject to different sfDwg (from 1% to 10%) when
sfDjg ¼ 1o (in Fig. 10(a)), and different sfDjg (from 0:1o to 10o) when sfDwg ¼ 1% (in Fig. 10(b)), respectively.
The increase in noise level is observed to shift the NI curve upwards (though the trend is not strictly monotonic),
elevating the position of po in the ideally acceptable region, limiting the maneuvering margin for selecting an optimal
measurement density, and thus making the detection more challenging. Allowing for this, a greater noise level requests a
larger dm=l (i.e., sparser measurement density), so as to enhance the noise immunity of the damage index; but this incurs
reduction in accuracy of finite difference calculation. Based on observations from Fig. 10, 0.08–0.13 for dm=l (corresponding
Fig. 15. Constructed damage index for beam components (a) I; (b) II; (c) III; and (d) plate component without using any de-noising treatment.
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to 8–13 measurement points per l for the current noise level) could be optimal. Contrarily, with less noise, the position of po

moves towards the end with more measurement points. Generally speaking, around TEN measurement points per wavelength
could be proposed as a rule of thumb for ascertaining an optimal measurement configuration. When the noise level exceeds a
certain limit, po moves beyond the ideally acceptable region, and under such a circumstance the damage cannot be revealed if
AMD is applied only, entailing application of LWF simultaneously. Such a conclusion is also applicable to more severe noise
contamination up to 10% error in magnitude or 5o error in phase as demonstrated by the authors elsewhere [29].

3.3.3.2. Damage severity. For discussion, damage severity is diversified in a twofold way: different planar sizes and
different thickness reductions. To facilitate generality of discussion, the damage size is defined with respect to wavelength
l (i.e., W=l, where W is the length of the longest edge of the damaged zone). Using scenario B under the same excitation
condition and the same noise level (sfDwg ¼ 1% and sfDjg ¼ 1o) as example, Fig. 11 presents the AD–NI curves when the
damaged zone has the same thickness reduction (one-third of that of the intact region) but is of four different sizes
(W=l¼ 0:028, 0:056, 0:113, 0:170); Fig. 12 displays the AD–NI curves when the damaged zone remains the same planar
size (W=l¼ 0:056) but has four different levels of thickness reduction (THR) (THR¼ 0:20, 0:25, 0:33, 0:50). It can clearly be
noticed from both Figs. 11 and 12 that with the increase in damage severity (increase in either W=l or THR), the position of
po migrates downwards in the ideally acceptable region (more phenomenal in Fig. 11), implying that a more severe
damage impacts less stringent conditions on determination of an optimal measurement density, and vice versa.

It is pertinent to note that the edge of the square damaged zone in scenario B is roughly 4% of the wavelength only.
The satisfactory detection accuracy has demonstrated that the proposed damage index is able to quantitatively
characterize damage of small dimension by simply choosing an appropriate measurement configuration, without
deploying any advanced signal processing treatment. This appealing attribute makes the proposed damage index
outperform most traditional vibration-based methodologies (such as those based on the shift of eigen-frequencies,
change in mode shape or damping properties) which can be less sensitive to damage before it reaches a conspicuous
Fig. 16. Re-constructed damage index treated with LWF for beam components (a) I; (b) II; (c) III (kc ¼ 400 rad=m); and (d) plate component

(kc ¼ 250 rad=m).
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extent (e.g., 10% of the characteristic dimension of the structure) or guided-wave-based approaches which show good
detection capacity typically when the damage dimension is comparable to the wavelength of the selected wave mode.
4. Damage imaging and hybrid data fusion

The proposed DIi,j was further used as a two-dimensional field value at measurement point ði,jÞ, enabling a two-
dimensional damage imaging to intuitively present damage characterization results in a pixelated image. In such an
imaging process, the inspection region is first meshed two-dimensionally and projected to a pixelated image with each
pixel corresponding exclusively to a measurement point [30,31]. Exemplified by Fig. 7, the constructed image using DIi,j as
the field value delivers an easily interpretable image, in which any singularity in the field value of a particular pixel
indicates the existence of damage therein. Quantitative and detailed depiction of damage shape, size and severity can
further be reached by locally canvassing those pixels with singularly elevated field values.

Owing to the flexibility of the approach, DIi,j can be constructed under a variety of measurement circumstances (e.g.,
different excitation frequencies such as wideband excitation or even white noise excitation, different measurement
densities, with or without use of LWF), contributing to a series of source images forming an image pool for information
fusion. A hybrid data fusion algorithm was developed to amalgamate these source images, for minimizing noise influence
along with LWF and AMD. Assuming the field value at pixel ði,jÞ can be obtained under K different measurement
circumstances, denoted by DIi,j�1, DIi,j�2, DIi,j�L, DIi,j�L, DIi,j�K ðL¼ 1,2,. . .,KÞ, the hybrid fusion algorithm is defined as

DIi,j-hybrid ¼DIi,j-arithmetic \ DIi,j-geometric (20a)

where

DIi,j-arithmetic ¼
1

K

XK

L ¼ 1

DIi,j�L (20b)
Fig. 17. Constructed damage index treated with AMD (nine measurement points per wavelength) for beam components (a) I; (b) II; (c) III; and (d) plate

component.
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and

DIi,j-geometric ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DIi�1UDIi,j�2U � � �DIi,j�LU

K

q
� � �DIi,j�K (20c)

DIi,j-hybrid is the ultimate field value at pixel ði,jÞ upon hybrid fusion. Development of such a hybrid fusion algorithm was
motivated by the incentive to reap merits of individual data fusion schemes including the arithmetic and geometric
fusion, so as to maximize the fusion efficiency with limited information sources [1]. The fusion achieves a compromise
between the arithmetic and geometric fusion, by equally taking into account the perceptions from all source
images whereas appropriately decentralizing their contributions; thus giving prominence to the salient features in
common (i.e., those pertaining to damage) and meanwhile suppressing less salient features in individuals
(e.g., measurement noise). For demonstration, Fig. 13 two- and three-dimensionally displays the ultimate image for
scenario B obtained by fusing two source images (the noise-polluted source image in Fig. 6(b) treated with LWF and the
one in Fig. 7(f)) using the hybrid fusion scheme. Although only two source images fused, largely enhanced precision has
been achieved, to see the fused results outperform either of the source images in predicting location and shape of the
damaged zone. Further improvement by fusing more source images can be anticipated, to be demonstrated in subsequent
sections.

In addition, it is relevant to note that the resolution of the ultimate image is also subject to dm, which should naturally
be sufficiently small in order to explicitly depict damage of small dimension. However, as discussed in Section 3, dm should
be discreetly selected in line with the excitation frequency. If the AMD-based de-noising is adopted and a small dm is opted
for accommodating the above image resolution requirement, it is advisable to use a relatively high excitation frequency
(thus relatively small l), so as to keep an reasonably large dm=l to abate possible noise influence.
Fig. 18. Constructed damage index treated with AMD (twelve measurement points per wavelength) for beam components (a) I; (b) II; (c) III; and (d) plate

component.
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5. Application to multi-damage characterization in a plane structure

With the two damage indices defined over one- (Eq. (1)) and two-dimensional (Eq. (12)) domains, the detection
framework is logically applicable to systems comprising beam and plate components simultaneously. In addition, the
attribute of local canvassing warrants characterization of multi-damage.

In the application, a box-like structure was fabricated (Aluminum 6061, Young modulus: 68.9 GPa, mass density: 2.7 g/cm3,
and Poisson’s ratio: 0.27), as shown in Fig. 14(a). The structure consisted of four (front, left, right and lower) panels with a uniform
thickness of 3 mm, and the lower panel was fixed-supported on a testing table (NEWPORTs ST-UT2). The front panel
(450�350 mm2) was hollow-carved to configure seven parallel beam components (288 mm long, 8 mm wide and 3 mm thick
each), with an interval of 12 mm. As shown in Fig. 14(b), multi-damage was introduced to the back surface of the front
panel: a square damaged zone (1.4 mm thickness reduction) in the plate component, and four through-width notches
(1.4 mm thickness reduction) in three beam components (in particular beam III containing two notches). The locations and
planar dimensions of individual damage are indicated in Fig. 14(b). A harmonic point-force excitation through an electro-
mechanical shaker (B&Ks 4809) was applied to the back surface of the front panel (see Fig. 14(b) and (c)) with various
frequencies (800, 1300, 1800 and 2300 Hz). Note that selecting a resonance frequency of the structure is not of necessity;
actually it is preferable to apply this method at an off-resonance regime, so as to minimize the effect of system damping.
Within the inspection region, the out-of-plane displacements were captured using a scanning Doppler laser vibrometer
system (Polytecs PSV-400) at each measurement point on the intact surface of the front panel, opposite to which lay the
multi-damage. The measurement setup is photographed in Fig. 14(a) and (c). DIi,j was constructed at each measurement
point using Eq. (1) for the beam components and using Eq. (13) for the plate component.

The damage characterization results obtained using the imaging algorithm for three beam and plate components, at the
excitation frequency of 1800 Hz as a representative, are displayed in Fig. 15. These results were obtained at a relatively
high density of measurement points (73 measurement points along the beam component, and 61�61 across the
inspection region of the plate component), without the use of LWF or AMD. To accommodate this measurement density,
it took around 3 min to complete the scan for each beam component, while 1 h for the entire system. Strong noise
influence was observed, preventing the approach delivering accurate damage characterization.
Fig. 19. Constructed damage index treated with AMD (fifteen measurement points per wavelength) for beam components (a) I; (b) II; (c) III; and (d) plate

component.
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LWF was applied alone by setting kc ¼ 250 rad=m for the plate component and kc ¼ 400 rad=m for three beam
components in Eq. (16) (selection criterion for kc detailed elsewhere [1]). The accordingly obtained results are shown in
Fig. 16, clearly highlighting the location and rough size of all damage cases. Independent of LWF, AMD was applied with
different measurement densities from 9 to 15 points per wavelength, and the results at several representative
configurations are present in Figs. 17–19. As seen, the one with nine measurement points per wavelength (Fig. 17) is
sufficient to warrant satisfactory identification for all damage cases in the structure, corroborating the conclusion drawn
previously that the selection of around TEN measurement points per wavelength is able to strike a balance between
accuracy of finite difference calculation and noise tolerance. It is also observed that a higher density (e.g., 15 per
wavelength in Fig. 19) contributes to a slightly improved accuracy, which can be attributed to the fact that the noise level
in this application using laser vibrometer was actually low (typically less than 0.5%). Such a low level of noise entailed
denser measurement configuration compared to the case discussed in the simulation (1% noise corruption was used in
Fig. 20. Fused ultimate images for beam components (a) I; (b) II; (c) III; and (d) plate component.



Fig. 21. (a) Three- and (b) two-dimensional damage image for the plane structure upon integration with photo of the structure.
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simulation) from which the conclusion was reached. In addition, comparing two damage cases in beam III, Fig. 19(c), a
smaller damaged zone incurs more prominent changes in field values compared with a greater one, accentuating that
more severe damage does not necessarily lead to a greater field value (damage index), because, on top of the damage
severity, the damage index is comprehensively subject to the distribution of internal bending forces and moments as
discussed in Section 2.

In this application, various excitation frequencies and flexible choice of measurement configuration were used, leading
to an image pool. With the hybrid fusion algorithm (Eq. (20)), Fig. 20(a)–(d) displays the fused ultimate images for three
beam and plate components. With much enhanced recognizability, the fused results accurately and quantitatively depict
all damage cases in the structure, including individual locations, shapes and sizes. To allow damage visualization for the
entire structure, images for individual components were further integrated with the photo of the box-like structure,
contributing to a three-dimensional damage image, in Fig. 21. Note that all the evidenced damaged zones are invisible
from the surface on which the scan was conducted.

6. Conclusions

Deployed in a two-dimensional domain and based on the plate theory, a damage characterization framework by
detecting the perturbation to local dynamic equilibrium was developed for plate-like components. A hybrid damage
visualization strategy was established for systems comprising structural components of different types, various geometric
parameters and diverse boundary conditions. To circumvent potential noise influence on identification accuracy, different
de-noising techniques, including LWF, AMD and a hybrid data fusion algorithm, were proposed with their effectiveness
demonstrated. LWF is able to screen out noise contamination in higher wavenumber region. Approximately TEN
measurement points per wavelength can be seen as a practical rule to reach a compromise between detection accuracy
and tolerance to measurement noise. Both numerical simulation and experimental application accentuated that the
approach is able to characterize multiple damage in a quantitative manner under a noisy measurement condition. With
the aid of an imaging approach, results can be presented intuitively in pixelated images. Benefiting from intrinsic
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attributes of the damage index (no prerequisite for benchmarks, baseline signals, global models, additional excitation
sources, pre-modal analysis nor prior knowledge on boundary), the proposed method, along with auxiliary de-noising
tools, provides a flexible solution to the detection of multi-damage in complex systems comprising various structural
components. Though scanning laser vibrometer was employed to capture vibration responses, the demand of a dense set
of measurement points may dilute the practicability of the approach, entailing further improvement.
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