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An analytical periodic model is developed to predict the radiation of sound from orthogonally stiffened
laminated composite plates under airborne and structure borne excitations. Whilst a layerwise shear
deformable theory is used to describe the vibration of the base plate, both the force and moment coupling
between the stiffeners and the base plate are considered on basis of flexural-torsion coupling equations.
The periodic governing equations are solved using Fourier transformation method. The validity and fea-
sibility of the model is verified by comparing theoretical predictions with existing numerical and exper-
imental results. Numerical discussions with the model demonstrate the significant influence of both
flexural-extension and flexural-torsion coupling upon acoustic radiation from un-stiffened composite
plate, which depends on material properties, geometrical parameters and frequency.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

As laminated, fiber-reinforced composite structures are increas-
ingly exploited in a wide range of engineering applications [1],
stiffeners are commonly used to further reinforce the laminated
composite structure. To deal with stiffened structures, a most
straightforward way [2] is to equivalent the whole structure as
an orthotropic uniform plate if the mechanical wavelengths are
greater than stiffener spacing. To describe the coupling forces be-
tween the stiffeners and the base plate, the stiffeners are conve-
niently replaced with lumped mass and spring [3]. More
accurately, Langley and Heron [4] have given general coupling ma-
trix at plate/beam junction, which can be extended to predict reac-
tive forces by stiffeners. To solve the governing equations, Mead
and Pujara [3] developed the method of space harmonic expansion,
which has been developed to investigate a variety of periodically
stiffened structures [5–7]. Employing the technique of Fourier
transform [8], Mace [9,10] investigated the response of plates with
parallel and orthogonal stiffeners under fluid loading, whereas
Takahashi [11] studied sound radiation from double-leaf structures
with periodical connections. Both of the two approaches described
above transform the governing equations into infinite sets of
simultaneous algebraic equations and then truncate these into a
finite range for numerical solutions.
In comparison with the isotropic material made structures, the
laminated composite material made structure significantly in-
creases the complexity of the theoretical modeling. To deal with
the laminated composite structure, Yin et al. [12] extended Mace’s
model [9] to unidirectional stiffened laminated composite plate
based on the classical laminated composite plate theory (CLPT),
in which the bending motion of metallic stiffeners has been ac-
counted for. Also based on CLPT theory, Legault et al. [13] explored
the effect of finite dimensions by comparing the spatially window-
ing periodic model with the Rayleigh–Ritz method. It is concluded
that the periodic theory is inappropriate when the bending wave-
length is smaller than the stiffener spacing. There also exists such a
restriction in the present paper since the periodic theory is used
here. Recently, a first order shear deformation theory (FSDT) is em-
ployed by Mejdi et al. [14] to consider the transverse shear strain of
base plate, where the in plane motion of stiffeners has been taken
into account. Whereas, the governing equations for stiffeners only
apply to thin-walled isotropic beam (or uncoupled composite case)
while not the general composite beam.

To develop a more accurate theoretical model, a layerwise shear
deformable theory is applied to model the vibration of the lami-
nate composite base plate, and the shear deformable beam theory
is utilized to model the vibration of arbitrary thin-walled compos-
ite beam stiffeners. Note that the single-layer theories (e.g. CLPT or
FSDT) used by previous researchers remain acceptable for thin bare
plate, which probably induce significant deviations for thicker and
stiffened plates. Different from the existing studies, numerical
discussions specially focus on the flexural-extension and the flex-
ural-torsion coupling effects caused by the material anisotropy of
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composite base plate, as well as the flexural-torsion coupling effect
due to the geometrical anisotropy of the stiffeners.

2. Mathematical formulation

With reference to Fig. 1, consider an infinite laminated compos-
ite plate reinforced by orthogonal line stiffeners (without plate like
behavior) along the lines x = mlx and y = nly, with (m, n) represent-
ing integers and (lx, ly) denoting spacing respectively. The origin of
the Cartesian coordinates is located at the junction of the orthogo-
nal stiffeners. The structure is loaded by acoustic fluid on one side,
i.e., the side without stiffeners. Under a layerwise shear deformable
theory [15], the discrete laminated model can express the displace-
ments for the ith layer of the composite base plate as:

uiðx; y; z; tÞ ¼ ui
0ðx; y; tÞ þ z/i

xðx; y; tÞ
v iðx; y; z; tÞ ¼ v i

0ðx; y; tÞ þ z/i
yðx; y; tÞ

wiðx; y; z; tÞ ¼ wi
0ðx; y; tÞ

8><>: ð1Þ

where (ui
0;v i

0;w
i
0) are the displacements of the plate along (x, y, z)

coordinate directions in the mid-plane of each layer, and (/i
x;/

i
y) de-

note the rotation displacements of the plate about the (y, x) direc-
tions, respectively.

The Euler–Lagrange equations of the system incorporating the
reaction forces due to the stiffeners may be written as:
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Fig. 1. Laminated composite plate reinforced by orthogonal line stiffeners.
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where Pi
exc denotes a general excitation (e.g. airborne or structure

borne excitations), Pi
a is the radiated acoustic pressure in the fluid;

f i
x and f i

y are external forces acting in the plane of the base plate;
(Fxe, Fye) {e = x, y, z} and (Mx, My) are the coupling forces and reactive
torsion moments between the stiffeners and the base plate. The to-
tal number of interlayer forces (Fi

x; F
i
y; F

i
z) is 3(N � 1), where N is the

number of layers. diI is the Kronecker delta symbol. Then, total
5N + 3(N � 1) variables can be grouped into two vectors including
the displacement vector {U} and the interlayer force vector {F}:
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Further, Ii
0; I

i
1 and Ii

2 are the mass moments of inertia, defined by:
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where qi and zi
bðzi

tÞ denotes the mass density and coordinate of bot-
tom (top) of the ith layer of the laminated composite plate, respec-
tively. Interlayer displacement continuity condition requires:
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In all, the 5N + 3(N � 1) variables (Eq. (7)) correspond to 5N dy-
namic equilibrium equations (Eqs. (2)–(6)) and 3(N � 1) displace-
ment continuity equations (Eq. (9)). Notice that the present
layerwise shear deformable theory model can be degraded into
the FSDT model if the number of total layers is set to be one.

To solve the governing equations, the method of Space Fourier
Transformation (SFT) is employed here for its capability to consider
the effects of fluid loading and infinite periodic structures, so that:
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Transforming Eqs. (2)–(6) and Eq. (9) then leads to:

ð½A2� þ i½A1� � ½A0�Þf~eg ¼ f~Pf g � f~PFxg � f~PFyg ð12Þ

where i ¼
ffiffiffiffiffiffiffi
�1
p

, the coefficient matrixes ([A0], [A1], [A2]) are defined
by Ghinet and Atalla [15]. The coupling sound pressure

~Paða;b;0Þ ¼ �x2q0 ~wða; bÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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0

q
(c0 is the speed of

sound, q0 is the density of fluid) at fluid-panel interface can be eas-
ily joined into the coefficient matrixes. Then, the hybrid variables
vector, excitation forces vector, reaction forces between the base
plate and the stiffeners can be written as:
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2.1. Reactive forces by stiffeners

As above mentioned in Section 1, the existing theoretical works
about stiffened composite plate could only consider isotropic or
uncoupled composite beam stiffeners. While, the shear deformable
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beam theory that can handle arbitrary thin-walled composite
beams is introduced here [16]:
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where hQi, hai, [A] represent force vector, displacement vector and
coefficient matrix, respectively. Remarkably, it is shown that vari-
ous coupling effects may take place among these six unknown dis-
placements variables. In the present paper, attention is paid to the
flexural-torsion coupling effect due to the geometric rather than the
material anisotropy of stiffeners. Then, the non-zero coefficients aij

for C shape beam in y-direction are given:

a11 ¼ EIz
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where the definitions of all these constants can be found in Lee and
Kim’s paper [17]. All the damping effects in the present work are as-
sumed to be structural damping and expressed in the form of com-
plex Young’s modulus. The relationship between the beam reaction
forces ([hQi) and base plate reaction forces (hFi) can be written as
[2]:
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where the point (xc, zc) denotes the line junction between stiffeners
and base plate with respect to shear center of stiffeners, x⁄ repre-
sents the warping function of stiffeners and @

@y denotes the first-or-
der derivative with respect to y. Then, displacement continuity
between the beam displacement hai and the base plate displace-
ment hbi requires:

hbi ¼ ½u1
0; v

1
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Notice that the flexural-torsion coupling effect of eccentric stiffen-
ers has been reflected in the relation matrix hRi explicitly. Combin-
ing Eqs. (15)–(17), the reactive forces of stiffeners are related to the
plate displacement as:

hFi ¼ ð½R�T½A��1½R�Þ�1hbi ð18Þ

To solve the Dirac function appearing in Eqs. (2)–(6), the Pois-
son formula is employed [10,11]:X
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Upon incorporating Eqs. (18), (19) and introducing the defini-
tion (am = a + 2mp/lx, bn = b + 2np/ly), The transform of the coupling
forces between the stiffeners and the base plate along the y -direc-
tion is obtained as:
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where ~zij
x ði; j ¼ 1 � 4Þ represents the transformed coefficient matrix

elements. Similarly, the reactive forces by stiffeners along x-direc-
tion are expressed as:
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Combining Eqs. (12), (20), and (21), the resultant governing
equations in wavenumber domain can thence be given as:
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where L�5�5 denotes the first five lines and columns of the inversion
stiffness matrix in Eq. (12). To solve the coupling unknowns, two
sets of intermediate variable are introduced here as:
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Fig. 2. Present model predictions compared with theoretical results of Mace [10]
for sound radiation of orthogonally stiffened uniform plate.
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Notice that the definition (nða;bÞ ¼ ½~u1
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variables have the periodicity properties:
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Once these intermediate variables of Eq. (23) are determined,
the displacements in wavenumber domain can be obtained using
Eq. (22). Given the definition of intermediate variables in Eq. (23)
and their periodicity property shown in Eq. (24), summing Eq.
(22) over all m (or n) values yields:
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where ~Pf ða;bÞ, S1(a, b) and S2(a, b) correspond to the coefficient ma-
trix in Eq. (22). Here, the sum-indices (m, n) are restricted to have
finite values, i.e., m ¼ �m̂ to m̂ and n ¼ �n̂ to n̂, thus Eq. (25) forms
a system of 2ðm̂þ n̂þ 1Þ linear equations for determining the inter-
mediate variables n(am, b) (total ð2m̂þ 1Þ) and n(a, bn) (total
ð2n̂þ 1Þ). The convergence criteria said that once the solution was
convergent at a given frequency, it is also convergent for all fre-
quency lower than that [18]. Therefore, the convergence check is
performed at the highest frequency 10 kHz of interest here, and it
is found that the sum-indices taking values m̂ ¼ n̂ ¼ 15 can ensure
the convergence of the results within the error bound of 0.5 dB.

2.2. Far field radiated sound pressure and sound transmission loss

Following the standard procedure of stationary phase [19], the
far field acoustic radiation in spherical coordinates can be obtained
if neglecting the radiation from stiffeners:

PðR; h;/Þ ¼ �q0x
2 ~w1

0ða0; b0Þ expð�ik0RÞ=2pR ð26Þ

where a0 = k0 sin h cos /, b0 = k0 sin h sin /, q0 is the density of fluid,
k0 = x/c0 is acoustic wavenumber, (R, h, /) are the selected spherical
coordinates. The high frequency asymptote of the far field sound
pressure Pr = q0Q exp (�ik0R)/2pmpR (mp is the surface density of
base plate, Q is the amplitude of imposed point force) radiated by
an unstiffened plate is selected here as a Ref. [10]. Then, the far field
sound pressure can be expressed by sound pressure level
(SPL = 20log10(P/Pr)) in decibel scales (dB).

Assuming both sides of the plate emerged in fluids and excited
by sound pressure Pi, the sound transmission problem can also be
handled by the above formulated model based on the layerwise
shear deformable theory, the incident sound intensity is defined
as Wi ¼ 1

2 ðjPij2 cos u=q0c0Þ, where u is the sound incidence angle.
The transmitted sound intensity is given in wavenumber domain
as [20]
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Then, sound transmission loss (STL) is expressed by the formula
STL = �10log10(Wt/Wi). This theoretical model for predicting STL of
infinite structure can also take account of finite size effect approx-
imately by applying the windowing technique. Whereas, it will be
cumbersome to execute the windowing process in wavenumber
field following the classical spatial windowing method [21]. Alter-
natively, a finite radiation efficiency rf [22] is adopted here to re-
place the infinite radiation efficiency in the calculation of the
transmitted sound intensity, which can be written as:
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3. Results and discussion

In this section, numerical calculations based on theoretical for-
mulations presented above are performed to explore the vibro-
acoustic characteristics of infinite laminated composite plates
stiffened by orthogonal C shape stiffeners. Unless otherwise stated,
the following material and geometry parameters are used as fol-
lows. The base plate is made of composite material with modulus
E1 = 150 GPa, E2 = 9.0 GPa, G12 = G13 = 7.1 GPa, G23 = 2.5 GPa, den-
sity q = 1600 kg/m3, and thickness h = 0.012 m. The acoustic fluid
has a density q0 = 1000 kg/m3 with sound speed c0 = 1500 m/s.
Parameters of C-shape stiffeners are chosen with modulus
E = 195 GPa, density q1 = 7700 kg/m3, web width b1 = 0.02 m,
flange width b2 = 0.02 m, thickness h1 = 0.001 m, and stiffener
spacing lx = ly = 0.2 m.
3.1. Validation of theoretical modeling

To verify the validity of the present theoretical model, the pre-
dictions are compared with existing theoretical results of Mace
[10] for sound radiation of orthogonally stiffened uniform plates,
as shown in Fig. 2. To indicate the advantage of the layerwise shear
deformable theory based model, the predictions for the structures
of the one layer and three layer configurations (with the same
thickness) are also included in Fig. 2. Note that whilst Mace
adopted the Kirchhoff thin plate theory to describe the base plate,
the present model applying to the one layer configuration is actu-
ally degraded to the first order shear deformation theory (FSDT).
The comparison of Fig. 2 demonstrates that the present results
agree excellently well with Mace’s results over a wide frequency
range. The discrepancies appearing approximately above 7000 Hz
are mainly attributed to the fact that the torsion moments of the
stiffeners are considered in the present theoretical model but not
in Mace’s model, and another reason lies on the different plate the-
ory. Moreover, it is interesting to note that, there exists significant
difference between two different configurations for stiffened cases
while no distinction is observed for unstiffened cases. This actually
demonstrates the advantage of the present layerwise shear
deformable theory based model, that is, it is necessary to adopt
the more accurate theory (i.e., the layerwise shear deformable the-
ory) to model the stiffened composite plates.

To further check the applicability of the present model, the infi-
nite model predictions and the finite model predictions (i.e., the fi-
nite radiation efficiency is applied) are both compared with the
published experimental results [23] for the sound transmission



Fig. 4. Comparison between present predictions and those of Yin and Cui [24] for
symmetric and antisymmetric laminated schemes under a transverse point force
excitation.

Fig. 5. Comparison between symmetrical and anti-symmetrical laminated schemes
under unit point in-plane force excitation.
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loss (1/3 octave) of unidirectional all metallic stiffened panel as
shown in Fig. 3. In this experiment, the size of the 4 mm thick alu-
minum base panel is 2.73 m by 3.43 m, and the periodic aluminum
stiffeners are spaced 40 mm apart. Again, the present model pre-
dictions are in good agreement with the experimental results espe-
cially in the coincidence region. The theoretical model with the
finite radiation efficiency applied shows superiority over the infi-
nite model in terms of the excellent agreements with experimental
results over the whole frequency range, particularly in the low fre-
quency region.

3.2. Flexural-extension coupling effect of composite bare plate

First, sound radiation from unstiffened laminated composite
plates excited by a transverse point force is considered, which has
been modeled by Yin and Cui [24] amongst others. To quantify
the flexural-extension coupling effect, Fig. 4 presents the predicted
sound pressure levels for two typical lamination schemes: symmet-
ric [75�/60�/45�]sym and anti-symmetric plies [75�/60�/45�]antisym.
The predictions by Yin and Cui [24] based on CLPT are also included
for comparison.

Yin and Cui [24] demonstrated that the influence of different
lamination schemes upon the SPL of a composite plate is negligible,
as shown in Fig. 4. However, if the thickness of a single ply is in-
creased from 1.5 mm to 2 mm (other parameters remain un-
changed), there exists a noticeable discrepancy between the
present predictions and Yin and Cui’s results especially in the high
frequency regime. This actually implies that the layerwise shear
deformable theory applied here is more accurate than the classical
laminated plate theory (CLPT) adopted by Yin and Cui [24] for
dealing with relatively thick composite plates for which the
flexural-extension coupling effect can be well demonstrated. Also,
the symmetric lamination scheme is found to produce stronger
radiation pressure than the antisymmetric one. This is considered
reasonable because flexural-extension coupling is absent in the
symmetric scheme and hence less energy is converted from
bending wave to longitudinal wave. Whereas, the coincidence of
all four curves in the low frequency regime (<3000 Hz) of Fig. 4
should be attributed to the fact that the identical heavy fluid (i.e.,
water considered here) dominates the low-frequency dynamic
response of composite plates [25].

To investigate further the flexural-extension coupling effect,
Fig. 5 presents the radiated sound pressure level of symmetrical
as well as anti-symmetrical laminates excited by an in-plane point
force. It is seen that, owing to the flexural-extension coupling
Fig. 3. Comparison between the present model predictions and the experimental
results [23] for sound transmission loss (1/3 octave) of unidirectional stiffened
plate.
effect, the anti-symmetric plate can radiate much larger sound
pressure compared to the symmetric one. Notice that, for in-plane
force excitation, the flexural-extension coupling effect may be
maximized because it is exactly this kind of coupling effect that
converts longitudinal wave energy to bending wave energy. The re-
sults of Figs. 4 and 5 reveal that the SPL of a composite plate ex-
cited by unit in-plane force is much lower than that of a
composite plate excited by unit transverse point force. This implies
that the contribution from in-plane force excitation to radiation
power may be neglected in comparison with that from transverse
force excitation of the same amplitude.

3.3. Flexural-torsion coupling effect of composite bare plate

The flexural-torsion coupling effect has been found to be impor-
tant in designing forward-swept wing composite structures having
enhanced aerodynamic performance [26]. How such coupling ef-
fect affects the vibroacoustic behaviors of a composite plate is
therefore of significant interest but always unnoticed by previous
researchers. To avoid the influence of other coupling effects,
three symmetric schemes are selected, including single-layer con-
figuration ([45�/45�/45�]), regular symmetric angle-ply configura-
tion with three layers [45�/�45�/45�] and fifteen layers
½45

�
=� 45

�
=45

�
=� 45

�
=45

�
=� 45

�
=45

�
=� �45� �sym. The predictions

are presented in Fig. 6. Notice that, the single layer configuration



Fig. 6. Influence of flexural-torsion coupling effect upon SPL versus frequency curve
of symmetric composite plates. Fig. 8. Influence of periodical spacing on sound radiation of the structure.
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means one scheme with flexural-torsion coupling effect, and this
coupling effect decreases as the number of layers is increased for
symmetric angle-ply configurations.

The results of Fig. 6 shows that the single layer configuration
produces larger far-field pressure over the other two symmetric
laminate schemes considered, which is consistent with existing re-
sults [27]. This is because the flexural-torsion coupling effect can
enlarge the bending deformation under transverse loading. The ob-
served discrepancy between single layer configuration and multi-
layer configurations illustrates the necessity for considering the
flexural-torsion coupling effect especially in the high frequency
regime.
3.4. Flexural-torsion coupling effect of stiffeners

Whilst it has been well established that flexural-torsion cou-
pling is important for beam structures with channel cross sections,
it is yet unclear to what extent this coupling effect may affect the
vibroacoustic response of a stiffened plate as such effect is usually
neglected for simplicity [23]. Fig. 7 plots the predicted far field
pressure of single layer ½45

�
� configuration excited by unit trans-

verse point force, with and without considering the flexural-tor-
sion coupling of the stiffeners. The results without flexural-
torsion coupling are obtained by neglecting the torsion motion
Fig. 7. Predictions with and without considering flexural-torsion coupling effect of
stiffeners for single layer configuration.
equations and coupling coefficient xa in Eq. (15). As shown in
Fig. 7, the flexural-torsion coupling effect of the stiffeners affects
the tendency of the SPL curve of the structure mainly in the way
of changing the peaks and dips in the SPL curve especially in higher
frequency range. As a matter of fact, this proves the importance
and necessity of the accurate stiffener modeling.
3.5. Influence of stiffener spacings

As the stiffener spacing (lx, ly) is one of the most important geo-
metric parameters governing wave propagation in the whole struc-
ture, it is of great significance to evaluate its influence on sound
radiation characteristic of the structure. Fig. 8 illustrates the far
field radiated sound pressure with (lx, ly) selected as (0.2, 0.2)m
and (0.25, 0.25)m respectively.

The attractive phenomena on the results is that all the peaks
and dips on the curve shift to lower frequency as the stiffener spac-
ings are increased. In fact, the inter-stiffener panels can be treated
as small bounded plates approximately as stated by Fahy and
Gardonio [25], and the peaks or dips on the radiation curves corre-
spond to resonance frequencies of these bounded plates. Therefore,
larger spacing results in lower natural frequency for fixed mode or-
der. Moreover, the approximate quantitative relation 4215/
2771 � (25/20)2 for two peaks as shown in the figure confirms
the present explanation again.
4. Conclusions

In this study, a layerwise shear deformable theory is adopted to
develop an analytical model for describing the vibroacoustic of
orthogonally stiffened laminated composite plates, in which full
account is given to various coupling effects including the flex-
ural-extension and the flexural-torsion couplings of the composite
base plates. Numerical results show that the coupling effects (i.e.,
the flexural-extension and the flexural-torsion couplings) owing
to material anisotropic base plate and the geometrical anisotropic
stiffeners can both play a significant influence on structure sound
radiation, which are also influenced by specific material properties,
lamination schemes and excitation frequencies etc. Particularly,
the symmetry of the composite plate exerts a significant effect
on the sound radiation of the considered structure when excited
by an in-plane point force. Moreover, since the inter-stiffener pan-
els can be treated as small bounded plates, the increase of the stiff-
ener spacing leads to the decrease of the natural frequency of the
structure for fixed mode order.
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