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The performance of a sound barrier is usually degraded if a large reflecting surface is placed on the

source side. A wave-trapping barrier (WTB), with its inner surface covered by wedge-shaped struc-

tures, has been proposed to confine waves within the area between the barrier and the reflecting sur-

face, and thus improve the performance. In this paper, the deterioration in performance of a

conventional sound barrier due to the reflecting surface is first explained in terms of the resonance

effect of the trapped modes. At each resonance frequency, a strong and mode-controlled sound field

is generated by the noise source both within and in the vicinity outside the region bounded by the

sound barrier and the reflecting surface. It is found that the peak sound pressures in the barrier’s

shadow zone, which correspond to the minimum values in the barrier’s insertion loss, are largely

determined by the resonance frequencies and by the shapes and losses of the trapped modes. These

peak pressures usually result in high sound intensity component impinging normal to the barrier

surface near the top. The WTB can alter the sound wave diffraction at the top of the barrier if the

wavelengths of the sound wave are comparable or smaller than the dimensions of the wedge. In this

case, the modified barrier profile is capable of re-organizing the pressure distribution within the

bounded domain and altering the acoustic properties near the top of the sound barrier.
VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4816542]

PACS number(s): 43.50.Gf, 43.20.El, 43.20.Rz [KML] Pages: 1960–1969

I. INTRODUCTION

A sound barrier is the most commonly used structure for

solving environmental noise problems. Its applications are

widely seen in many outdoor engineering projects, such as high-

ways,1 railways,2 and high-rise buildings.3 In general, a sound

barrier is placed between the noise source and the receiver to

prevent the sound wave from directly approaching the receiver.

Behind the barrier and on the receiver side, a shadow

zone exists where only the waves diffracted by the barrier

top can arrive. To characterize the diffraction field, Keller4

developed the geometrical theory of diffraction (GTD),

showing that the source of the diffracted rays is determined

by the incident rays toward the barrier’s top and by an appro-

priate diffraction coefficient. The diffraction coefficient is

dependent on the directions of incidence and diffraction, the

wavelength, and the geometrical and physical properties of

the media at the point of diffraction.

In this spirit, Pierce5 proposed an analytical model to

predict the sound pressure diffracted by a wedge. On the

other hand, Maekawa6 gave an empirical formula based on

extensive experimental measurements to estimate sound

barrier performance. This formula is easy to use and has

become a rough design tool in a wide range of noise

abatement engineering projects. A myriad of works regard-

ing the use of sound barriers to reduce environmental noise

are available in the literature; some good reviews of these

studies have been given by Ekici and Bougdah7 and Li and

Wong.8

To improve the performance of the sound barriers in

attenuating incoming noise, barriers with new profiles, such

as circular, T-shaped, Y-shaped, and branched, have been

designed.9–12 However, a problem arose with these new

types of barriers in that the conventional analytical and em-

pirical methods are no longer capable of dealing with bar-

riers with complex profiles. In this regard, the boundary
element method (BEM)13–15 becomes a good option for
studying the performance of a sound barrier with complex
profiles. By discretely solving the boundary integral equa-
tions via the BEM, acoustic quantities (such as pressure and
air particle velocity) can be readily obtained. The basic for-
mulation and implementation of a collocation BEM are well
established.16 However, errors may arise when performing
discretization and solving integrations. A discussion of the
errors occurring in the direct collocation BEM was presented
by Treeby and Pan,17 and an empirical guideline to maintain
a given global error constraint was suggested.

The performance of a sound barrier may be significantly

deteriorated when a large reflecting surface is placed on the

source side, in which case multiple reflections occur between

the barrier and the reflecting surface.18,19 Watts20 showed in

an experimental study that multiple reflections significantly
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degraded barrier performance. In his study, the insertion loss

(IL) of a sound barrier with a 2 m height was reduced by

4 dB(A) if a reflecting wall of the same height was erected on

the source side. As a solution, it was suggested to use absorp-

tion material or a tilted barrier to reduce this deterioration.

Monazzam and Fard21 studied the use of different shapes of

sound barrier to reduce the deterioration. Their comparison

suggested that a tilted barrier with a 10� slope yielded the

best IL. Indeed, the tilted barrier redirects the sound wave

upward, which reduces diffraction at the barrier top.

On the same principle, Pan et al.22 proposed a wave-

trapping barrier (WTB). The WTB has a profile with multi-

ple wedges on its surface. Each wedge has a perforated

surface, a back cavity, and internal lining to provide appro-

priate reflection and absorption of incident sound waves.

The qualitative interpretation of a WTB is that the wedges

always redirect reflected waves downwards to the ground so

that they are trapped within the domain bounded by the bar-

rier and reflecting surface. The superiority of the WTB over

conventional sound barriers has been experimentally vali-

dated at the Willowdale mining site in Western Australia.

In parallel with this development, Fahy et al.23 experi-

mentally examined a sound barrier with a wedged profile. In

their model, the wedge was coated by an absorption material

and the sloping wedge deflected the sound wave upward.

The field test22 and scale model test23 demonstrated the

potential of using a surface profile and sound absorption on

the sound barrier surface to overcome the performance deg-

radation due to multiple reflections. These previous experi-

mental works also demonstrated the need for understanding

how the multiple reflections degrade the barrier performance

and how exactly the surface profile and absorption affect the

sound reflection between the barrier and reflecting surface

and the diffraction of sound at the barrier top.

The main function of a sound barrier is shielding the re-

ceiver region within a shadow zone. Since only the diffract-

ing waves can arrive in this region, the acoustic properties at

the barrier top, i.e., the diffracting point, are crucial to the

performance of the barrier.4,5,24 When the incident sound

wave approaches the barrier top, the scattered sound field at

the barrier top becomes a secondary source. This secondary

source then radiates sound waves in all directions. When

multiple diffractions take place, the resulting sound pressure

can be solved iteratively.25–27 Without the reflecting surface,

the acoustic properties of the secondary source can be easily

obtained from the direct wave and the reflecting wave from

the ground.

If a reflecting surface is present, then a large number of

reflections and diffractions will occur for the waves between

the barrier and the reflecting surface. If the acoustical domain

is enclosed by boundaries, then the sound field within the do-

main can be obtained by the superposition of acoustical

modes.28 These modes, in turn, are determined by the geome-

try of the domain and the properties of the boundaries. A

question is then posed when an acoustical space confined by

two barriers is connected with an infinite space: “Is the sound

field in the sound barrier configuration contributed to by any

acoustical modes?” This paper will reveal the existence of

these acoustical modes, as a set of trapped modes, and the

mechanism of sound scattering of these modes at the barrier

top in relation to the decreased IL of a sound barrier with a

large reflecting surface on the source side. Furthermore, the

improvement of the IL when a WTB is used is explained by

the changes in the sound scattering characteristics of the re-

sultant modes at the barrier top.

II. MODELING OF THE SOUND BARRIERS

Figure 1(a) shows the cross sections (in the x-y plane) of

sound barriers with various surface profiles erected on the

ground. It is assumed that: (1) The cross sections are unchanged

in the z-direction, and (2) a harmonic time-dependence sound

pressure field is generated by a line source at (xs, ys) in the

cross-section plane. The sound pressure field can then be

described by a two-dimensional inhomogeneous Helmholtz

equation:

r2pðx; yÞ þ k2pðx; yÞ ¼ �Qsdðx� xsÞdðy� ysÞ; (1)

where r2 is the two-dimensional Laplace operator, k is the

wave number, p(x, y) is the sound pressure at location (x, y),

and Qs is the source strength per unit length. In order to eval-

uate the sound pressure, the following boundary conditions

should be satisfied:

(1) In the infinite far field (q¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
!1)

lim
q!1

ffiffiffi
q
p @qðq; hÞ

@q
� jkpðq; hÞ

� �

¼ 0 ðSommerfild radiation conditionÞ: (2)

(2) At the boundaries

@pðx; yÞ
@n

¼ 0; ðfor rigid boundryÞ

@pðx; yÞ
@n

¼ �jxq0vðx; yÞZðx; yÞðfor absorptive boundaryÞ;

8>><
>>:

(3)

where v(x, y) and Z(x, y) are the particle velocity and specific

acoustic impedance.

The sound wave equation and the associated boundary

conditions can be solved using the standard BEM.16 Upon

solving the sound pressure response to the source excitation,

the performance of the sound barrier is evaluated in terms of

the IL

IL ¼ 20 log10

p0

p1

����
����

 !
ðdBÞ; (4)

where p0 and p1 are the sound pressure at the receiver location

before and after the installation of the sound barrier, respec-

tively. As the work presented here aims to study the perform-

ance of a WTB, no effort is being made to improve the

algorithm of the BEM. Thus, the simulation is performed by

employing the commercial software package SYSNOISE,29

the software of which is found to be an effective tool for

examining the barrier performance.30
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III. RESONANCES WITHIN THE BOUNDED DOMAIN

The first topic to be studied is the deterioration of the

performance of a conventional rectangular barrier when a

reflecting wall of the same height is placed on the source

side. For simplicity, the boundary conditions of the barrier

and ground surfaces are assumed to be rigid. The dimensions

of the sound barriers used for the analysis are shown in Fig.

1(a), with the locations of source (S1), receiver (R1), and

reflecting wall drawn in Fig. 1(b). Location R0 is used to

assess the strength of the sound field near the diffracting

point. Locations R2 to R9 are evaluating points used for sub-

sequent examination of the changes in the sound field when

various barrier profiles are used.

The deterioration of the barrier performance due to the

reflecting wall is examined by comparing the ILs of the rec-

tangular barrier with and without the reflecting wall in

Fig. 2. When the reflecting wall exists, a significant change

in IL is observed. The barrier performance is improved at

some frequencies, but at many other frequencies the perform-

ance degenerates. In particular, negative IL values are found.

They indicate an increased sound pressure at receiver R1 due

to the presence of the reflecting wall. Moreover, the IL curve

for the barrier with a reflecting wall displays intense fluctua-

tions with many peaks and dips. This is a result of the con-

structive and destructive interference of direct and reflecting

FIG. 1. Schematic diagrams of the

investigated model: (a) Barriers of dif-

ferent profiles and (b) layout of barrier

and measurement points.

FIG. 2. (Color online) ILs observed at R1 for three configurations: A rectan-

gular barrier without a reflecting wall, a rectangular barrier with a reflecting

wall, and a WTB with a reflecting wall.
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waves at the diffracting point, which is the barrier top accord-

ing to the GTD.4

For a better understanding of this interference, the sound

pressure distributions at the frequencies of six of the dips in

the IL curve (the dotted curve in Fig. 2) are presented in

Fig. 3. The dips are chosen because they correspond to the

reduced performance in a “local” frequency range. It is noted

that dips selected are just examples and the phenomenon

applies to other dips as well. At each frequency, a clear spa-

tial modal distribution is identified within the domain

bounded by the reflecting wall and the barrier31 (the domain

is called the bounded domain hereafter). When the reflecting

wall is placed opposite the barrier, multiple reflections occur

at the surfaces of the reflecting wall and barrier, and these

reflecting waves superimpose with each other and with

the direct waves generated directly by the noise source.

Under a harmonic excitation of the source, the constructive

superposition of these waves forms a resonance response at

resonance frequencies. Eventually, the sound pressure distri-

bution at each of the above frequencies is dominated by one

mode with its natural frequency closely coinciding with the

frequency of the IL dip.

As will be illustrated in Sec. IV A, these modes can be

classified as trapped modes. Trapped modes in an infinite

space with local geometrical or material variations have

been identified in many systems. For example, a fluid

bounded by fixed surfaces and by a free surface of infinite

extent is capable of localized modal vibration under grav-

ity32 (called a trapping mode). A unique characteristic of the

trapped mode is that most of its acoustical energy is trapped

in a local area, and the energy density decays with distance.

IV. TRAPPED MODES

A. Solution of the trapped modes

Mathematically, trapped modes are the eigensolutions

of the homogeneous Helmholtz equation with specific

boundary and joined conditions. Koch,33 gave a numerical

examination of the trapped modes in an open cavity. To

solve the trapped modes under the configuration in Fig. 1(b),

the commercial software COMSOL MultiphysicsTM 3.5a is

employed.34 A basic difficulty in numerically solving the

trapped modes is the radiation of sound waves to infinity.

Practically, the infinite domain has to be truncated to a rela-

tive small size domain for computing efficiency. But this

treatment, in turn, causes unphysical wave reflections from

the boundary. With this in mind, Perfectly Matched Layer

(PML) absorbing boundary conditions35 are employed. A

PML enables an outgoing wave to leave the modeling do-

main with minimal reflections, promising the least influence

on the domain of interest from the reflections. In the current

analysis, PML is applied at the boundary of the original do-

main. A detail setup of this boundary condition can be

referred to Koch’s work.

The first six trapped modes of the current configuration

are calculated and presented in Fig. 4 (the PML domain is

not shown). As the characteristics of the trapped mode

shows, a strong oscillation with a high pressure amplitude

traps high energy within the bounded domain. In the region

outside the domain, the amplitude decays with distance. It is

worth noting that the resonant features of the trapped modes

are also extended to the region outside the barrier and the

reflecting surface. This is because the open configuration

cannot trap all the energy within the bounded domain, which

results in a pressure residue outside the bounded domain.

The orthogonal property of the trapped modes is also

examined in a numerical way. This was done by integrating

the product of any two modes in the domain divided by the

domain area. It is found that the self-product terms are much

larger than the cross-coupling terms, and the former are

approximately constant. This indicates a good orthogonal

property of the trapped modes.

B. Resonance frequencies of the trapped modes

The pressure distributions of the trapped modes in Fig. 4

between the barrier and the reflecting wall in the x-direction

are similar to those of the (1,0), (2,0), (3,0), (4,0), (5,0), and

(6,0) modes of a closed rigid-walled rectangular cavity of

the same length in the x-direction. Although the rigid-walled

boundary condition on the ground surface still produces a

sound field similar to those of the (1,0) to (6,0) modes near

the ground surface, the sound pressure distributions near the

top opening are significantly different from those of the rigid

wall modes, due to the radiation at the opening and diffrac-

tion by the barrier and reflecting wall. The radiation at the

cavity opening also causes the resonances of the trapped

FIG. 3. (Color online) Sound pressure

distributions at six dips of the IL curve

(see dotted curve, Fig. 2) when a

reflecting wall is placed opposite the

rectangular barrier, for: (a) 100 Hz, (b)

270 Hz, (c) 440 Hz, (d) 1480 Hz, (e)

1740 Hz, and (f) 2000 Hz.
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modes to deviate from the resonances of the fully rigid cav-

ity modes. For a rectangular cavity with all the boundaries

rigid, the resonance frequencies of the horizontal modes

(with modal structures parallel to the ground) are well

known:

fðn;0Þ ¼ nc0=2L; (5)

where n is the horizontal mode index, c0 is the speed of

sound, and L is the horizontal length of the cavity. A com-

parison shows that the resonance frequencies of the fully

rigid cavity are slightly lower than those of the trapped

modes. Indeed, unlike the cavity with all boundaries rigid,

the barrier and reflecting wall bounded domain has the top

boundary open. In this case, the surface mass at the opening

becomes a finite value instead of an infinite one as it would

be for a rigid top surface. As a result, the decreased boundary

inertia causes the increase in the resonance frequencies of

the trapped modes.

C. Sound pressure at the resonance frequencies of
the trapped modes

The question of whether the trapped modes can com-

pletely represent the sound pressure field at all frequencies

and locations remains an open question for further research.

For a resonant system, the resonant modes often play a dom-

inant role in describing the field response when the excita-

tion frequency x is equal to the resonance frequency xn of

the system. For this case, the sound pressure response at ro

to a point source excitation at rs can be approximately

expressed as (see detailed derivation in the appendix)36

pðr0;xnÞ �
c2

0

Knn

QsunðrsÞunðr0Þ
2jfnx2

n

þ
X
m6¼n

c2
0

Kmm

QsumðrsÞumðr0Þ
ðx2

m � x2
n þ 2jfnxnxmÞ

; (6)

where un and fn are, respectively, the shape and damping ra-

tio of the nth trapped mode. The second term in Eq. (6) is

the contribution of other trapped modes with resonance

frequencies xm in the vicinity of xn. This non-resonance

term becomes important when the source is located near the

nodal point of the nth mode and/or when the observation

location is located near the nodal point of the nth mode.

Using Eq. (6) and the characteristics of the trapped

modes, the sound pressure at R1 is computed at the first 14

resonance frequencies and compared with the result obtained

from SYSNOISE.

A total of 19 trapped modes (the eigenvalues of the

trapped modes are listed in Table I) are used in Eq. (6) and

below 800 Hz. The resultant sound pressures are marked as

stars in Fig. 5. As Fig. 5 shows, the contribution of trapped

modes dominates the radiated sound field at the resonance

frequencies of the modes. In fact, these major peaks are only

contributed to by the (*, 0) modes (The modal index are

defined through visual inspection). Therefore, if research is

only focused on predicting the major sound pressure peaks,

the use of the (*, 0) modes is sufficient for a good prediction.

V. SOUND FIELD AT THE DIFFRACTING POINT

For a rigid barrier placed on a rigid ground surface, the

energy generated by the sound source can only escape from

the opening of the cavity. Since only the diffracted waves

FIG. 4. (Color online) The first six

trapped modes in the parallel barrier

configuration.

TABLE I. The eigenvalues of the modes used in the modal superposition

method to approximate the corresponding peak.

Peak frequency

(Hz)

Eigenvalues of the

contributing modes

Peak frequency

(Hz)

Eigenvalues of the

contributing modes

50 64.14þ 6.13i 526 525.30þ 1.17i

102 103.49þ 3.66i 562 (weak) 561.43þ 10.25i

602.90þ 14.28i

186 184.97þ 3.78i 610 611.87þ 0.92589i

270 267.63þ 1.86i 642 (weak) 644.01þ 9.91i

354 344.70þ 19.15i 698 699.52þ 1.03i

353.15þ 2.06i

440 438.86þ 1.34i 730 (weak) 730.29þ 8.48i

745.05þ 19.61i

759.99þ 12.60i

478 (weak) 482.29þ 13.89i 782 788.01þ 1.01i

515.78þ 16.06i
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propagate into the shadow zone, the sound field properties

around the opening region must be responsible for the effi-

ciency of the diffraction and thus the sound pressure at the

receiver’s location in the shadow zone.

By analogy with the reflection and transmission coeffi-

cients defined for reflecting and transmitting waves, a dif-

fraction coefficient D is suggested in the GTD.4 In this

definition, a diffraction field is determined by the acoustical

property of the sound field at the diffracting point and D

pd ¼ Dpir
�1=2ejkr; (7)

where pd and pi are, respectively, the sound pressure at the

receiving and diffracting points, and r is the distance from

the diffracting point to the receiving point. Equation (7)

illustrates that: If a barrier is placed between the source and

the receiver, the sound field at the receiving point is indi-

rectly influenced by the incident wave. That is, the incident

wave first approaches the barrier top and diffraction happens.

The sound field at the barrier top then becomes a secondary

source, generating diffracting waves. To this end, the sound

pressure at the receiving point in the shadow zone has an in-

herent relationship with the sound pressure at the diffracting

point. In addition, since the thickness of the barrier used in

the current analysis is 0.02 m, which is much smaller than

the wavelength of the frequency of interest, one could sim-

ply assume that the diffracting point is at the barrier top.

The diffraction coefficient D is determined by the direc-

tions of the incident and diffracting rays, the wavelength,

and the geometrical and physical properties of the media at

the point of diffraction. An asymptotical expanded form of

the diffraction coefficient D is4

D ¼ � ejp=4

2ð2pkÞ1=2
sec

a� h
2

� �
þ sec

aþ h
2

� �� �
; (8)

where a and h are the angles as indicated in the enlarged

view in Fig. 6.

For the configuration of barrier and receiving point R1

used in Fig. 1, the variation of the diffraction coefficient D

with respect to the incident angle a is plotted in Fig. 6 at dif-

ferent frequencies. As we are only interested in the states at

and before diffraction happen, the distance r between the dif-

fracting point (screen tip) and the receiver is fixed. The plots

show that the diffraction coefficient is low for a high fre-

quency. This implies that a sound wave with a small wave-

length is diffracted with a low efficiency. As a result, the

sound pressure at receiver R1 has a descending trend with

the increase of frequency and the IL has an ascending trend.

In addition, at the same frequency, the increase of a attains a

bigger diffraction coefficient. That is to say, the sound wave

is more effectively diffracted if the incident wave impinges

normally to the barrier surface. In that case, the maximum

diffraction coefficient is reached. If the incident wave is in

parallel (at a grazing angle) with the barrier surface, a mini-

mum diffraction coefficient is obtained. For instance, at

500 Hz, a maximum difference of 16 dB is made at receiver

R1 if the sound wave direction varies from 0� to 90� at the

diffracting point.

Attention is then paid to the sound intensity field in the

region around the diffracting point. In Fig. 7, the sound in-

tensity field is examined at a peak (510 Hz) and a dip

(530 Hz) in the IL curve (the dotted curve in Fig. 2). At 510

Hz, the direction of the sound intensity field is nearly grazing

along the barrier surface, in which case the diffraction coeffi-

cient D is minimized. At 530 Hz, the direction of the sound

intensity field is nearly normal to the barrier surface and a

maximum diffraction coefficient is obtained. Moreover, the

amplitude of sound intensity (in terms of arrow length) is

high at the dip frequency and low at the peak frequency. As

a consequence, the diffracting source strength is high at

530 Hz, and it conducts a high sound pressure at receiving

point R1 and yields an IL dip, and vice versa. As the IL

curve in Fig. 2 predicts, an IL difference of 17 dB is found

between these two frequencies.

The above analysis indicates the dominant role of reso-

nance in deteriorating the barrier performance. This is fur-

ther evidenced by examining the sound intensity and its

direction at point R0 (at coordinates [0.9, 0.9]) in Fig. 8, a

point that is quite close to the diffracting point in the

FIG. 5. Comparison of sound pressure levels at the receiving point, as calcu-

lated by SYSNOISE and by the modal superposition method.

FIG. 6. Diffraction coefficient D versus incident angle a at three different

frequencies.
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configuration of Fig. 1(b). The resulting curves display

intense fluctuations in the spectrum due to the dominating

effect of each trapped mode. At the resonance of each mode,

sound intensity is high and energy flux is moving perpendic-

ular to the barrier surface, the conditions of which fulfill the

requirements of effective diffraction and thus barrier per-

formance is degraded. Meanwhile, one may notice that

within the spectrum between 900 and 1200 Hz that sound in-

tensity decreases and has a big trough, implying a weak reso-

nance effect in this spectrum. A plausible explanation is that

the noise source is located at the nodal line of the modes that

are dominant at these frequencies, so that the dominating

modes are not well excited.

VI. WTB PERFORMANCE ANALYSIS

A. Rigid boundary conditions

The performance of the WTB is evaluated herein. As an

illustration, the rectangular barrier is replaced by a WTB

[the WTB profile is shown in Fig. 1(a)]. In order to have an

overall evaluation of barrier performance, a mean IL is

defined as

ILmean ¼

PN
i¼1

ILðfiÞ

N
: (9)

In Eq. (9), N is the total number of sampling frequencies

used to calculate the total IL over the interested frequency

range. The IL of this new profile is also predicted at R1 and

compared with others in Fig. 2. When the WTB is used, the

overall IL is improved due to the modified profile. In terms

of ILmean, the WTB obtains a 12.9 dB reduction, which is

4.7 dB higher than that of the rectangular barrier. However,

one may notice that this improvement mainly occurs for a

frequency above 1000 Hz. At a frequency below 1000 Hz,

both barriers give nearly the same performance.

The change of barrier profile affects the mode shape of

the trapped mode, and thus alters the sound field at the dif-

fracting source. In this regard, the sound pressure distribu-

tions at 280 and 1730 Hz are examined and plotted in Figs.

9(a) and 9(b).

In Fig. 9(a), a similar pressure distribution to the ones in

the rectangular barrier case is observed. At this frequency,

the dominating mode is not significantly influenced due to

the change of barrier profile. Therefore, the pressure distri-

bution is unchanged and the contribution from this mode

remains high. Consequently, the resonance effect still counts

and degrades barrier performance. This explains the reason

why no improvement is found at the frequency below 1000

Hz although WTB is used. At 1730 Hz which is above

1000 Hz, pressure distribution within the bounded domain is

very diffuse. In terms of wavelength, 1730 Hz has a wave-

length smaller than the size of the wedges on the WTB.

Sound wave with wavelength less than this size is more sen-

sitive to the change of barrier profile. For a wavelength

within that length scale, the dominating modes are more eas-

ily affected by the change of barrier profile, and the influence

occurs in terms of sound pressure redistribution. As a result,

the sound pressure distribution at this frequency is very dif-

fuse, and the resonance feature is hard to identify.

The redistribution of sound pressure alters the sound field

around the diffracting source, and hence affects barrier per-

formance. With this concern, the sound intensity field is exam-

ined at the WTB IL dips in Fig. 10. At 280 Hz in Fig. 10(a),

FIG. 7. (Color online) Sound intensity fields in the region around the dif-

fraction point of the rectangular barrier, for (a) 510 Hz (IL peak) and (b)

530 Hz (IL dip).

FIG. 8. (Color online) Sound intensity (solid) and its direction (dashed) at

point R0. The marked region shows that the source is located at the nodal

line of the trapped modes that are dominant around these frequencies, so the

resonance effect is weak.
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energy flux is moving from left to right, having the same flow

pattern as it does in the IL dip in the rectangular case. Since

the dominating mode at this frequency is unchanged or less

affected by the change of barrier geometry, the sound intensity

pattern remains the same. At 1730 Hz, however, the WTB

takes effect. As can be observed in Fig. 10(b), energy flux is

distorted and trapped around the wedge, which shows an obvi-

ously different flow pattern.

The variation happens as a consequence of the changed

pressure distribution due to the WTB and the change mani-

fests itself in terms of energy flux direction and intensity

strength. At this frequency, the affected dominating mode

redirects energy flow, so the energy flux is not moving per-

pendicular to the barrier surface. In this case, the diffraction

coefficient D at the diffracting point becomes smaller. On

the other hand, the strength of the diffracting source is also

affected by the change of barrier profile, which causes less

energy to be emitted after the diffracting point. To this end,

the emitted energy is defined by integrating the sound inten-

sity at the barrier top from the exterior barrier surface over

90� in an anticlockwise direction (i.e., from h¼ 360� to

h¼ 270� in Fig. 6). The emitted energy of the rectangular

barrier and the WTB are computed and compared in Fig. 11.

Figure 11 shows, below 1000 Hz, that roughly the same

amount of energy is emitted from the two barriers, which

corresponds to the similar IL reductions in Fig. 2. Above

1000 Hz, the WTB emits less energy than a rectangular bar-

rier, which corresponds to a better performance in Fig. 2.

B. Absorptive boundary condition

The second parameter that affects the diffraction source

is the surface absorption of the barrier. It is found that the

use of absorption on the boundary with different absorption

coefficient values only influences the extent of the fluctua-

tion of the IL curves, but the overall IL trend maintains the

same. That is, a low absorption coefficient results in a fierce

fluctuation while a high absorption value yields a moderate

FIG. 9. (Color online) Sound pressure

distributions at two dips of the IL

curve when a reflecting wall is placed

opposite the WTB: (a) 280 Hz and (b)

1730 Hz.

FIG. 10. (Color online) Sound intensity field in the region around the dif-

fraction point of the WTB, for: (a) 280 Hz (an IL dip) and (b) 1730 Hz (an

IL dip).

FIG. 11. Integrations of the sound intensities of the rectangular barrier and

the WTB.
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fluctuation. The overall trends however maintain the same.

In fact, the effect of the absorbent WTB surface is to reduce

the strength of the sound waves reflecting from it. These

waves superimpose with the waves coming to the reflecting

wall, and generate the resonance effect (the standing wave

effect) within the bounded domain. Since the strength of the

wave is reduced, the resonance effect decreases as well. As a

result, IL fluctuations that are dominated by the trapped

modes become moderate.

VII. COMPARISON OF WTB TO RECTANGULAR
BARRIER AND TILTED BARRIERS

The performance of the WTB is evaluated and compared

with the conventional rectangular barrier and the tilted barrier

with an angle of 10� that was suggested by Monazzam and

Fard.21 The dimensions of the barriers are drawn in Fig. 1(a).

Comparisons are conducted at the nine receivers shown in Fig.

1(b) and the results are listed in Table II.

The results show that the tilted barrier has a better per-

formance than that of the rectangular barrier in the shadow

zone. When the WTB is used, a further average improvement

of 1.6 dB is obtained. This shows the potential of the WTB as

a solution to the performance deterioration when a reflecting

wall is placed on the opposite side of the barrier. In the illumi-

nated zone (R7), the tilted barrier has the worst performance.

Meanwhile, the IL of the WTB is still better than that of the

conventional rectangular barrier. Since the main function of

the WTB is to reduce the effects of multiple reflections, it is

not effective at reducing sound waves that are directly propa-

gating to the receiver in the illuminated zone.

VIII. CONCLUSIONS

The deterioration of the IL of a conventional sound bar-

rier with a large reflecting surface on the source side is due

to the resonance response of the sound field to the source in

the vicinity of the barrier and the reflecting surface. Such

resonance is a feature of the trapped modes inherent in the

parallel barrier configuration, the modes of which can be

used to reproduce the sound field at any point in the domain

by using the modal superposition method. At each resonance

frequency, strong oscillations and high energy are trapped

within the bounded domain. The high energy flux impinges

normally on the barrier surface at the top, which is the most

effective diffraction condition based on the geometrical

theory of diffraction. This results in the reduced IL.

A WTB for reducing this performance deterioration was

studied in this paper. It was demonstrated that a WTB is effec-

tive in reducing this deterioration at frequencies where the wave-

length of sound is comparable to or smaller than the dimensions

of the wedges on its surface. The surface profile of the WTB

reorganizes the pressure distribution within the bounded domain

and alters the sound field at the diffracting point. This allows for

a reduction of sound pressure at the receiver point. If absorptiv-

ity is further added to the surface of the WTB, the IL fluctuations

governed by the resonance effect become moderate. However,

the overall IL trend does not have a significant change. Finally,

the performance of a WTB was compared with a conventional

rectangular barrier and a tilted barrier. Results showed that the

WTB has a better overall performance in IL.
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APPENDIX

This appendix presents the derivation of Eq. (6). The

sound radiation by the acoustic sources within the parallel

barriers (also called an open resonator in previous work37)

can be described by the eigenvalues kn and the eigenfunc-

tions /n (x, y), described by a boundary value problem of the

Helmholtz equation. For this problem, the two-dimensional

Helmholtz equation needs to be solved subject to Neumann

boundary conditions on the rigid surfaces of the ground and

the sound barriers, allowing only outgoing waves with a pos-

itive outward flow of sound energy. The eigensolutions sat-

isfy the Helmholtz equation

r2/nðx; yÞ ¼ �K2
n/nðx; yÞ: (A1)

Due to the radiation loss of the outgoing waves, the

eigenvalues are complex, with Re(Kn) producing the reso-

nance frequencies (xn¼ c0 Re(Kn)) and both it and Im(Kn)

determining the quality factors of the resonance modes

ðQn ¼ ReðKnÞ=2jImðKnÞjÞ. The modal damping ratio and

quality factor are related by fn ¼ 1=2Qn. As a result,

Kn ¼ xn=c0ð1þ jfnÞ.
The sound pressure generated by a point source within

the open resonator is expanded by the eigenfunctions

p ¼
X

m

pm/mðx; yÞ; (A2)

and then substituted into Eq. (1). Using Eq. (A1) and the

orthogonality property of the eigenfunctions, the modal am-

plitude is obtained as

TABLE II. ILmean of barrier with different profiles.

Rectangular

barrier (dB)

Tilted

barrier (dB)

WTB

(dB)

R1 7.2 11.8 13.2

R2 6.2 11.3 12.4

R3 5.5 10.9 11.9

R4 10.7 16.0 17.3

R5 10.1 15.2 16.8

R6 10.5 15.9 17.1

R7 (Illuminated zone) 3.2 2.0 3.8

R8 4.5 7.4 10.6

R9 7.8 13.7 14.7
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pm ¼
�Qs/mðxs; ysÞ

Kmmð�K2
m þ k2Þ ; (A3)

where Kmm ¼
Ð

A/2
mðx; yÞ dxdy and A is the domain in which

the eigenvalues and eigenfunctions are calculated. Thus, for

fm� 1, Eq. (A2) becomes

pðx; y;xÞ ¼
X

m

c2
0Qs/mðxs; ysÞ/mðx; yÞ

Kmmðx2
m � x2 þ j2fmx2

mÞ
: (A4)

The calculation of the eigenvalues and eigenfunctions

demonstrates the existence of two types of modes. The first

type includes the trapped modes, which have a small radia-

tion loss, while the second type includes the leaky modes,

which are associated with a large radiation loss. The high-

frequency leaky modes are numerically difficult to deter-

mine. On the other hand, at frequencies located away from

the resonance frequencies, or where the dominating trapped

modes are not effectively excited by the source, a large num-

ber of leaky modes are required for an accurate description

of the sound pressure. As a result, the accuracy of the modal

expansion of the sound pressure will be poor at those

frequencies.

However, the modal expansion will give a more accu-

rate description of the sound pressure when the driving fre-

quency is equal to one of the resonance frequencies of the

trapped modes. This is because the trapped modes can be

readily determined numerically and because it has a domi-

nating magnitude if the sound field is excited at its resonance

frequency and if the source and the corresponding eigen-

function are well coupled. For this case, Eq. (A4) can be

approximated as

pðr;xnÞ �
c2

0

Knn

QsunðrsÞunðrÞ
2jfnx2

n

þ
X
m 6¼n

c2
0

Kmm

QsumðrsÞumðrÞ
ðx2

m � x2
n þ 2jfnxnxmÞ

; (A5)

where r¼ (x, y) and rs¼ (xs, ys).
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