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Abstract: A systematic identification method for non-linear stochastic spatiotemproal (SST) systems described by non-linear
stochastic partial differential equations (SPDEs) is investigated in this study based on pointwise observation data. A theoret-
ical framework for a semi-finite element model approximating to an infinite-dimensional system is established, and several
fundamental issues are discussed including the approximation error between the underlying infinite-dimensional dynamics
and the model to be identified, and its rationality etc. Based on the proposed theoretical framework, a general identification
method with irregular observation data is provided. These results not only provide an effective method for the identification
of non-linear SST systems using measurement data (both offline and online), but also demonstrate a potential solution for the
analysis, design and control of non-linear SST systems from a numerical point of view.

1 Introduction

The stochastic partial differential equation (SPDE) theory
was initiated by the study of concrete model equations in
physics and engineering and evolved gradually into a new
branch of modern mathematics [1–3]. Different SPDEs have
been proposed and successfully applied to describe the lin-
ear and non-linear spatiotemporal physical phenomena in
different areas, especially in finance analysis, fluid dynam-
ics, field quantum theory and statistical mechanics etc [4–6].
The solution of an SPDE is usually established in the frame-
work of infinite dimensional abstract spaces, and the average
qualitative properties in Banach spaces of the solutions such
as existence, stability and asymptotic behaviours etc can
be studied using stochastic analysis theory and generalised
functional theory etc [5–7]. Some efficient numerical meth-
ods can also be employed to find an approximation of the
solution of a SPDE system, including stochastic difference
methods and stochastic finite element methods [8–10]. It
should be noted that the approximation errors with the dif-
ference methods strongly rely on the differential form of the
SPDE and can only be investigated case by case with respect
to a specific SPDE. However, the analysis and approxima-
tion errors with the finite element methods can be more
convenient to implement in the framework of infinite dimen-
sional spaces, since the numerical stochastic finite element
method itself is established with the idea of using finite
dimensional basis spaces to approximate infinite dimensional
spaces [11–14].

Nonlinear system identification is to build a mathemati-
cal model with measurement data for non-linear dynamical
systems, and many methods have been proposed such as
set membership, neural network, orthogonal least square

etc [15–18]. Among those, the kernel learning method is
a very promising one, which could realise the best estima-
tion with least number of samples [19, 20]. For identification
of deterministic spatiotemporal dynamical systems given by
PDEs [21–26], continuous spatiotemporal dynamical sys-
tems can be transformed into coupled lattice dynamical
systems, in which the variables with respect to each node
represent the same set of physical quantities and orthog-
onal forward regression algorithms are utilised to obtain
the numerical relationship of these variables. For non-
linear spatiotemporal systems given by deterministic PDEs
in variational formulation, orthogonal least squares algo-
rithms and finite dimensional approximation methods are
also exploited with experimental measurement data to iden-
tify a non-linear model which can reproduce the underly-
ing dynamic phenomena directly [27]. On the one hand,
although these results provide an important insight into the
modelling, analysis and control of spatiotemporal dynam-
ical systems, few results are noticed in the literature to
address the identification problems of non-linear stochastic
spatiotemproal (SST) systems. As discussed before, a non-
linear SPDE or SST model would be more preferable in
practice since it can effectively and reasonably take noise
process into consideration. However, the existing identifi-
cation methods for deterministic PDE systems may not be
straightforward to be generalised to the stochastic cases.
Some fundamental theoretical issues related to the numeri-
cal approximation of an SPDE should be addressed before
potential identification methods can be reasonably proposed
and applied. On the other hand, in conventional identifi-
cation methods for spatiotemporal systems [21–24], it is
usually required that the observation locations are uniformly
distributed on the spatiotemporal plant. Obviously, this is an
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undesired restriction, which may lead the conventional meth-
ods to be infeasible or inapplicable in some applications,
since sensors are not always able to be placed uniformly.
Moreover, to the best of the authors’ knowledge, there is
still a few results available for the identification of spa-
tiotemporal systems with irregular observation locations at
present.

The contribution of this paper is in two aspects. The first
one is that theoretical results are developed to address some
fundamental problems related to the approximation errors
between the estimated semi-finite element model and the
original infinite-dimensional SPDE dynamic system. Some
techniques from inverse semi stochastic finite element meth-
ods and stochastic approximation methods are employed for
this purpose. The Galerkin approximation method is utilised
to construct a finite-dimensional stochastic system, which
is used to approximate the non-linear infinite system under
study. Based on these theoretical results and techniques, a
systematic identification framework for non-linear SST sys-
tems using available measurement data from both theoretical
and practical viewpoints is thus developed. It is shown that
the numerical relationship of the basis coefficients of the
finite element model can be transformed into a regression
equation of multi-input-multi-output (MIMO) partially linear
model (PLM) instead of commonly used non-linear autore-
gressive network with exogenous inputs (NARX) one, which
greatly facilitates the implementation of the proposed iden-
tification method. The second contribution of this paper is
to provide a general identification method for non-linear
spatiotemporal systems with irregular observation locations.
Necessary discussions and numerical examples are given to
illustrate the effectiveness of the proposed method and to
point out potential applications of our results.

The rest of the paper is organised as follows. The
stochastic evolution system for SPDEs is introduced in
Section 2. The convergence and estimation theorems of
finite-dimensional approximation models in semi-discretised
and fully discretised cases are formulated in Section 3.1.
The identification approach and the underlying idea that
governs the identification process based on inverse semi-
finite element method and stochastic analysis are discussed
in Sections 3.2 and 3.3 introduces kernel based par-
tially linear least-square regularised regression (PL-LSRR)
algorithm for identification of SST systems. The identifi-
cation method with irregular observation data is given in
Sections 3.4 and 3.5 provides some discussion about the
advantages and limitations of the proposed method. Exam-
ples are provided in Section 4 and some conclusions are
drawn thereafter in Section 5.

2 Stochastic evolution equations

Let H be a separable Hilbert space. Denote by | · | the norm
in H , by (·, ·) the scalar product in H . ‖ · ‖ is also used to
denoted the norm in ordinary Banach space. Let (�, �, �t , P)
be a complete probability space with a filtration {�t} satisfy-
ing the usual condition (i.e. the filtration contains all P-null
sets and is right continuous). E is used to denote the math-
ematical expectation with respect to the probability space.
W (t) is H valued, Q-Wiener process introduced in [3, 8, 12],
with eigenvalues γl > 0 and corresponding eigenfunctions
ξl . Bl , l = 1, 2, . . ., is a sequence of real valued indepen-
dently and identically distributed Brownian motions. Then
W (t) = ∑∞

l=1 γ
1/2
l ξlBl(t).

Consider the following non-linear stochastic evolution
equation{

du(t) + Au(t) dt = f (u(t)) dt + dW (t), t ∈ [0, T ]
u(0) = u0

(1)

in Hilbert space H , where u(t) is an H valued stochastic
process, A is a linear, self-adjoin, compact, positive-definite
operator densely defined on the corresponding definition
domain D(A) ⊂ H . We also have the following basic
assumptions

(I ) A : D(A) ⊂ H → H is the infinitesimal generator of
a strongly continuous analytic semi-group of bounded lin-
ear operators E(t), t ≥ 0 on H . The initial data u0 is an �0

measurable H valued stochastic variable.
(II ) f is a non-linear mapping from H to H satisfying

the global Lipschitz condition and linear growth condition.
There exists a constant L0 such that

|f (x) − f (y)| ≤ L0|x − y|, |f (x)| ≤ L0|x|, ∀x, y ∈ H

Definition 1: An H valued process u(t) is said to be a weak
solution of system (1). Let A∗ is the adjoint operator of A
and defined on the corresponding definition domain D(A∗),
if u(t) has Bochner integrable trajectories P-almost surely
(P − a.s.) and for ∀v ∈ D(A∗) and ∀t ≥ 0

(u(t), v) = (u0, v) +
∫ t

0

(u(s), A∗v) ds +
∫ t

0

(f (u(s)), v) ds

+
∫ t

0

(dW (s), v) ds, P − a.s. (2)

Definition 2: An H valued �t measurable process u(t) is
said to be a mild solution of system (1), if E|u(t)|2 < ∞
and u(t) satisfies the following equation

u(t) = E(t)u0 +
∫ t

0

E(t − s)f (u(s)) ds

+
∫ t

0

E(t − s) dW (s), P − a.s. (3)

The phase space H studied here is an infinite-dimensional
Hilbert space, which usually represent some function space
on spatial domain D ⊂ Rd with boundary ∂D where the
physical phenomena are generated. The stochastic evolu-
tion equation in (1) actually represents a large class of
non-linear stochastic systems described by stochastic heat
equations, stochastic wave equations, stochastic reaction–
diffusion equations with appropriate boundary conditions
(e.g. Dirichlet or Neumann boundary conditions) [14, 28,
29]. The existence and uniqueness of the solution for sys-
tem (1) can be derived by the standard techniques in [3] with
the assumptions presented above. In the following parts of
this section, it is assumed that D = [0, 1] and H = L2(D)
and A is a second-order differential operator on D(A) =
H 2(D) ∩ H 0

1 (D) [14, 28]. The method to be developed could
be easily extended to the case of multi-dimensional spatial
domain. The corresponding deterministic system of (1) can
be written as{

du(t)/dt + Au(t) = f (u(t)), t ∈ [0, T ]
u(0) = u0

(4)

For system (1), we firstly give a result about the regularity
of the solution. For convenience, C is used to represent any
constants stemming from our computations.
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Lemma 1: Let u be the mild solution of system (1), then
for ∀0 ≤ t1 ≤ t2 ≤ T , there exists a constant C = C(u0, T ),
such that

E|u(t2) − u(t1)|2 ≤ C(t2 − t1) (5)

Proof: The proof is straightforward by following Definition
2, and using Lemma 2 and Holder inequality etc., which is
thus omitted for paper limitation. �

3 Identification method

The proposed identification method will be discussed in four
steps. First, we establish a general identification framework
for SPDE systems and propose a general finite-dimensional
approximation regression model (Sections 3.1 and 3.2).
Second, the deterministic part of the regression model
for the deterministic part of the equation is estimated
by using a kernel-based learning approach PLM–LSRR
(Section 3.3). Third, a general identification method is pro-
posed for identification problems with irregular observation
data (Section 3.4). Finally, some necessary discussions are
given for the established stochastic parametric MIMO–PLM-
based model (Section 3.5).

3.1 Approximation errors

In this section, a finite-dimensional approximation model is
proposed to approximate the infinite-dimensional stochas-
tic dynamical system (1), and some fundamental results
regarding the approximation error and convergence of the
finite-dimensional approximation model are provided.

Let {Th}0<h<1 be a regular family of triangulations on spa-
tial domain D with the maximal edge length h. Let Sh be a
family of finite-element spaces consisting of piecewise con-
tinuous polynomials. The semi-discrete model of system (1)
is presented as follows{

duh(t) + Ahuh(t) dt = Phf (uh(t)) dt + Ph dW (t), t ∈ [0, T ]
uh(0) = Phu0

(6)

where Ah : Sh → Sh is the discrete analogue of A defined
by (Ahη1, η2) = A(η1, η2), ∀η1, η2 ∈ Sh. Here A(·, ·) is bilin-
ear form obtained from the differential operator A. Ph

denotes the orthogonal projection from H onto Sh defined
by (Phξ1, ξ2) = (ξ1, ξ2), ∀ξ1 ∈ H , ∀ξ2 ∈ Sh. Let Eh(t), t ≥ 0
be the analytic semi-group on Sh. The mild solution of the
approximation system above is given by

uh(t) = Eh(t)Phξ +
∫ t

0

Eh(t − s)Phf (uh(s)) ds

+
∫ t

0

Eh(t − s)Ph dW (s), P − a.s. (7)

For any s ∈ R, let Ḣ s = Ḣ s(D) = D(As/2) (see [14]) with
norm ‖v‖s = ‖As/2v‖. The following two lemmas present
fundamental and useful properties of the analytic semi-group
mentioned above.

Lemma 2 [14]: For ‖ζ‖Ḣ 2 < ∞ and ∀t ≥ 0, there exists a
constant C such that

|Eh(t)Phζ − E(t)ζ | ≤ Ch2‖ζ‖Ḣ 2 , and∫ t

0

‖Eh(t − s)Ph − E(t − s)‖2 ds ≤ Ch2 (8a)

The objective is to establish a semi-finite element approx-
imation model to the stochastic spatiotemporal dynami-
cal system in (1) using observation data. The dynamical
behaviours of the semi-finite element approximation model
to be identified could be different from the original SPDE,
and the approximation error would also be closely affected
by the number of dimensions of finite-element spaces and
the length of time step. For these reasons, two theorems
describing the approximation errors in mean-square manner
are provided. The first one addresses the approximation error
of the semi-discrete model in (6).

Theorem 1: If E‖u0‖2
Ḣ 2 < ∞, then for ∀t ∈ [0, T ], there

exists a constant C = C(u0, T ) such that

E|uh(t) − u(t)|2 ≤ Ch2 (8b)

Proof: See Appendix 1. �

The following results provide an estimation of the approx-
imation error in the fully discrete case. That is, not only
the finite-element approximation is used with respect to the
spatial variable, but also the difference method is used with
respect to the time variable. Let �t be the time step and
tn = n�t with n ≥ 1. The backward Euler method for (6)
is used here to obtain the approximation variable in semi
finite-element model

uh(tn) − uh(tn−1)

�t
+ Ahuh(tn) = 1

�t

∫ tn

tn−1

Phf (uh(tn−1)) ds

+ 1

�t

∫ tn

tn−1

Ph dW (s), n ≥ 1

uh(0) = Phu0 (9)

Let r(λ) = 1/(1 + λ), (9) can be rewritten as a equivalent
form as follow

uh(tn) = r(�tAh)uh(tn−1) +
∫ tn

tn−1

r(�tAh)Phf (uh(tn−1)) ds

+
∫ tn

tn−1

r(�tAh)Ph d(s), n ≥ 1

uh(0) = Phu0 (10)

Here (10) is the discrete approximation system of the
finite-element system (6), and then uh is the approximate
solution of the finite-element system (6). Therefore the
solution obtained by iteration from (10) is also reasonably
used to approximate u(tn). The main results regarding the
approximation error are presented as follows.

Theorem 2: Let u and U n be the solutions of system (1)
and (10), respectively. If E‖u0‖2

Ḣ 2 < ∞, then there exits a
constant C = C(T , u0), such that

E|uh(tn) − u(tn)|2 ≤ C(�t + h2) (11)

Proof: See Appendix 2. �

It can be concluded from Theorems 1 and 2 that the
semi-finite element model converges to the original SPDE,
and the approximation error are O(h2) and O(�t) with
respect to spatial variable and time variable, respectively.
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3.2 Identification framework

For the stochastic evolution system (1), define a par-
tition of [0, T ] × [0, 1] by rectangles [tk , tk+1] × [xj, xj+1]
for k = 1, 2, . . . , M and j = 1, 2, . . . , N , tk = (k − 1)�t, xj =
(j − 1)�x, �t = T/M , and h = �x = 1/N . Here, M is the
number of samples. From the definition of the weak solution
in (2), an equivalent finite-element variational formulation of
system (1) is given as follows. For ∀φ ∈ Sh

(φ, uh(t)) = (φ, Phξ) +
∫ t

0

(A∗
hφ, uh(s)) ds

+
∫ t

0

(φ, Phf (uh(s)) ds) +
∫ t

0

(φ, Ph dW (s))

(12a)

which implies

(φ, uh(tk)) = (φ, Phξ) +
∫ tk

0

(A∗
hφ, uh(s)) ds

+
∫ tk

0

(φ, Phf (uh(s)) ds) +
∫ tk

0

(φ, Ph d(s))

(12b)

(φ, uh(tk+1)) = (φ, Phξ) +
∫ tk+1

0

(A∗
hφ, uh(s)) ds

+
∫ tk+1

0

(φ, Phf (uh(s)) ds) +
∫ tk+1

0

(φ, Ph d(s))

(12c)

and then, for the given time partition, we have

(φ, uh(tk+1) − uh(tk)) =
∫ tk+1

tk

(A∗
hφ, uh(s)) ds

+
∫ tk+1

tk

(φ, Phf (uh(s)) ds)

+
∫ tk+1

tk

(φ, Ph d(s)) (13)

Then, a difference method is used with respect to the time
variable

(φ, uh(tk+1)) = (φ, uh(tk)) + �t(A∗
hφ, uh(tk))

+ �t(φ, Phf (uh(tk))) +
∫ tk+1

tk

(φ, Ph d(s))

(14)

To find the approximation solution of system (1) in the finite
element space. Let

uh(t, x) =
Nh∑
l=1

ul(t)φl (15)

where Nh is the dimensional number of finite element basis,
φl(x) is the given finite-element bases used for approxi-
mation such as B-spline function basis [30] and ul(t)′s are
the coefficients of the finite-element basis. Denoting Phf by

fh : Sh → Sh, and substituting (15) into (14), we have

Nh∑
l=1

ul(tk+1)(φ, φl) =
Nh∑
l=1

ul(tk)((φ, φl) + �t(A∗
hφ, φl))

+ �t

(
φ, fh

(
Nh∑
l=1

ul(ti)φl

))

+ (φ, Ph(W (tk+1) − W (tk))) (16a)

and then

Nh∑
l=1

(ul(tk+1) − ul(tk))(φ, φl)

=
Nh∑
l=1

ul(tk)�t(A∗
hφ, φl) + �t

(
φ, fh

(
Nh∑
l=1

ul(tk)φl

))

+ (φ, Ph(W (tk+1) − W (tk))) (16b)

Let φ = φl , l = 1, 2, . . . , Nh. Note that F0(U (tk)) =
(f1(U (tk)), f2(U (tk)), . . . , fNh(U (tk)))

T, A0 = [aij], B = [bij]
and E0(tk) = e�

1(tk), e�
2(tk), . . . , e�

Nh
(tk)), where aij = �t(A∗

hφj,
φi), bij = (φj, φi), U (tk) = (u1(tk), u2(tk), . . . , uNh(tk))

T, fi

(U (tk)) = �t(φi, Phf (
∑Nh

l=1 ul(tk)φl)) and e�
i (tk) = (φi, Ph

(W (tk+1) − W (tk))) for 1 ≤ i, j ≤ Nh. Moreover, it is obvi-
ous that A0 is a symmetrical, Nh dimensional, definite matrix.
Then, based on (16b), we have

B(U (tk+1) − U (tk)) = A0U (tk) + F0(U (tk)) + E0(tk)
(17a)

which implies

U (tk+1) = U (tk) + B−1A0U (tk) + B−1F0(U (tk))

+ B−1E0(tk) (17b)

The random term can be approximated as follows [11]

∫ tk+1

tk

(φ, Ph d(s)) = (φ, Ph(W (tk+1) − W (tk)))

=
(

Nh∑
l=1

α
1/2
j φl(Bj(tk+1) − Bj(tk)), φ

)

It can be seen that the random term above is normally
distributed for the characteristics of Bj. αj can be com-
puted by solving the following equation

∑Nh
l=1 αl(φl , ψ)2 =∑Nh

l=1 γl(ξl , ψ)2, ∀ψ ∈ Sh.
In this paper, first, it is assumed that the data in the spatial

domain are sampled at the locations that are uniformly dis-
tributed on D = [0, 1], that is the data are spatially sampled
at the points (1/N ), (2/N ), . . . , (N − 1/N ) and thereafter
Nh = N . Similarly, in the time domain, the data are uni-
formly sampled over the interval [0, T ] of observation with
a sampling period �t.

Based on (16), let φ = φl , l = 1, 2, . . . , Nh. Then, a
multi-dimensional non-linear discrete difference equation is
obtained, and the finite-element basis coefficients ul(ti) could
be computed in an iterative manner. It can be seen that
if the finite element basis φl , the spatial step �x and the
time step �t are given, the corresponding finite-element
basis coefficients ul(ti) are determined by a resulting regres-
sion equation as ( 17b). In the finite-element approximation
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theory for SPDEs, ul(ti)
′s are usually considered as the

approximation value of u(ti, xl)
′s, which provides a possi-

bility to investigate the stochastic dynamical system from a
system identification perspective. That is, we could estimate
the approximation model for the stochastic system directly
from measurement data. Note that the matrix B is known for
given finite-element basis, to use this prior knowledge for
identification, the regression model (17b) can be rewritten
as follows

Y (tk) = A0U (tk) + F0(U (tk)) + E0(tk) (18)

where Y (tk) = B(U (tk+1) − U (tk)). From (17) and (18), it is
clear that even if the specific form of the SPDE is completely
unknown, the numerical relationship of the finite-element
coefficients can still be described by the following MIMO–
PLM

Yl(tk) = βT
l U (tk) + Fl(U (tk)) + el(tk), for l = 1, . . . , Nh

(19)

where Yl , is the corresponding lth term of Y , βT
l , F ′

l s and
e′

ls are corresponding coefficient vector of the linear part,
unknown non-linear mappings and noise terms respectively
for Nh = N dimensional system that is to be determined
directly from the discrete observation data of u(ti, xl). For
more details of the PLM, it can be referred to the refer-
ences [18, 19]. Then, it can be seen that (17b) could be
used as a predictor for the finite-element coefficients as the
model (18) and (19) are identified by using the observations.

B-spline finite-element basis is used here, and let {φl}N
l=0

be the standard l0th order B-spline basis. If the model (19)
is estimated from the observation data, the approximation
semi-finite element model for system (1) can be constructed
by two parts. The first part is to estimate the regression
model (19) for the finite-element basis coefficients. The sec-
ond part is the interpolation, in which the cubic (three order)
B-spline interpolation and linear B-spline interpolation are
used in the spatial domain and time domain, respectively.

û(t, x) =
M∑

i=1

N∑
l=1

ûh(ti, xl)�
1,3
i,l (t, x) (20)

where �1,3 = φM ,1(t) ⊗ φN ,3(x) is two-dimensional tensor
splines and ûh(ti, xl) is obtained by (21). û(t, x) is the esti-
mate for u(t, x) using the identified semi-finite element
model. It should be noted that ûh(ti, xl) is in fact a ran-
dom variable, and the approximation error of the semi-finite
element model to be identified in mean-square manner is
described by Theorems 1 and 2.

3.3 Kernel learning method and the modelling of
the system

To investigate the identification problem of non-linear spa-
tiotemporal system approximated by (19) and not to lose
the generality, a general input vector that consists of all
possible variables could be constructed as z(k) = [U T(k),
. . . , U T(k − nU + 1)]T, where U (k) = [u1(tk), . . . , uN (tk)]T.
Then, for each channel

Yl(t) = β�T
l z(t) + F�

l (z(t)) + el(t), for l = 1, . . . , Nh

(21a)

where β�T
l ’s and F�

l ’s are coefficients of the linear part and
unknown non-linear functions to be estimated. This leads to

a MIMO–PLM model, which includes all the possible com-
binations of regression terms. It is shown in [31] that it is
possible to use a PLM with particular model structure to
successfully identify a non-linear system containing a lin-
ear part and a non-linear component with potentially better
performance by using the corresponding kernel-based learn-
ing algorithm (PL-LSRR). For identifying the SST system
of this study, the PL-LSRR [31] is adopted here.

To introduce PL-LSRR, we give the definition of the
reproducing kernel Hilbert space (RKHS). Let K : Z × Z →
R be continuous, symmetric and positive semi-definite,
where Z is a vector space. Such a function is called a
Mercer Kernel. The RKHS HK associated with the kernel
K is defined to be the closure of the linear span of the
set of functions {Kz := K(z, ·), z ∈ Z} with inner product
〈·, ·〉HK = 〈·, ·〉K satisfying 〈Kz, Kz′ 〉K = K(z, z′). If the kernel
function is chosen as a linear kernel: Klin(z, z′) = zTz′, The
RKHS is the space of linear functions. If the kernel function
is chosen as a Gaussian radial basis function (RBF) kernel:
KRBF(z, z′) = exp(−‖z − z′ ‖2

2 /σ 2), the RKHS is a space of
non-linear functions and has good approximation perfor-
mance for smooth non-linear functions. For model (21) and
given sample set {Yl(t), z(t)}M

t=1, where M is the number of
samples. For given l ∈ {1, 2, . . . , Nh}, we note

Yl(t) = gl(z(t)) = β�T
l z(t) + F�

l (z(t)) + el(t) (21b)

ĝl = gl,1 + gl,2 as the model for the estimation of the regres-
sion function g, where gl,1 and gl,2 are used to approximate
the linear and non-linear part of the PLM, respectively,
and they are obtained by solving the following PL-LSRR
optimisation problem in two RKHSs

min
gl,1∈HKlin ,gl,2∈HKRBF

1

M

M∑
t=1

{
(Yl(t) − gl,1(z(t)) − gl,2(z(t)))

2

+ν1‖gl,1‖2
Klin

+ ν2‖gl,2‖2
KRBF

}
(22)

where ‖gl,1‖2
Klin

= 〈gl,1, gl,1〉Klin , ‖gl,2‖2
KRBF

= 〈gl,2, gl,2〉KRBF ,
and ν1, ν2 are regularisation constants. The PL-LSRR uses
the sum of two functions (one is in HKlin and the other
is in HKRBF ) to approximate the regression function. The
regularisation constants ν1, ν2 are used to make a trade-off
between the empirical prediction errors and the complexity
of the model. The ratio ν = ν1/ν2 is important for how much
linear function component should appear in the predicting
function. When ν is small, the non-linear function compo-
nent is restrained more, and more linear function component
appears in the predicting function. The solution of (22) can
be obtained as follows

gl,1(z) =
M∑

t=1

atKlin(z, z(t)), gl,2(z) =
M∑

t=1

btKRBF(z, z(t))

(23)

where a = (a1, . . . , aM )T and b = (b1, . . . , bM )T is the unique
solution of the well-posed linear system

[
Mν1I + Klin[z] KRBF[z]

Klin[z] Mν2I + KRBF[z]
]

·
[

a

b

]
=

[
Yl

Yl

]
(24)

where Klin[z] is the M × M matrix whose (i, j)th entry is
Klin(z(i), z(j)), KRBF[z] is the M × M matrix whose (i, j)th
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entry is KRBF(z(i), z(j)) and Yl = (Yl(t1), Yl(t2), . . . , Yl(tM ))T.
Consequently, the estimated model is given by

Ŷl(t) = ĝl(z(t)) =
M∑

t=1

atKlin(z, z(t)) +
M∑

t=1

btKRBF(z, z(t))

(25a)

Let ĝ = (ĝ1, ĝ2, . . . , ĝNh)
T. Then, for the prediction of the

coefficients of finite-element basis, we have

Û (t + 1) = U (t) + B−1ĝ(z(t)) (25b)

For more details of PL-LSRR, it can be referred to [31, 32].

Remark 1: Theorems 1 and 2 demonstrate the convergence
and approximation error for the semi-finite element model
(16a) to approximate the original SPDE system, and the
approximation error here is not the error for the identifica-
tion model (but this approximation error directly influences
the identification error). It can be seen that, with the observa-
tion data, the kernel learning method (PL-LSRR) is applied
to obtain a specific parametric form (25a) and (25b) to
approximate (16a), and then to approximate the underly-
ing SPDE system. It is obvious that the identification error
(or the approximation error of the established model (25) to
the original SPED (1)) not only depend on h and �t but
also the selection of the number of observations, the type
of kernel approximation function, the selection of the kernel
and regularisation parameters, even the effectiveness of the
PL-LSRR method itself.

3.4 Identification with irregular observation data

Generally, there are two key steps in modelling dynami-
cal behaviours of spatiotemporal systems. The first step is
to collect appropriate spatiotemporal data from the plant,
and the second step is to develop efficient identification
algorithm based on the sampling data. In existing iden-
tification methods, all the spatiotemporal nodes are often
numerically related with each other using a MIMO–NARX
model, and in order to apply the searching based algorithm
(such as OLS and OFR [21–24, 27]), the data are usually
required to be sampled from the nodes that are regularly
distributed on the spatiotemporal dynamical plant, which
means that the sensors must be uniformly distributed. How-
ever, many practical spatiotemporal systems may not allow
us to place sensors regularly. Therefore it is necessary to
develop identification methods with irregular observation
data. Based on the identification framework proposed above,
an identification method is developed for this purpose in this
section.

Note that, in the approximation of SPDEs by the finite
element method, (20) is used to compute the spatiotempo-
ral states of corresponding SPDEs. When the finite element
coefficients uh(ti, xl)’s are known, u(t, x) could be com-
puted based on linear scheme (20), where x could be any
node in the spacial domain. Inversely, when uh(ti, xl)’s are
unknown, since the value of spline function �1,3(t, x) =
φM ,1(t) ⊗ φN ,3(x) is fixed for given (t, x), (20) could also be
considered as a linear regression equation, where u(t, x)’s are
the output on the left-hand side of the equation, �1,3(t, x)’s
are the input on the right-hand side of the equation and
uh(ti, xl)’s are unknown regression coefficients to be esti-
mated. That is, if we could have enough proper observation
data u(t, x) (these data need not to be sampled from regular

observation locations), the corresponding unknown finite-
element coefficients uh(ti, xl)’s could be obtained by a linear
regression process.

Assume that we have observations u(ti, x�
1), u(ti, x�

2), . . . ,
u(ti, x�

N0
), i = 1, 2, . . . , M , where x�

l , l = 1, 2, . . . , N0 could be
any node in the spacial domain (of course could be irregu-
larly distributed). Considering the regression characteristics
of (20), if the number of observation locations N0 is greater
than the dimensional number of the approximation model
Nh, then the data are sufficient for us to compute the finite
element coefficients uh(ti, xl)’s. Therefore this could be an
effective method to obtain the finite-element coefficients
uh(ti, xl)’s by using irregular observation data. That is to
add a linear regression step to estimate the finite-element
coefficients uh(ti, xl)’s by using data from irregular observa-
tion such as u(ti, x�

l )s based on the scheme (20), and then,
establish the approximation model by using the estimated
ûh(ti, xl)’s. To show our method, an illustrative example is
given as follows⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂

∂t
u(t, x) − ∂2

∂x2
u(t, x) + 0.5u(t, x) = ∂2W

∂t∂x
, 0 < t ≤ T

u(t, 0) = u(t, 1) = 0, t ≥ 0

u(s, x) = u0(x) 0 ≤ x ≤ 1
(26)

where (∂2W/∂t∂x) denotes the second-order derivative of
the Brownian sheet. Here, for the corresponding evolution
operator A and the phase space H , we have A = A∗ =
−�, where � = (∂2/∂x2) is the Laplace operator and H =
L2(0, 1).

To summarise the discussion above, we provide a general
procedure to identify a practical SST system with regular or
irregular observation data.

Step 1: Sample data from observation locations, which
are not necessary regularly distributed on the spatiotem-
poral plant. For example, to establish a five-dimensional
numerical model for system (26), data from seven
locations such as u(ti, 0.1), u(ti, 0.2), u(ti, 0.33), u(ti, 0.52),
u(ti, 0.6), u(ti, 0.85), u(ti, 0.95), i = 1, 2, . . . , M , could be
used.

Step 2: Estimate the coefficients of finite-element basis
uh(ti, xl)’s by following linear regression with the help of
the sampled data.

u(t, x) =
M∑

i=1

N∑
l=1

ûh(ti, xl)�
1,3
i,l (t, x) + e(t, x) (27)

For system (26), to establish a five-dimensional model, x
here could be 0.1, 0.2, 0.33, 0.52, 0.6, 0.85, 0.95 and i =
1, 2, . . . , M as presented in the last step. Note that for given x
and t, �

1,3
i,l (t, x)’s are fixed, uh(ti, xl)’s can be rapidly solved

computationally.

Step 3: By using the estimated data ûh(ti, xl)’s (ûl(ti)’s or
û(ti, xl)’s) in step 2, identification algorithms such as PL-
LSRR can be applied to achieve a specific parametric model
of (25b) for the original spatiotemporal dynamical system.

3.5 Some further discussions

Usually, for an unknown non-linear spatiotemporal system,
it can be assumed that all the spatiotemporal nodes are
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numerically related with each other using a MIMO–NARX
model, and the identification of spatiotemporal systems
given by PDEs or SPDEs has been investigated using the
MIMO–NARX model [21–23]. There are two fundamen-
tal problems yet to be addressed. That is, (a) whether the
approximation model to be identified could be theoretically
closely related to the original SPDE, and (b) if they are
closely related, what the upper bound of approximation error
could be if they are accurately estimated. The theoretical
results presented in this study clearly provide the answers
to these two questions. The theoretical basis for the MIMO
PLM based approximation to a non-linear SPDE system is
established, which is shown to be a more straightforward
model generated from the governing SPDE model of the
underlying spatio-temporal system. Theorems 1 and 2 give
a general upper bound of the approximation error consider-
ing the length of sampling intervals if the MIMO PLM are
accurately estimated. Moreover, from Theorems 1 and 2, it
can also be seen that the approximation theory may offer a
useful guidance for choosing the proper number of sensors
and sampling time required for a practical identification task
for spatiotemporal systems subject to a desired estimation
accuracy.

In some existing methods (e.g. [21–23]), the data sam-
pled from regular observation locations is directly used to
construct the MIMO approximation model, and the model
dimension is often required to equal the number of observa-
tion locations. If the number of sensors placed is greater
than the dimensional number of the model that is to be
established, then some data sampled from certain locations
can not be used for identification. Thus, these unused data
which also contain information of system dynamics has to
be discarded. For example, if the data sampled from 12
observation locations is used to construct ten-dimensional
approximation model, data sampled from two additional
locations can not be used. In the proposed method presented
in Section 3.5, all the data regardless of observation loca-
tions could be used in the linear regression step. Thus, the
data considered to be redundant in some existing methods
could be utilised to achieve a more accurate approximation
model. Moreover, it is noted that most existing methods are
offline ones, whereas the proposed method can be further
developed to be an online algorithm to trace the changing
dynamics of underlying systems (see [33]).

In addition, although stochastic evolution equations are
focused in this study, the proposed methodology could actu-
ally be applied to identification of many other different
kinds of SPDEs, since the semi-finite element approximation
method can be widely applied to approximate many differ-
ent kinds of PDE systems and the proposed method can
be considered as a reasonable inverse semi-finite element
method. In practical implementation, although the underly-
ing SPDE is not known but only some experimental data
of the system available, we need only to adjust kernel
learning parameters and model parameters of the corre-
sponding MIMO PLM model accordingly to achieve a better
approximation model, using some available model selection
techniques [33, 34]. For example, consider the following
damped advection equation

∂

∂t
u(t, x) + u(t, x)

∂

∂x
u(t, x) = −κdu(t, x) + ∂2W

∂t∂x

where damping coefficient κd > 0, the dynamics of the sys-
tem develop on the spatial domain [0, 1] and it is obvious
that this equation could not be considered as a stochastic

evolution equation governed by (1). For ∀φ ∈ Sh, by using
the finite-element method, we have

(φ, uh(tk+1) − uh(tk)) +
∫ tk+1

tk

(
φ, uh

∂

∂x
uh

)
ds

= −κd

∫ tk+1

tk

(φ, uh) +
∫ tk+1

tk

(
φ,

∂2W

∂s∂x

)
ds

Then, the difference method can be used to obtain the
following equation

(φ, uh(tk+1) − uh(tk)) = 1

2
�t(u2

h(tk), φ) − κd�t(uh(tk), φ)

+
∫ tk+1

tk

(
φ,

∂2W

∂s∂x

)
ds

Let uh(t, x) = ∑Nh
l=1 ul(t)φl , with the similar technique shown

in pages 8 and 9, it can be concluded that the finite-element
representation of the damped advection equation above can
also be considered as a partially linear regression model with
the coefficients as the finite-element basis. Therefore the pro-
posed method can be applied for system identification. For
more details of the application of finite-element method to
different kinds of PDE, the readers are referred to [35, 36].

It is known that, in practice, the finite-element method
is the most commonly used one for the simulation of spa-
tiotemporal dynamical system. The reason could be that the
finite element basis can be adjusted to make the finite ele-
ment method efficient for dynamical systems with different
irregular or complicated boundaries. Since in the proposed
method, the dynamical systems to be identified are not nec-
essary with regular boundaries, and the identified model
could be considered as inverse semi-finite element regres-
sion model for finite-element basis coefficients, it can be
seen that the proposed method is actually also applicable
for systems with irregular boundary conditions.

Usually, most spatiotemporal dynamical systems could be
identified by using the regularly spaced data sampled by
CCD camera [37, 38]; however, there are also some excep-
tions. It is well known that sensor networks have been used
in many engineering practices such as weather forecast [39],
sea surface temperature monitoring [40] and structure health
monitoring etc. [41]. In all these applications, SPDEs have
been proved to be effective models to describe the dynam-
ics, and irregular spaced data would be encountered because
of many realistic reasons such as sensor malfunction, lost
data, corrupted data (have to be discarded) or not possible
to place sensors at some positions etc. Therefore the method
proposed in this paper is more relevant to these problems.

It is also noted that in some realistic situations, correlated
noise or non-Gaussian noise instead of white noise may per-
turb the spatiotemporal dynamics, which are usually mod-
elled by SPDEs driven by correlated noise [42], coloured
noise [43] or Levy noise [44]. The qualitative theory, numer-
ical algorithm, computation scheme of these non-white noise
driven SPDEs are still open problems and hot research top-
ics [44–46]. Recently, some numerical results show that
these SPDEs could be still translated into PLM or NARX
model with non-Gaussian random error term. Based on these
proposed models [47, 48], it is interesting and important to
develop corresponding new kernel regression algorithms to
address the identification problems for non-Gaussian or cor-
related noise perturbed spatiotemporal dynamics. These will
definitely be studied in a future study.
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The advantages of the proposed method of this study
could be summarised as follows. (1) The identification
framework in the proposed method is reasonably supported
by the finite-element theory, and the approximation error of
the underlying semi-finite element model (to be identified
by a parametric PLM eventually) to the original spatiotem-
poral system is clearly given. (2) Our method is applicable
for the identification problems with irregular observations
and potentially allows irregular or complex boundary condi-
tions. (3) It is very possible to develop online identification
algorithm based on our method (see [33]).

In this work, for convenience in discussion, we restrict
the examples to the case of one-dimensional SPDE sys-
tems. Since we identify the model channel by channel, for
the 2D or 3D or even more complex SPDE systems, when
using the proposed method, it needs only to increase the Nh

(the dimensional number of the model) to achieve a specific
parametric model.

Compared with some existing methods such as the cou-
pled map lattice (CML) based identification method [23–25],
the proposed method may also have its own disadvantages.
On the one hand, for identification problems with irregu-
lar observations, the data available for (21a) are obtained
by the least-square regression equation (27), which implies
that the data used to construct parametric inverse semi-
finite element model (25a) are not the direct observations
of the dynamics. Moreover, the identified parametric model
(25a) is a finite-element approximation of the underlying
infinite-dimensional stochastic dynamical system. Therefore
the identified model of the proposed method can be under-
stood as an indirect approximation model to the underlying
SPDE system, compared with the CML method [23, 24].
On the other hand, when complex spatiotemporal dynami-
cal systems are encountered, computational problems may
arise with the proposed method since all possible obser-
vation locations should be considered to collect sufficient
data for model approximation. However, when only the main
features of the underlying dynamics are focused, the com-
putation load could be reduced and the proposed method
could still be applicable for online tasks [33] with a particu-
larly designed sparse and irregular sensor network. All these
issues will be further investigated in a future study.

4 Numeral simulations

4.1 Example A

Consider the following stochastic heat equation

∂u

∂t
= 0.5

∂2u

∂x2
+ 6 ln(1 + |u(x, t)|) + d0

∂2W

∂t∂x
(28)

with the initial and boundary conditions u(x, 0) = 2 sin(πx),
u(0, t) = 0, u(1, t) = 0. The corresponding deterministic
system is

∂u

∂t
= 0.5

∂2u

∂x2
+ 6 ln(1 + |u(x, t)|) (29)

with the same initial and boundary conditions of (28). The
parameter d0 is used to denote the noise intensity. When
d0 = 0, system (28) becomes the corresponding determinis-
tic system (29). When d0 = 0.1, the output data of system
(28) in simulation are plotted in Fig. 1a. The data from t = 0
to t = 1 will be used in model estimation. The simulation
output data corresponding to the deterministic system in (29)

is plotted in Fig. 1b. To apply the proposed identification
method, the space domain is sampled at 24 points evenly
expanded over [0, 1](0.04, 0.08, . . . , 0.96). Therefore a 24D
MIMO PLM model is established as shown in Section 3.4,
and the maximum lag adopted here is nU = 1. The time
domain is sampled at 350 evenly expanded points over
[0,0.35]. Thus, 350 data points used in the regression model
for each dimension are generated.

Polynomial kernel (K(xi, xj) = (xT
i xj + r�)d�

, d� is poly-
nomial degree and r� is tuning parameter), and Gaussian
(RBF) kernel (K(xi, xj) = exp(−‖xi − xj‖2

2/σ
2
0 ), σ0 is the

bandwidth) are used in the regression. The selection of ker-
nel parameters may have some influence on identification
performance [24, 27, 37]. It is efficient to identify a more
complex non-linear process by using a larger degree d� and
a smaller bandwidth σ 2

0 . But it may result in over-fitting
problems, when the non-linearity of the process is rela-
tively weak. When a small d� and a larger bandwidth σ 2

0
are used, overfitting problems may be avoided, but it is
difficult to trace a complex non-linear process. The regular-
isation constants ν1, ν2 are pre-selected to make a trade-off
between the empirical prediction errors and the complexity
of the model. The ratio ν = ν1/ν2 is important for how much
linear function component should appear in the predicting
function. When ν is small, the non-linear function compo-
nent is restrained more, and more linear function component
appears in the predicting function. For the selection of the
parameters of PL-LSRR, we refer the readers to the refer-
ences [20, 31, 32]. In this example, the polynomial kernel
function is chosen with parameters d� = 2 and r� = 0.001.
To obtain a relatively good identification performance, the
regulation parameters ν1 and ν2 are selected to be 0.05 and
1, which implies the ratio ν1/ν2 is 0.05.

The one-step-ahead (OSA) predicted outputs (Û (k + 1) =
U (k) + B−1ĝ(z(k))) and predicted error (U (k + 1) − Û (k +
1)) over the time domain [0, 1] are plotted in Fig. 2, respec-
tively. It can be seen that the dynamical behaviours of the
system are traced very well with the established model.

Not to be confused with the one-step-ahead prediction, it
should be noted that for all the following simulations in this
example, by default, the model prediction is calculated by
using the multi-step-ahead (MSA) model prediction output
shown as follows, tat is

Û (k + 1) = ˆU (k) + B−1ĝ(Û (k),

Û (k − 1), . . . , Û (k − nU + 1))
(30)

with only the initial data U (0) = u0 known, which is given
by the initial and boundary conditions of the system under
study. The predicted outputs of the identified model for the
deterministic part of the system and model estimation errors
over the time domain [0, 1] are shown in Fig. 3, respectively.
It can be seen that the identified model (30) can predict sys-
tem deterministic output behaviour very well, which implies
the accuracy of the proposed method.

To further demonstrate the effectiveness of our method in
identifying the deterministic part of the equation, the iden-
tification results of the corresponding deterministic system
(d0 = 0) are also given. The prediction error over the time
domain [0, 1] is shown in Fig. 4a. For the identification with
irregular observation locations (i.e. 0.01, 0.03, 0.05, 0.07,
0.09, 0.11, 0.13, 0.15, 0.17, 0.19, 0.21, 0.23, 0.77, 0.79, 0.81,
0.83, 0.85, 0.87, 0.89, 0.91, 0.93, 0.95, 0.97, 0.99), the pre-
diction error is shown in Fig. 4b. The kernel parameters and
the number of data selected are the same as the ones used
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a b

Fig. 1 Simulation output of system (28) and (29)

a Simulation output of system (28)
b Simulation output of system (29)

a b

Fig. 2 Model prediction output and error (OSA)

a Model prediction output (OSA)
b Model prediction error (OSA)

a b

Fig. 3 Model prediction output and error

a Model prediction output (MSA)
b Model prediction error (MSA)

before. It can be seen that the identification performance
with irregular observation locations is almost the same with
the performance with regular ones, and the identification
results using the proposed method are very accurate.

4.2 Example B

Consider the following stochastic wave equation

∂2u

∂t2
= ∂2u

∂x2
+

√
1 + u2(x, t) + d0

∂2W

∂t∂x
(31)

with boundary conditions and initial conditions u(0, t) =
u(1, t) = 0, u(x, 0) = 8x(1 − x), ∂u/∂t(x, 0) = 0. The corre-
sponding deterministic system is

∂2u

∂t2
= ∂2u

∂x2
+

√
1 + u2(x, t) (32)

Equation (32) is with the same boundary conditions and
initial conditions as (31). Although the right-hand side of
(31) is the second-order derivative with respect to time,
system (31) can still be considered as an abstract stochas-
tic evolution equation of the form (1) (for more details of
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a b

Fig. 4 Model prediction error (MSA) for regular and irregular observation data

a Model prediction error (MSA, regular)
b Model prediction error (MSA, irregular)

stochastic wave equations, the readers are referred to [12]).
In this example, the Gaussian kernel function is chosen with
parameters σ 2

0 = 0.5. The regulation parameters ν1 and ν2

are selected to be 0.4 and 20, which implies the ratio ν1/ν2

is 0.02.
When d0 = 0.2, the output data of system (31) is shown

in Fig. 5a, the first one third of which are used for model
identification. The output data from the deterministic part
of the system are given in Fig. 5b. To apply the pro-
posed identification method, the space domain is sampled
with 25 points not uniformly distributed over [0, 1] (i.e.
0.2, 0.22, 0.24, 0.26, 0.28, 0.3, 0.32, 0.34, 0.36, 0.38, 0.5,
0.52, 0.54, 0.56, 0.58, 0.60, 0.62, 0,64, 0.66, 0.68, 0.8,

0.82, 0.84, 0.86, 0.88, 0.9). Then, these data are used to
establish a 19D MIMO-PLM model to approximate the orig-
inal wave equation, and the maximum lag adopted here is
nU = 2. The time domain is sampled evenly with 300 points
over [0,3]. Thus, 300 data points for each dimension are
generated.

The one-step-ahead predicted outputs and errors over the
time domain [0, 10] are plotted in Fig. 6. When d0 = 0.2,
The multi-step-ahead predicted errors are shown in Fig. 7a.
For the same reason as Example A, the identification results
of the deterministic part (d0 = 0) are also shown. The pre-
diction errors over the time domain [0, 10] are given in
Fig. 7b. It can be seen that these results still demonstrate

a b

Fig. 5 Simulation outputs of system (31) and (32)

a Simulation outputs of system (31)
b Simulation outputs of system (32)

a b

Fig. 6 Model prediction output and error (OSA)

a Model prediction output (OSA)
b Model prediction error (OSA)

10 IET Control Theory Appl., pp. 1–15
© The Institution of Engineering and Technology 2013 doi: 10.1049/iet-cta.2013.0150



www.ietdl.org

a b

Fig. 7 Model prediction output and error (MSA)

a Model prediction error (MSA, noise)
b Model prediction error (MSA, noise free)

the effectiveness of the established stochastic approximation
model for the SPDE system in (31).

4.3 Some further discussions on the simulation
results

To further demonstrate the identification performance of the
proposed method, the relative mean square error (RMSE) is
introduced here as follows

RMSEj =
√√√√ 1

M

M∑
k=1

(û(xj, tk) − u(xj, tk))2/u(xj, tk)2

with respect to each spatial node of the dynamical system
j = 1, 2, . . . , N , M and N are numbers of spatial and tempo-
ral nodes, respectively. The OSA RMSE for the Example A
and Example B are given in Fig. 8, indicating a very small
prediction error.

For the MSA prediction, it can be seen for example from
Fig. 7 that the MSA prediction error seems becoming larger
and larger after some time steps. One major reason could be
seen from the MSA prediction method that we adopt in (30).
Since only the initial boundary condition is known in our
MSA prediction, that is, only U (0) is known, the prediction
error (even very very small at beginning) and noise effect
must be accumulated in the predicted state of U (k), and
therefore, the error would spontaneously become larger and
larger (even though the exactly accurate model is used here).
Especially, for the MSA prediction with noisy data, the noise
eventually drives the system dynamics to be more and more

like a stochastic system. However, no matter from Fig. 4
(no noise) or from Fig. 7 (with noise) it can be seen that the
overall MSA prediction error is quite small in the given time
slot (the overall RMSE is less than 2% in Fig. 4 and less
than 15% in Fig. 7), which indicate clearly that the model
is well identified.

Moreover, it can also be seen from Figs. 3b and 7a that
the identification results for different spatial nodes are dif-
ferent. Figs. 1a and 5a show that the dynamics developed
around the middle of spatial domain (point 0.5) is differ-
ent from the dynamics developed around the ends of the
spatial domain. Theoretically, the dynamics and character-
istics of non-linearity for each spatial point is different.
Then, different kernel and regularisation parameters should
be selected for each channel of the model in order to achieve
better identification performance. Since in the proposed
method, the spatiotemporal dynamical systems are identi-
fied channel by channel and the identification performance
of PL-LSRR would rely on the choice of parameters [31].
However, if complicated identification problems for exam-
ple for 2D spatial domain are encountered, the dimensional
number of the model could be very large. For instance,
for an image modelling problem of 1024*768 pixels with
1000 snapshots in time, the model to be estimated could be
786432-dimensional, which implies that it is extremely dif-
ficult to manually and empirically select the best parameters
for each channel in practice. Therefore in the examples
presented above, for each channel of the model, the same
parameters are selected to have a relatively good perfor-
mance as a whole. It is therefore noted that the self-selection
of the kernel and regularisation parameters, together with an
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optimisation of sensor locations, is another important topic
that should be focused to improve MSA prediction accuracy
in future studies.

5 Conclusions

In this paper, a systematic and theoretical approach is pro-
posed for the identification of a semi-finite element model
for an underlying infinite-dimensional stochastic spatial-
temporal system given by SPDEs based on observation data.
It provides a general theoretical framework for the iden-
tification of non-linear SST systems using MIMO–PLMs.
Fundamental theoretic results are established to deal with the
approximation issues of the identified model to the underly-
ing SPDE system. The identification problem with irregular
observation locations is also discussed to make the pro-
posed method more effective and realistic in practice. The
proposed identification method should have a wide applica-
bility in many areas of scientific and engineering practices
where the analysis and design of non-linear SST systems are
involved. Future studies will focus more on improvement
of MSA prediction with smart parameter selection proce-
dure, reduction of computation load with strategic irregular
distribution of observation locations, and identification meth-
ods for non-Gaussian noise or correlated noise perturbed
spatiotemporal dynamics. A continuous-time identification
method with some existing techniques [49–51] will also be
studied in the context of the proposed identification scheme.

Moreover, it is noted that some valuable theoretical results
of numerical computations for SPDEs are reported recently
in the framework of stochastic evolution equations using
the semigroup approach ([11–13, 15, 16] and references
therein). Many interesting analysis and numerical simula-
tions are also obtained, which provide a significant insight
into the dynamics of SPDEs. However, the topics such
as data based optimisation, control and modelling, signal
processing and filter design for SPDEs, which have great
potential in application, have not yet received much attention
[52–55]. On the other hand, in the past decades, a number
of powerful PLM-based algorithms such as PL-LSRR, PLM-
based support vector machine and maximal likelihood esti-
mation et al are developed. These methods have been noted
increasing reports for system identification, pattern recogni-
tion and optimal control of dynamical systems [19, 21, 22]
and references therein). Therefore, the results developed and
demonstrated in this paper provide a useful insight into these
interesting research topics mentioned above, and alterna-
tively potential methods to solve the mentioned problems
could be found by following a similar technical line. These
will be focused in future studies.
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8 Appendix

8.1 Appendix 1: Proof ofTheorem 1

By the definition of the solutions (3) and (7), we have

E|uh(t) − u(t)|2
= E|(Eh(t)Ph − E(t))u0

+
∫ t

0

(Eh(t − s)Ph − E(t − s)) dw(s)

+
∫ t

0

Eh(t − s)Ph(f (uh(s)) − f (u(s))) ds

+
∫ t

0

(Eh(t − s)Ph − E(t − s))f (u(s)) ds|2

≤ 4E|(Eh(t)Ph − E(t))ξ |2

+ 4E|
∫ t

0

(Eh(t − s)Ph − E(t − s)) dw(s)|2

+ 4E|
∫ t

0

Eh(t − s)Ph(f (uh(s)) − f (u(s))) ds|2

+ 4E|
∫ t

0

(Eh(t − s)Ph − E(t − s))f (u(s)) ds|2

= I1 + I2 + I3 + I4 (33)

It follows from Lemma 3.2

I1 = 4E|(Eh(t)Ph − E(t))u0|2 ≤ Ch2E||u0||2Ḣ 2

By Lemma 3.2 and Burkholder–Davis–Gundy inequality [3],
we have

I2 = 4E|
∫ t

0

(Eh(t − s)Ph − E(t − s)) dw(s)|2

≤ 4E
∫ t

0

‖Eh(t)Ph − E(t)‖2 ds ≤ Ch2

For I3, with the help of the Hölder inequality, the Lipschitze
condition and growth condition imposed on f , we have

I3 = 4E|
∫ t

0

(Eh(t − s)Ph − E(t − s))f (u(s)) ds|2

≤ 4
∫ t

0

‖Eh(t − s)Ph − E(t − s)‖2 dsE
∫ t

0

|f (u(s))|2 ds

≤ Ch2E
∫ t

0

|u(s)|2 ds ≤ Ch2 sup
0≤s≤T

E|u(s)|2

For the last term I4

I4 = 4E|
∫ t

0

Eh(t − s)Ph(f (uh(s)) − f (u(s))) ds|2

≤ 4E

(∫ t

0

‖Eh(t − s)Ph‖|f (uh(s)) − f (u(s))| ds

)2

≤ C

∫ t

0

‖Eh(t − s)Ph‖2ds

∫ t

0

E|uh(s) − u(s)|2 ds

≤ CT

∫ t

0

E|uh(s) − u(s)|2 ds

By the estimations obtained above, we have

E|uh(t) − u(t)|2 ≤ Ch2(1 + E‖u0‖2
Ḣ 2 + sup

0≤s≤T
E|u(s)|2)

+ CT

∫ t

0

E|uh(s) − u(s)|2 ds (34)

Therefore, using the Gronwall’s inequality, it can be
obtained that there exists a constant C = C(u0, T ) such that

E|uh(t) − u(t)|2 ≤ Ch2 (35)

It can be seen that for any given time instance t ∈ [0, T ],
the finite-element space approximation model with respect
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to spatial variables is convergence to the original SPDE in
the order of O(h2). The proof is completed. �

8.2 Appendix 2: Proof ofTheorem 3.3

For simplicity, let En
h = r(�tAh)

n and U n = uh(tn), and by
(10), we have

U n = En
hPhu0 +

n∑
j=1

∫ tj

tj−1

En−j+1
h Phf (U j−1) ds

+
n∑

j=1

∫ tj

tj−1

En−j+1
h Ph d(s) (36)

With the help of the definition of mild solution for system
(1), we have

u(tn) = E(tn)u0 +
∫ tn

0

E(tn − s)f (u(s)) ds

+
∫ tn

0

E(tn − s) d(s) (37)

which implies that the approximation error in mean-square
manner can be represented as

E|U n − u(tn)|2

≤ C

(
E|(En

hPh − E(tn))u0|2

+ E

∣∣∣∣∣
n∑

j=1

∫ tj

tj−1

En−j+1
h Ph(f (U j−1) − f (u(tj−1))) ds

∣∣∣∣∣
2

+ E

∣∣∣∣∣
n∑

j=1

∫ tj

tj−1

En−j+1
h Ph(f (u(tj−1)) − f (u(s))) ds

∣∣∣∣∣
2

+ E

∣∣∣∣∣
n∑

j=1

∫ tj

tj−1

(En−j+1
h Ph − E(tn − tj−1))f (u(s)) ds

∣∣∣∣∣
2

+ E

∣∣∣∣∣
n∑

j=1

∫ tj

tj−1

(E(tn − tj−1) − E(tn − s))f (u(s)) ds

∣∣∣∣∣
2

+ E

∣∣∣∣∣
n∑

j=1

∫ tj

tj−1

(En−j+1
h Ph − E(tn − tj−1)) d(s)

∣∣∣∣∣
2

+ E

∣∣∣∣∣
n∑

j=1

∫ tj

tj−1

(E(tn − tj−1) − E(tn − s)) d(s)

∣∣∣∣∣
2
⎞
⎠ (38)

Directly from the results in [14] (Theorem 7.8), for the first
term of above equation, we have

E|(En
hPh − E(tn))u0|2 ≤ C(�t + �h2)

By the Lipschitze conditions imposed on f , the stability of
r(λ) and the Hölder inequality, for the second term, we have

E

∣∣∣∣∣
n∑

j=1

∫ tj

tj−1

En−j+1
h Ph(f (U j−1) − f (u(tj−1))) ds

∣∣∣∣∣
2

≤ n
n∑

j=1

∫ tj

tj−1

12 dsE
∫ tj

tj−1

||En−j+1
h Ph||2|f (U j−1)

− f (u(tj−1)|2 ds

≤ T

�t
�t

n∑
j=1

�tCE|f (U j−1) − f (u(tj−1))|2

≤ C�t
n∑

j=1

E|U j−1 − u(tj−1)|2

For the third term, by Lemma 1, it can be obtained that

E

∣∣∣∣∣
n∑

j=1

∫ tj

tj−1

En−j+1
h Ph(f (u(tj−1)) − f (u(s))) ds

∣∣∣∣∣
2

≤ n
n∑

j=1

∫ tj

tj−1

12 dsE
∫ tj

tj−1

|En−j+1
h Ph|2|f (u(s))

− f (u(tj−1)|2 ds

≤ C
n∑

j=1

∫ tj

tj−1

E|u(s) − u(tj−1)|2 ds

≤ C
n∑

j=1

∫ tj

tj−1

(s − tj−1)
2 ds ≤ C�t2

To obtain the estimation of the fourth term, an estimation
result on En

h is borrowed from [13]. We have

�t
n∑

j=1

|(En−j+1
h Ph − E(tn − tj−1))u0|2

= �t
n∑

j=1

|(Ej
hPh − E(tj)u0|2 ≤ C(�t + �x2)|u0|2

Then, by the growth condition imposed on f , it follows that

E|
n∑

j=1

∫ tj

tj−1

(En−j+1
h Ph − E(tn − tj−1))f (u(s)) ds|2

≤ n
n∑

j=1

∫ tj

tj−1

12 dsE

×
∫ tj

tj−1

C‖En−j+1
h Ph − E(tn − tj−1)‖2|u(s)|2 ds

≤ C ≤
(

sup
0≤s≤T

E|u(s)|2
)

(�t + �x2)

For the fifth term, Theorem 6.13 introduced in [56] can be
utilised for the estimation, and we have

E

∣∣∣∣∣
n∑

j=1

∫ tj

tj−1

(E(tn − tj−1) − E(tn − s))f (u(s)) ds

∣∣∣∣∣
2

≤ n
n∑

j=1

E

(∫ tj

tj−1

|E(tn − s)(E(s − tj−1) − I )f (u(s))| ds

)2

≤ C

(
sup

0≤s≤T
E‖u(s)‖2

Ḣ 2

) n∑
j=1

∫ tj

tj−1

(s − tj−1)
2 ds

≤ C

(
sup

0≤s≤T
E‖u(s)‖2

Ḣ 2

)
�t2

Since the cross terms of the square sum are zero, which can
be guaranteed by the results in [3], for the last two terms,
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with the similar techniques demonstrated above, it follows
that

E

∣∣∣∣∣
n∑

j=1

∫ tj

tj−1

(En−j+1
h Ph − E(tn − tj−1)) d(s)

∣∣∣∣∣
2

≤
n∑

j=1

∫ tj

tj−1

‖En−j+1
h Ph − E(tn − tj−1)‖2 ds

≤ C(�t + �x2)

For the last term

E|
n∑

j=1

∫ tj

tj−1

(E(tn − tj−1) − E(tn − s)) d(s)|2

≤
n∑

j=1

∫ tj

tj−1

||E(tn − tj−1)(I − E(s − tj−1))||2 ds

≤ C
n∑

j=1

∫ tj

tj−1

(s − tj−1)
2 ds ≤ C�t2

By adding all estimations obtained above, it is shown that
there exists a constant C = C(T , u0), such that

E|U n − u(tn)|2 ≤ C(�t + �t2 + �x2)

+ C�t
n∑

j=1

E|U j − u(tj)|2 (39)

Then, by using the discrete form of Grönwall inequality, we
can obtain that

E|U n − u(tn)|2 ≤ C(�t + �x2) (40)

Thus

E|uh(tn) − u(tn)|2 ≤ C(�t + �x2) (41)

The proof is completed. �
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