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a b s t r a c t

Engineering structures are prone to fatigue damage over service lifespan, entailing early
detection and continuous monitoring of the fatigue damage from its initiation through
growth. A hybrid approach for characterizing fatigue damage was developed, using two
genres of damage indices constructed based on the linear and the nonlinear features of
acousto-ultrasonic waves. The feasibility, precision and practicability of using linear and
nonlinear signal features, for quantitatively evaluating multiple barely visible fatigue
cracks in a metallic structure, was compared. Miniaturized piezoelectric elements were
networked to actively generate and acquire acousto-ultrasonic waves. The active sensing,
in conjunction with a diagnostic imaging algorithm, enabled quantitative evaluation of
fatigue damage and facilitated embeddable health monitoring. Results unveiled that the
nonlinear features of acousto-ultrasonic waves outperform their linear counterparts in
terms of the detectability. Despite the deficiency in perceiving small-scale damage and the
possibility of conveying false alarms, linear features show advantages in noise tolerance
and therefore superior practicability. The comparison has consequently motivated an
amalgamation of linear and nonlinear features of acousto-ultrasonic waves, targeting the
prediction of multi-scale damage ranging from microscopic fatigue cracks to macroscopic
gross damage.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Acousto-ultrasonics, a coalescence of ultrasonic characterization and acoustic-emission, is one of the prevailing tools to
develop non-destructive evaluation (NDE) and structural health monitoring (SHM) techniques [1–4]. Of particular interest in
acousto-ultrasonics is the Lamb waves (the modality of acousto-ultrasonic (AU) disturbance guided by a thin sheet-like
structure) in the ultrasonic regime. Inherently possessing appealing features including strong penetration, fast propagation,
omnidirectional dissemination and high sensitivity to damage, Lamb-wave-based acousto-ultrasonics has been deployed in
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a diversity of fashions, showing demonstrated compromise among resolution, detectability, practicality, and cost [5–12]. The
majority of such techniques are based on exploring changes in the damage-scattered AU waves, which can be documented
in time domain signals in the form of amplitude alteration and/or phase deviation (in comparison with baseline signals),
typified by the delay in time-of-flight (ToF) [12–16], wave reflection/transmission [17–20], energy dissipation [21,22] and
mode conversion [23,24]. These signal features, for example the delay in ToF, show, to some extent, linear correlation with
damage parameters such as the location, and are therefore colloquially referred to as linear features in this study.

On the other hand, there has been a consistent effort to reap the nonlinear features extracted from the damage-scattered
AU waves to characterize material degradation [25] or structural damage [26–34]. Now on the verge of maturity for practical
applications, the detection using nonlinear signal features is based on such a premise that AU waves, when propagating in
an elastic medium, can be distorted by the inherent nonlinearity of the medium, resulting in an energy shift from the
excitation to other frequency bands and generating nonlinear features such as high-order harmonics (contrastively called
nonlinear features in what follows); upon occurrence of damage, micro-structures of the medium are altered, and the plastic
zone in the vicinity of the damage incurs nonlinearities of AU waves. In addition, when AU waves traverse crack-like
damage, the “breathing” motion pattern of the crack interface, under cyclic loads, creates localized nonlinear behaviors and
introduces additional nonlinearity (generally called contacting acoustic nonlinearity (CAN) [26]). The nonlinear features
which are often exploited by the approaches in this category include second- [27–30] or sub-harmonics [31], mixed
frequency responses [32] (e.g., nonlinear wave modulation spectroscopy), shift of resonance frequency [33] (e.g., nonlinear
resonant ultrasound spectroscopy), dual frequency mixing [34], to name a few, as surveyed comprehensively elsewhere [35].

Yet, real-world structural damage often initiates from fatigue damage at imperceptible levels. Under cyclic loads the
fatigue damage accumulates as the formation of dislocation monopoles, followed by dislocation loops and dipoles and
subsequent dislocation veins and persistent slip bands. Fatigue cracks at the scale of few millimeters are then nucleated to
microcracks, which can deteriorate and eventually coalesce to form macrocracks [36]. Under repetitious loads, the
macrocracks can further grow and develop to a critical level at an alarming rate without sufficient warning, impacting
detrimental effects on structural integrity and potentially resulting in catastrophic consequences. Early perception of small-
scale fatigue damage has therefore become a cardinal measure to warrant the reliability, integrity and durability of ageing
engineering structures, although it is a highly challenging task due to the small scales of the fatigue damage.

Both NDE and SHM techniques for characterizing fatigue damage, using either linear or nonlinear features of AU waves are
in a good supply with diverse deployments, albeit the effectiveness and practicability of individual approaches are somewhat
debatable. In the present study, a hybrid approach, using linear features (i.e., delay in time-of-flight, and dissipation of wave
energy) and nonlinear features (i.e., second harmonic generation) extracted from AU wave signals, was developed. Two genres
of damage indices were constructed, and respectively employed to evaluate barely visible fatigue cracks near rivet holes in a
metallic structure. The feasibility, precision and practicability of using linear and nonlinear features were discussed
comparatively. Miniaturized lead zirconate titanate (PZT) elements were networked and affixed to the structure, for generating
and acquiring AU waves, which is deemed a critical step towards automatic and embeddable SHM.

2. Linear features for damage characterization

The ToF and wave energy are two sorts of most representative linear features which can be extracted from a captured AU
wave signal [37]. In this study, these features acquired with a PZT sensor network in terms of pulse-echo and pitch-catch
configurations are respectively associated with different damage parameters, for establishing linear damage indices DIs.

2.1. ToF-based DI

ToF, the time spent for a wave packet to travel a certain distance, correlates the damage position with regard to the
actuator and sensor in a sensor network (assuming the network comprises N PZT elements), according toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxd �xiÞ2 þðyd �yiÞ2
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� �
�
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¼Δti� j;

ði; j¼ 1;2;…N; ia jÞ ð1Þ
where V incident and Vdamage�scattered are the group velocities of the probing and the damage-scattered AU wave packets,
respectively; Δti� j the difference between (i) the ToF for the probing AU wave to propagate from actuator Si at ðxi; yiÞ to
damage at ðxd; ydÞ and then to sensor Sj at ðxj; yjÞ, and (ii) the ToF for the probing AU wave to propagate from Si to Sj directly,
as illustrated in Fig. 1. Eq. (1) mathematically depicts an ellipse-like locus, indicating all possible damage locations, perceived
by sensing path Si�Sj.

Inherently linking the damage location to the position of a known sensing path, ToF-based signal features can be used to
define a DI with the assistance of a probabilistic imaging algorithm (PIA) [18,22,23]. The PIA differentiates itself from
traditional damage imaging techniques such as tomography, taking advantage of its unique traits including in particular the
use of an active sensor network with a much sparse transducer configuration instead of a dense network in tomography, and
the adoption of a fast image reconstruction algorithm instead of computationally-expensive tomography. With PIA, the
inspection region of the plate is meshed virtually, and projected to an image with each image pixel corresponding
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exclusively to a spatial point in the inspection region. The probability of damage presence at each spatial point is calibrated
by the value borne by its corresponding pixel in the image (called field value hereinafter), in terms of the Euclid distance
between a pixel to each locus defined by Eq. (1), as

FðziÞjðxm ;ynÞ ¼
Z zij

�1
f ðzÞdz; ð2Þ

where f ðzÞ ¼ ð1=sij
ffiffiffiffiffiffi
2π

p
Þexp½�ðz2=2s2ijÞ�, a Gaussian distribution function representing the probability density of damage

presence at pixel node ðxm; ynÞ (m¼1, 2, …, L; n¼1, 2, …, K, given the inspection region is rectangular and can be meshed
using L� K nodes), established by sensing path Si�Sj. zij is the Euclid distance between pixel ðxm; ynÞ and the locus created
by Si�Sj, and sij the standard variance. Eq. (2) implies that the pixel right on a particular locus created by a sensing path has
the highest probability (100%) of damage presence (from the perspective of that sensing path), while for other pixels the
further the distance to this locus the lower the probability of damage is present at those pixels. Residing on Eq. (2), a DI is
defined at each pixel for each sensing path in the sensor network, and for instance the one for path Si�Sj, denoted by
DIiðxm; ynÞ, reads

DIiðxm; ynÞjlinear�ToF ¼ 1�½FðziÞjðxm ;ynÞ �Fð�ziÞjðxm ;ynÞ�: ð3Þ
In the above, “i” and “linear-ToF” in the subscripts signify that the DI is defined at pixel ðxm; ynÞ by the sensing path with Si as
the actuator, and it is based upon ToF-related linear signal features. The pixels with remarkably high field values are
expected to highlight and further shape a damaged zone in the projected image, providing quantitative and detailed
depiction about the damage (e.g., size and orientation).

2.2. Energy-based DI

The discrepancy in damage (e.g., different distances to a sensing path, or different shapes, severities and orientations
[37]) can result in distinct magnitudes of damage-scattered AU wave energy. Therefore, deviation of the wave energy,
determined from an AU signal captured from the structure under current inspection (called current signal), with regard to
its counterpart captured from a pristine benchmark (baseline signal), can be employed to develop a DI, in terms of the
correlation between the current and baseline signals, as

DIði; jÞjlinear�energy ¼ 1�jρXY ði; jÞj ¼ 1�
∑
p

k ¼ 1
fHT½xkði; jÞ��ηXði; jÞgfHT½ykði; jÞ��ηY ði; jÞgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
p

k ¼ 1
fHT½xkði; jÞ��ηXði; jÞg2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
p

k ¼ 1
fHT½ykði; jÞ��ηY ði; jÞg2

s
����������

����������
: ð4Þ

Similar to Eq. (3), “ij” and “linear-energy” allude to that the DI is defined at pixel ðxm; ynÞ by Si�Sj, based on energy-
associated linear signal features. ρXY ði; jÞ is the correlation coefficient between the current signal X ¼ fx1; x2;…; xpg acquired
by Si�Sj and its corresponding baseline signal Y ¼ fy1; y2;…; ypg. η is the signal mean and “HT” stands for Hilbert transform-
processed signal. The greater the similarity between HT½xkði; jÞ� and HT½ykði; jÞ�, the closer to unity is ρXY ði; jÞ. A greater ρXY ði; jÞ
leads to a lower DI along path Si�Sj, indicating a lower probability of damage existence near Si�Sj; in contrast, in the case
where damage is right on or close to Si�Sj, ρXY ði; jÞ becomes lower, resulting in a higher DI. Each sensing path, based on
Eq. (4), contributes a probabilistic image in which the field value at each pixel is quantified in terms of ρXY ði; jÞ, indicating the
probability of damage presence at the spatial points of the inspected structure correlated by that pixel.

2.3. Fusion of linear DIs

Each PZT element in the sensor network contributes two probabilistic images in terms of the ToF-based DI (Eq. (3)) and
the energy-based DI (Eq. (4)). Called source image, each image is a prior perception on damage from the viewpoint of the
sensing path creating the source image. With all sensing paths, a multitude of source images form a data pool, rendering

Fig. 1. Relative positions of actuator Si, sensor Sj, and damage in the local coordinate system for sensing path Si–Sj.
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such perceptions in plenty. In order to strengthen damage-related features (commonality in individual source images) and
meanwhile dilute measurement noise/uncertainties (random information in individual source images), all source images are
fused at the pixel level, leading to an ultimate image.

Note that during the fusion, the DI defined by Eq. (3) is given at each pixel, whereas the DI described by Eq. (4) is defined
along a sensing path (viz., all the pixels along a sensing path holding the same DI). Compatibility between two DIs must be
reached provided the fusion is carried out at the pixel level. It can be seen that in Eq. (4), DIði; jÞjlinear�energy is calculated when
Si serving as the actuator, and thus each actuator contributes N–1 probabilistic images using PIA. To achieve such
compatibility (i.e., a transform from a sensing path defined by Eq. (4) to a pixel), all these images are pre-aggregated, to
create a source image for Si at ðxm; ynÞ, denoted by DIiðxm; ynÞjlinear�energy, according to

DIiðxm; ynÞjlinear�energy ¼
1

ðN�1Þ ∑
Nðja iÞ

j ¼ 1
DIði; jÞjlinear�energy; ð5Þ

where “i” in the subscript accentuates that the DI is now re-defined at pixel ðxm; ynÞ for the sensing path with Si as the
actuator. Conclusively, each actuator in the sensor network ends up with a source image via ToF-based DI (Eq. (3)), and
another source image via energy-based DI (Eq. (5)), which are then fused by

DIðxm; ynÞjlinear ¼
1
N

∑
N

i ¼ 1
ðDIiðxm; ynÞjlinear�ToF \ DIiðxm; ynÞjlinear�energyÞ; ð6Þ

where DIðxm; ynÞjlinear is the fused DI in the ultimate image, based on all the extracted linear features, reflecting the
probability of damage presence at each pixel. In Eq. (6) an arithmetic fusion (“Σ”) takes into account the prior perceptions
from all source images and equally decentralizes individual contributions. But arithmetic fusion is anticipated to embrace
ambient noise and measurement uncertainty as well. Thus, a conjunctive fusion (“\”) multiplicatively processes source
images to supplement the arithmetic fusion, with which a low field value at a pixel in any source image due to noise or
uncertainty can lead to a significantly low likelihood of damage presence at that pixel in the ultimate image, effectively
eliminating the measurement noise and uncertainties.

3. Nonlinear features for damage characterization

In parallel with the linear features, nonlinear features are extracted from the same AU wave signals to establish a
nonlinear DI. In this connection, most existing efforts are of a nature of qualitative detection (capable only of indicating
damage existence), and extension to quantitative and automatic SHM are fairly hampered due to the use of bulky ultrasonic
probes. In this study, in conjunction with the use of the above active PZT sensor network, the developed nonlinear DI can be
endowed with a capacity of characterizing fatigue damage quantitatively, facilitating embeddable SHM.

3.1. Theory

For an undamaged isotropic solid medium, two types of nonlinearity need to be addressed: the material nonlinearity and the
geometric (or convective) nonlinearity. The former inherently originates from the nonlinear elastic properties of the medium
(viz., the lattice elasticity), while the latter from themathematic transformation of wave motion equation from the Eulerian to the
Lagrangian coordinate systems [38]. Both can be described, using the second-order nonlinear approximation, as

sij ¼ ðCijklþ1=2MijklmnεmnÞεkl; ð7Þ

where sij is the stress tensor; εmn and εkl the strain tensors. Cijkl and those in a similar form in followings with different subscript
ordering are the second-order elastic (SoE) tensors defined with Lamé's constants λ and μ; and Mijklmn a tensor embracing the
above two types of nonlinearity simultaneously, which reads

Mijklmn ¼ Cijklmnþ CijlnδkmþCjnklδimþCjlmnδik; ð8aÞ

where

Cijklmn ¼
1
2
AðδikIjlmnþδilIjkmnþδjkIilmnþδjlIikmnÞþ2BðδijIklmnþδklImnijþδmnIijklÞþ2Cδijδklδmn ð8bÞ

In the above equation, δkm and those in a similar form with different subscript ordering (δim, etc.) are the Kronecker deltas; Ijlmn

and those in a similar form (Ijkmn, etc.) the fourth-order identity tensors; Cijklmn the third-order elastic (ToE) tensor addressing
material nonlinearity. A, B, and C are three ToF constants. The last three terms in Eq. (8a) all together reflect the geometric
nonlinearity. In an extreme occasion that the second-order nonlinear term (1=2Mijklmnεmn) eliminated, Eq. (7) reverts to the
three-dimensional Hooke's Law for linear elasticity.

Without loss of generality, consider a one-dimensional medium for illustration, and Eq. (7) can be re-written, using a
quadratic approach, as

s¼ ðEþE2εÞε; ð9Þ
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where s, ε, E and E2 are the stress, strain, first-order (reflecting linear property) and second-order (reflecting nonlinear
property) Young's moduli of the medium, respectively [39]. Combining Eqs. (7)–(9) yields

E2 ¼ –
1
2
ð3Eþ2Aþ6Bþ2CÞ; ð10Þ

and further

βg ¼
E2
E

¼ –
1
2

3þ 2Aþ6Bþ2C
E

� �
; ð11Þ

where βg is the ratio of two Young's Moduli. It can be seen that all the parameters in Eqs. (10) and (11) are pertaining to the
SoE and ToE constants, and thus for an ideal material in its pristine status without any fatigue damage or plastic
deformation, βg is a constant at a given measurement distance, serving as an intrinsic material property accounting for the
nonlinearity caused by the material's lattice anharmonicity.

The occurrence of fatigue damage brings about additional nonlinear sources in its vicinity. Taking this into account, a
twofold coefficient, β, is introduced

β¼
βg ðwithout fatigue damageÞ

βgþβl; ðwith fatigue damageÞ

(
ð12Þ

where βl is a localized nonlinearity coefficient addressing the nonlinearity contributed by the fatigue damage alone. The
authors' previous study [39] has demonstrated that βl plays a dominant role in the generation of nonlinearity in AU waves,
much prominent than βg .

To deploy βl in an explicit modality, recall the governing equation for the above one-dimensional medium

ρ
∂2uðx; tÞ

∂t2
¼ ∂s

∂x
; ð13Þ

where ρ is the density of the medium, uðx; tÞ is the particle displacement at x along propagation direction at instant t
(abbreviated as u). Using a perturbation theory [29,40], Eq. (12) can be solved, leading to

u¼ A1 cos ðkx�ωtÞþA2 cos ð2kx�2ωtÞ; ð14Þ
where A2 ¼ ðβ̂=8ÞA2

1k
2x:, ω is the angular frequency of the excitation and k the wavenumber, respectively; A1 and A2 are the

magnitudes of the probing wave mode (with a frequency of ω, called fundamental mode) and its second harmonic wave
mode (with a frequency of 2ω, called second harmonic mode), respectively. β̂ denotes the acoustic nonlinearity parameter,
which after rearrangement reads

β̂¼ 8

k2x

A2

A2
1

: ð15Þ

Previous studies [29,30] have demonstrated that an increase in β due to the presence of fatigue damage can be faithfully, if
not totally, reflected by the increase in β̂, meaning that the nonlinearity originated from the material itself is insignificant
compared with that arising from the fatigue damage. Therefore, any singular increase in β̂ is able to pinpoint the occurrence
of fatigue damage. Based on this, the nonlinearities associated with the medium and the damage can be determined by
probing A1 and A2 from a captured AU wave signal. To detect the fatigue damage, one is more interested in the change in β̂
than its absolute value, and thus for a given wave propagation distance a relative acoustic nonlinearity parameter β0 is
further defined as

β′¼ A2

A2
1

: ð16Þ

As seen, β0 is proportional to β and addresses the essential nonlinearity of a captured AU wave signal subject to fatigue
accumulation, therefore able to serve as a primary index for quantitative characterization of fatigue damage. Note that
Eq. (16) is defined for a one-dimensional medium, while for Lamb waves in plates, such an index can be achieved by
multiplying a scaling factor [30], because a medium has an unchanged scaling factor at a given measurement point
regardless of the occurrence of fatigue damage.

3.2. β′-based DI

To develop a DI capitalizing on β′, first, a correlation is established between (i) the relative distance from the fatigue
damage to a particular sensing path in the sensor network (this relative distance is referred to as measurement deviation
(MD) hereinafter) and (ii) the value of β′ extracted from the AU wave signals acquired via that sensing path [29]. Fig. 2
exemplarily shows such a correlation for an aluminum plate with a thickness of 4.5 mm, where MD is normalized with
regard to the wavelength of the fundamental mode (MD/λ), making it possible to extend the results to general circumstances
at other excitation frequencies. It has been shown that the smaller MD is, the higher β′ is, presenting approximately
monotonous variation. In addition, such a correlation is observed to be insensitive to the difference in the length of a sensing

Z. Su et al. / Mechanical Systems and Signal Processing 45 (2014) 225–239 229



Author's personal copy

path [29], which can be attributable to the fact that compared with the cumulative material nonlinearity along with wave
propagation, the one incurred due to fatigue damage dominates the overall nonlinearity manifested in AU wave signals. It is
also relevant to note that β′ captured via a sensing path possesses high inertness to distant damage away from that path,
implying a sensing path perceives the damage near it only. Such a trait makes it possible to identify multi-fatigue damage
using such a nonlinear parameter.

Residing on β′, a DI is constructed using the aforementioned PIA, defined at pixel ðxm; ynÞ (denoted by DIi
ðxm; ynÞjnonlinear�β′), as

DIiðxm; ynÞjnonlinear�β′ ¼ β′i
ς�Riðx; yÞ

ς�1

� �
: ð17Þ

The subscripts “i” and “nonlinear-β′” stress that the index is defined for the sensing path with Si being the actuator, and it is
obtained upon β′-related nonlinear signal features. In Eq. (17), ς is a scaling parameter controlling the size of the effective
distribution area, and Rijðx; yÞ is a weight to regulate the area of influence from the fatigue damage on a sensing path [22,37]
which reads

Riðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxm �xiÞ2 þðyn �yiÞ2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxm � xjÞ2 þðyn �yjÞ2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ2 þðyi �yjÞ2

p when riðx; yÞoς

ς: when riðx; yÞZς

8><
>: ð18Þ

With Eq. (18), each sensing path in the sensor network contributes a probabilistic image. Ideally, all the field values are low
provided the inspection area is free of fatigue damage (practically it is not zero due to noise interference), while they are
elevated pronouncedly at those pixels contained in the fatigue damage zone (subject to MD).

4. Linear versus nonlinear DIs

Both the linear and the nonlinear DIs were applied comparatively, to evaluate barely visible fatigue cracks in metallic
plates.

4.1. Feasibility study

As a preliminary evaluation, two genres of DIs were first used to identify a mono-fatigue crack in an aluminum panel, to
examine their respective effectiveness in evaluating fatigue cracks in a simple case.

4.1.1. Specimen preparation and measurement configuration
An aluminum plate (484�300�2.2 mm3) was prepared as shown in Fig. 3. To introduce a fatigue crack in the plate, a

sharp notch was machined at the center of the upper edge. The plate was fatigued under a sinusoidal tensile load with a
magnitude of 4 kN at a frequency of 5 Hz using a digitally controlled fatigue testing machine (MTS 810). It took about 50,000
cycles to produce a fatigue crack (circa 5 mm in length originating from the notch tip). Four PZT wafers (nominal diameter:
6.9 mm, thickness: 0.5 mm each) were surface-mounted on the plate, denoted by PZTi (i¼ 1; 2; 3; 4), and instrumented
with a signal generation and acquisition system developed on a VXI platform [41]. Referring to Fig. 3 for respective
coordinates, these four PZT wafers in principle provided 4�3¼12 sensing paths. The probing fundamental mode, which
was different for constructing the linear and the nonlinear DIs (to be detailed in the next sections), was generated in
MATLABs and downloaded to an arbitrary waveform generation unit (Agilents E1441), and then amplified with a signal

Fig. 2. Normalized relative acoustic nonlinearity parameter (β′) versus measurement deviation (MD) (normalized by AU wavelength λ): experiment and
finite element simulation data.
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amplifier (US-TXP-3) to 80Vp–p, which was then applied in turn on each PZT wafer; the signals sensed by the remaining
three wafers were acquired with a signal digitizer (Agilents E1438) at a sampling rate of 40 MHz.

4.1.2. Linear DI
To construct the ToF-based and energy-based linear DIs defined by Eqs. (3) and (5), respectively, five-cycle Hanning-

windowed sinusoidal tone bursts at a central frequency of 300 kHz were excited. The selection of the current frequency
facilitated generation of the fundamental symmetric wave mode, under which the wave signals were observed to feature
the best signal recognizability for extracting linear signal features. As a representative example, the time domain signal
acquired via sensing path PZT2–PZT3 (a sensing path right traversing the fatigue damage) for the current state (with a
fatigue crack) and its corresponding baseline signal from the pristine counterpart (notched but before the fatigue treatment)
are compared in Fig. 4. The ρXY ð2; 3Þ was calculated to be 0.9408 and consequently DIð2;3Þjlinear�energy be 0.0592 in terms of
Eq. (4), indicating the discrepancy between the current and the baseline signals is minute. Meanwhile, DI2ðxm; ynÞjlinear�ToF

along PZT2–PZT3 also presents a low value (using Eq. (3)), because of the difficulty in identifying damage-scattered wave
packet. A primary conclusion can thus be drawn that the linear DI, attempting to explore changes in the linear signal
features such as ToF, energy attenuation, transmission and reflection might be ineffective to deal with small-scale fatigue
damage because no phenomenal linear wave scattering can be observed in the captured AU wave signals.

4.1.3. Nonlinear DI
In order to explore an optimal excitation frequency at which the nonlinear features of AU waves upon interaction with

fatigue damage can be prominent, Gaussian white noise was applied on PZT2 as an input signal, and the frequency spectrum
of the signal captured by PZT3, obtained using fast Fourier transform (FFT), is exhibited in Fig. 5. A strong response can be
observed at 380 kHz, which was therefore selected as the excitation frequency to modulate the five-cycle Hanning-
windowed sinusoidal tone bursts. This frequency has proven effectiveness in generating AU wave signals with an enhanced
signal-to-noise ratio, benefiting extraction of nonlinear signal features and improvement of accuracy of β′ calculation. Note
there was a slight difference in excitation frequency for constructing the linear and nonlinear DIs, which was aimed at
achieving the highest signal-to-noise ratio and best signal recognizability, for extracting linear and nonlinear wave features,
respectively.

For illustration, the signal spectra, acquired via path PZT2–PZT3 under excitation of 380 kHz when the panel was in its
pristine status and in fatigued status are displayed in Fig. 6(a) and (b), respectively, to observe that for the pristine status, the
majority of the AU wave energy is concentrated near the excitation frequency, whereas for the fatigued status there is an
obvious shift of probing energy from the excitation to other frequency bands, as evidenced by the occurrence of side lobes
at 760 kHz (second harmonic) and even 1.14 MHz (third harmonic). These nonlinear features captured at twice the
fundamental frequency can be extracted to construct nonlinear DI using Eq. (17).

4.2. Quantitative evaluation of fatigue cracks near rivet holes

With demonstrated feasibility, the proposed approach was then applied to characterize multi-fatigue cracks near rivet
holes in an aluminum plate.

4.2.1. Specimen preparation and measurement configuration
An aluminum plate (380�400�4.5 mm3) containing four through-thickness rivet holes for bolt connection (diameter:

10 mm each), as schematically shown in Fig. 7(a), was fatigued using the aforementioned fatigue processing. To accelerate
initiation of fatigue cracks, two stress risers were inscribed at the edges of Holes 1 and 2, respectively. Fatiguing the plate

Fig. 3. Schematic diagram of the aluminum plate with a notch at the center of the upper edge, and layout of the PZT sensors (in mm).
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after 500,000 cycles led to two hairline barely visible fatigue cracks, as displayed in Fig. 7(b), with one measuring 5 mm in
length near Hole 1 and the other 3 mm near Hole 2. Upon completion of fatigue testing, a sensor network comprising eight
circular PZT wafers (nominal diameter: 5 mm, thickness: 0.5 mm each) were surface-mounted on the fatigued plate,
denoted by PZTi (i¼ 1; 2; ⋯; 8), as seen in Fig. 7. All PZT wafers were instrumented with the signal generation and
acquisition system introduced previously. The configured sensor network rendered 7�8¼56 sensing paths.

4.2.2. Linear DI
Figure 8 displays the probabilistic image using the PIA, upon fusing ToF-based DI (defined by Eq. (3)) and energy-based

DI (defined by Eq. (5)) using the fusion algorithm described by Eq. (6). In the figure, the presence probability of fatigue
damage is calibrated in greyscale, where the darker a pixel the greater the presence possibility of fatigue damage at that
pixel it is.

The two fatigue cracks could not be identified in the image, and such a failure can be attributed to the small-scale of the
fatigue cracks which was unable to produce phenomenal wave scattering (the wavelength of the probing wave is around
27 mm at the current excitation frequency, much greater than the major dimension of the fatigue crack), therefore failing to
generate observable changes in ToF and wave energy. The difficulty in extracting linear features resulted in abundant pseudo
prediction in the figure, under the interference from ambient noise. As the linear signal features are of the same order
of ambient noise, the diagnostic results of the probabilistic image pessimistically exaggerate the possibility of damage
occurrence, interpreting this observation.

It is noteworthy that both linear DIs defined by Eqs. (3) and (5) seek the difference between a current signal and a
baseline signal. Based on such a philosophy, the rivet holes and fatigue crack imitators at the hole edges would not, in
principle, be detected using the linear DIs, because they are the connatural geometric features of the sample in both intact
and damaged statuses. Provided the pristine plate before the introduction of the rivet holes can be benchmarked, these
gross damage cases can be identified using the two linear DIs, as reported in the authors' previous work [37,41]. It might be

Fig. 4. Time-domain signals acquired via path PZT2–PZT3 in current status (with fatigue crack) and in pristine status (notched but before fatigue testing).

Fig. 5. Frequency spectrum of signal under Gaussian white noise excitation acquired via path PZT2–PZT3.
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helpful to use the linear DIs if one increases the excitation frequency to reach smaller wavelengths that are comparable with
the fatigue crack size. However, as AU waves are of dispersive nature, the multiple modes gradually appearing at higher
frequencies would make it highly challenging to extract linear features. In contrast, such a barrier may not be a concern for
the approach capitalizing on nonlinear DI as no time domain features will be explored.

4.2.3. Nonlinear DI
To achieve conspicuous generation and accumulation of the desired second harmonic for establishing nonlinear DI, the

fundamental and second harmonic modes in Eqs. (14)–(16) should ideally satisfy a twofold prerequisite: (i) synchronism:
both the phase and the group velocities of the fundamental mode match those of the second harmonic mode, respectively
and concurrently; (ii) non-zero power flux: the fundamental mode is of the same type as the second harmonic mode (e.g.,
both are either symmetric or anti-symmetric). This guarantees the shift of AU energy from the fundamental to the second
harmonic modes with increasing propagation distance [28]. Fig. 9 shows the calculated (using DISPERSEs) dispersion curves
of AU waves propagating in an aluminum plate, in which the modes S1 (the first-order symmetric Lamb mode) at
3.57 MHz mm and S2 (the second-order symmetric Lamb mode) at 7.14 MHz mm, as highlighted in the figures, meet the
above prerequisite and form a synchronous pair. In addition, at 3.57 MHz mm and 7.14 MHz mm, the S1 and S2 modes
respectively propagate at the same highest speed among all available modes, simplifying their isolation from other wave
modes. Allowing for the thickness of the plate (4.5 mm), sixteen-cycle Hanning-windowed sinusoid tone bursts at a central
frequency of 800 kHz were applied as the probing wave. The magnitude of S1 at 3.57 MHz mm (corresponding to A1 in
Eqs. (14)–(16)) and that of S2 at 7.14 MHz �mm (corresponding to A2) were calculated from signals captured via available
sensing paths.

As a representative, the time domain signal captured via sensing path PZT2–PZT7 is presented in Fig. 10, which was
observed to be identical with its corresponding baseline signal prior to fatigue processing. The multimodal and dispersive
natures of the AU waves embarrass proper recognition of the synchronous pair in the time domain, as interpreted
previously that the small-scale of the fatigue damage would not incur noticeable wave scattering in the time domain. This

Fig. 6. Frequency spectra of signals acquired via path PZT2–PZT3 at 380 KHz: (a) in pristine status; and (b) in fatigue status (magnitude is normalized with
regard to the maximum in (a)).
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has entailed meticulous signal processing to improve the signal recognizability. To this end, short time Fourier transform
(STFT) was used to deploy the signal over a time–frequency domain, as shown in Fig. 11 for the signal in Fig. 10. In the time–
frequency spectrum, the fundamental and second harmonic modes were extracted at 800 kHz and 1.6 MHz, respectively;
both were then re-constructed to the time domain and are combined in Fig. 12, where A1 and A2 were determined to
calculate β0 using Eq. (16). It is relevant to note that the slight difference in the arrival time of two wave modes can be
attributed to measurement noise and uncertainties. Subsequently, the nonlinear DI was constructed using Eq. (17), leading
to a source image as shown in Fig. 13. This image, like Fig. 8, reflects the presence probability of fatigue damage at each pixel.
Notably, Fig. 13 corroborates the conclusion previously drawn in Section 3.2 that β′ captured via a sensing path possesses
high inertness to distant damage (manifested as a very narrow dark area centralized along the sensing path in the source
image), benefiting identification of multi-fatigue damage.

Repeating the above procedure for all available sensing paths in the network, 56 source images in total formed a
probabilistic image pool, and fusion of these source images using an arithmetic mean algorithm with a threshold correction
[29] yielded an ultimate image, in Fig. 14. The ultimate image highlights explicitly two regions near the edges of Holes 1
and 2 with higher probability of fatigue damage occurrence, coinciding with reality; in contrast, regions away from the two
fatigue cracks present much lower field values.

It is interesting to note that the highlighted regions with higher greyscale in Fig. 14 are greater than the actual sizes of the
two fatigue cracks, which can be attributable to the fact that the plastic zone in the vicinity of the fatigue damage also

Fig. 7. The aluminum plate with four rivet holes: (a) schematic diagram and layout of PZT sensor network (in mm), with a fatigue crack near Hole 1 runs
from (29.5, 86.5) to (34.5, 87.5), and another near Hole 2 from (�93, 31.5) to (�92, 34.5); and (b) photo of the specimen and a close-up of one crack.
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Fig. 8. Probabilistic image showing the presence probability of fatigue damage in the plate upon image fusion using ToF-based and energy-based DIs (for
comparison, actual locations of the two cracks are highlighted with white marks).

Fig. 9. Dispersion curves of AU waves in an aluminum plate calculated using DISPERSEs: (a) phase velocity curves; and (b) group velocity curves (showing
the selected synchronous pair (S1, S2)).
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Fig. 10. A typical time-domain signal acquired via path PZT2–PZT7.

Fig. 11. Time–frequency spectrogram of the signal in Fig. 10 obtained using STFT: three-dimensional and planar representations integrated with dispersion
curves of S1 and S2 modes.

Fig. 12. Re-constructed and combined time domain signals at fundamental (800 kHz) and second harmonic (1.6 MHz) frequencies (captured via PZT2–PZT7).
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Fig. 13. A source image obtained using the nonlinear DI showing the presence probability of fatigue damage.
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Fig. 14. Three-dimensional probabilistic image obtained upon image fusion using the nonlinear DI showing the presence probability of fatigue damage:
(a) two-dimensional; and (b) three-dimensional presentation.
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increased β′ and consequently the field values therein. It is also relevant to emphasize that the highlighted regions are
corresponding to the two fatigue cracks initiated from the rivet holes, rather than the rivet holes themselves or the fatigue
crack initiators at the hole edges, because, as explained previously, this approach explores the abnormal increase in β′ due to
a fatigue crack only, rather than the connatural material nonlinearity, geometric nonlinearity and gross damage (e.g., a rivet
hole in this study). Thus, once increase in β′ is detected, it is predicted that fatigue damage exists. By the same token, the
nonlinear DI failed to identify gross damage such as the rivet holes, because the rivet hole would not incur significant
change in β′ before and after the fatigue process. Both fatigue cracks are revealed in the ultimate image simultaneously,
corroborating the effectiveness of the nonlinear DI in evaluating multiple fatigue cracks, a trait of the DI which is highly
inert to distant damage away from the sensing path via which the DI is constructed.

5. Concluding remarks

It is significant but also challenging to detect fatigue cracks at a quantitative level. An hybrid approach, in conjunction
with a probability-based diagnostic imaging algorithm, for characterizing fatigue damage was developed, capitalizing on
two genres of DIs developed using linear and nonlinear features extracted from acousto-ultrasonic waves, respectively.
Typical linear AU wave characteristics (i.e., delay in ToF and damage-scattered wave energy) and nonlinear features (i.e.,
second harmonic generation) were extracted from AU wave signals acquired by an active sensor network, and used,
respectively, to construct different DIs. The use of the active sensor network enabled an extension of the traditional means
for capturing nonlinear wave features to embeddable health monitoring, which however is at the expense of introducing
complexity in extracting the nonlinearity of AU waves using PZT wafers such as the weak magnitudes of the nonlinear
features, requesting deliberate selection of wave mode, excitation frequency, and signal processing tools (e.g., STFT
demonstrated in this study). Based on comparison of respective feasibility, precision and practicability when evaluating
barely visible fatigue cracks in a metallic plate, it has been revealed that the nonlinear AU wave features have higher
sensitivity than linear signal features and therefore superior detectability for small-scale fatigue damage, mainly due to the
fact that under the modulation of traversing waves, fatigue cracks present nonlinear characteristics, which may not be
strongly evidenced in the linear macroscopic changes of AU waves. The proposed nonlinear DI possesses high inertness to
distant damage, making it possible to identify multi-fatigue damage. The detection can be at a quantitative level, including
the co-presence of multi-cracks, and their individual locations and severities. The study has consequently motivated proper
amalgamation of the linear and nonlinear features of AU waves, reaching a capacity of characterizing multi-scale damage
ranging from microscopic fatigue cracks to macroscopic gross damage.
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