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The convergence bound for Volterra series expansion of nonlinear systems is investigated
with a novel parametric approach in this study. To this aim, two fundamental concepts —
parametric bound of convergence (PBoC) and parametric convergence margin (PCM) are
proposed, which are related to the conditions, under which a given NARX model can be
approximated by a convergent Volterra series, in terms of system characteristic para-
meters including model parameters (of interest), input magnitude, and frequency.
The estimation of the PBoC and PCM is given in the frequency domain, which is expressed
in terms of these characteristic parameters, and does not require iterative calculations.
The results provide a fundamental basis for nonlinear analysis and design using Volterra
series based methods, and also present a significant insight into understanding nonlinear
influence (super/sub harmonics and modulation) with respect to model parameters and
input magnitude. Several examples are given to illustrate the effectiveness of the results.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Many nonlinear systems can be identified into a Nonlinear AutoRegressive with eXogenous inputs (NARX) model [1–3],
which includes several commonly-used nonlinear models as special cases. The NARX model actually provides a generic and
convenient platform for analysis and design of nonlinear systems in practice. Given a parametric nonlinear model, several
methods are available in the literature for nonlinear analysis and design [4–7]. For those systems described by NARX models,
the nonlinear analysis and design can also be done in the frequency domain using the concept of Generalized Frequency
Response Function (GFRF) [8]. The latter is defined as the multidimensional Fourier transform of Volterra kernels of the
Volterra series expansion of the original nonlinear system. It is known that the input–output relationship of a considerably
large class of nonlinear systems allows a Volterra series expansion [9–11,17,18]. For this reason, the Volterra series has been
widely used in the literature for various nonlinear analysis and design [7,11–18].

Usually, the Volterra series expansion of the input–output relationship of a given NARX model should be confined into a
specific region in order to ensure an accurate approximation of the original nonlinear dynamics. There are several results in
the literature attempting to provide a convergence criterion under which a convergent Volterra series expansion exists.
But some of these results are only applicable to specific nonlinear systems such as duffing oscillators [19–21], and others are
either too general to apply for a specific parametric nonlinear model [9–12,17,18,22], or too conservative [23] or obviously
over-estimated [19–21]. Noticeably, all existing results focus only on a convergent criterion in terms of input magnitude.
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Nomenclature

ω frequency variable
Ω the output frequency
W1 the whole output frequency range
U input magnitude
cp;qðk1;…; kpþqÞ model parameters with nonlinear

degree p in terms of output and nonlinear
degree q in terms of input

hnðτ1;…; τnÞ nth order Volterra kernel
Lnðjω1;…; jωnÞ the function of the linear model

parameters c1;0ðk1Þ
Hnðjω1;…; jωnÞ nth order Generalized Frequency

Response Function (GFRF)
Hnðjω1;…; jωnÞ upper bound of nth order GFRF

Cðp; qÞ nonnegative function of model parameters
cp;qðk1;…; kpþqÞ

Mp the maximum nonlinear degree in terms
of output

LðωÞ lower bound of function ‖Lnðjω1;…; jωnÞ‖
YΩ ¼ kωðUÞ upper bound of nonlinear output spectrum

at Ω with input magnitude U
x¼ YðUÞωupper bound of the nonlinear output

spectrum involves the whole output
frequency range with input magnitude U,
which is denoted as x

Cm
n take m combinations in the given n elements

Γ an indicator for convergence margin
PBoC parametric bound of convergence
PCM parametric convergence margin
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In practical analysis and design of a nonlinear system, a fundamental problem could be: in what parameter ranges (in
terms of the input magnitude or model parameters for a given input or at a given frequency) can the system have a
convergent Volterra series expansion? More specifically, the task could only involve designing a particular model parameter.
The question could be: under what range can the parameter take freely its value such that the system is always valid for a
convergent Volterra series expansion? These practical questions are clearly key issues (for any nonlinear analysis and design
using the Volterra series theory), but still not well addressed.

In this study, parametric convergent bounds in terms of some characteristic parameters including model parameters,
magnitude bound of the first order GFRF (relating to linear model parameters), input magnitude, and frequency variables
are studied for the NARX model in order to have a convergent Volterra series expansion. Firstly the analytical representation
of the relationship between the upper bound of nonlinear output spectrum and characteristic parameters is presented.
Then, the concept of parametric bound of convergence (PBoC) is discussed and the estimation of the PBoC for the NARX
model is proposed, which clearly indicates in what parametric ranges a given nonlinear system has a convergent Volterra
series expansion. Finally, a new convergence concept with respect to Volterra series expansion – parametric convergence
margin (PCM) – is proposed, which can give a quantitative evaluation of the convergence margin in terms of any
characteristic parameters for a given nonlinear system before the Volterra series expansion diverges. These new concepts
and results should provide a significant basis and useful guidance for nonlinear analysis and design using the Volterra series
based theory and methods [24–28], and can also present a new insight into understanding of nonlinear influence (e.g.,
super/sub-harmonic response) incurred by different characteristic parameters. Examples are given to illustrate these
theoretical results.
2. Frequency response functions of nonlinear systems

2.1. The NARX model

Consider nonlinear systems described by the NARX model:

yðkÞ ¼ ∑
M

m ¼ 1
ymðkÞ ð1aÞ

ymðkÞ ¼ ∑
m

p ¼ 0
∑ðk1 ;⋯;kmÞcp;m�pðk1;⋯; kmÞ ∏

p

i ¼ 1
yðk�kiÞ ∏

m

i ¼ pþ1
uðk�kiÞ ð1bÞ

where M is the maximum nonlinear degree in terms of yðkÞ and uðkÞ, p is the nonlinear degree in terms of yðkÞ, and m�p is
the nonlinear degree in terms of uðkÞ which is denoted later by q¼m�p. ðk1;…; kmÞ denotes all the combinations of
nonlinear terms in terms of input and output, which can be expressed as ðk1;…; kmÞA℧m ¼ fðk1;…; kmÞj1rkirK;
prk1þ⋯þkprpK; qrkpþ1þ⋯þkmrqKg, where K is the maximum order of derivative, and cp;m�pðk1;⋯; kmÞ is the
corresponding coefficient of term ∏p

i ¼ 1yðt�kiÞ∏m
i ¼ pþ1uðt�kiÞ. The NARX model (1) above can be approximated by a

Volterra series expansion as [9–11,18]:

yðkÞ ¼ ∑
N

n ¼ 1

Z 1

�1
⋯
Z 1

�1
hnðτ1;…; τnÞ ∏

n

i ¼ 1
uðk�τiÞ dτi ð2Þ

where N is the truncation order, and hnðτ1;…; τnÞ is the nth order Volterra kernel.
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2.2. The GFRF and nonlinear output spectrum

The nth order GFRF for the NARX model can be recursively calculated [24,28]:

Hnðjω1;…; jωnÞ ¼
1

Lnðω1;…;ωnÞ
∑
n

m ¼ 1
∑
m

p ¼ 0;q ¼ m�p
∑

ðk1 ;…;kmÞ
cp;qðk1;…; kmÞe�∑q

i ¼ 1jωn� qþ ikpþ iHn�q;pðjω1;…; jωn�qÞ ð3Þ

Lnðω1;…;ωnÞ ¼ 1� ∑
K

k1 ¼ 1
c1;0ðk1Þe� jk1∑n

i ¼ 1ωi ð4Þ

Hn;pðjω1;…; jωnÞ ¼ ∑
n�pþ1

i ¼ 1
Hiðjω1;…; jωiÞHn� i;p�1ðjωiþ1;…; jωnÞe� jkp∑i

j ¼ 1ωj ð5aÞ

or

Hn;pðjω1;…; jωnÞ ¼ ∑
n�pþ1

r1 ;⋯;rp ¼ 1;∑ri ¼ n
∏
p

i ¼ 1
Hri ðjωXþ1;…; jωXþ ri Þe� jki∑

ri
j ¼ 1ωX þ j ð5bÞ

Hn;1ðjω1;…; jωnÞ ¼Hnðjω1;…; jωnÞe� jk1∑n
j ¼ 1ωj ð6Þ

where H0;0ðUÞ ¼ 1, Hn;0ðUÞ ¼ 0 for n40, Hn;pðUÞ ¼ 0 for nop, X ¼∑i�1
j ¼ 1rj and

exp ∑
q

i ¼ 1
jωn�qþ ikpþ i

 !
¼

1 q¼ 0;p41
0 q¼ 0;pr1

(
ð7Þ

When n¼1, the first order GFRF is the transfer function when all the nonlinear terms are zero, i.e.,

H1ðjω1Þ ¼
∑K

k1 ¼ 1c0;1ðk1Þe� jω1k1

1�∑K
k1 ¼ 1c1;0ðk1Þe� jω1k1

¼
∑K

k1 ¼ 1c0;1ðk1Þe� jω1k1

L1ðjω1Þ
ð8Þ

The nonlinear output spectrum subjected to a harmonic input

uðkÞ ¼U cos ðωTskþ∠AÞ ¼ A
2
ejωTskþ An

2
e� jωTsk ð9Þ

where Ts is the sampling interval, can then be computed as follows [25]:

YðjΩÞ ¼ ∑
þ1

n ¼ 1

1
2n ∑

ω1 þ⋯þωn ¼ Ω
Hnðjω1;…; jωnÞ ∏

n

i ¼ 1
AðωiÞ ð10Þ

where ωiAfω; �ωg, AðωÞ ¼ A, Að�ωÞ ¼ An, and U ¼ jAj.

3. Bound of the output magnitude

3.1. Notations and definitions

The operator jjU jj denotes the absolute value for scalars and Euclidian norm jjU jj2 for vectors. ℕ is the set for all
nonnegative integers, and ℕþ for positive integers. Define

LðωÞ ¼ inf
ΩAW1

f‖Lnðjω1;…; jωnÞ‖g ð11Þ

where W1 ¼ [1
k ¼ 1 Wk ¼ [1

k ¼ 1 fΩjΩ¼ω1þ⋯þωk;ωiAfω; �ωgg [27]. Wk is the set for all the output frequencies in the kth
order output spectrum, and W1 represents the whole output frequency range when the NARX model subjects to excitation (9).
Define

Cðp; qÞ ¼∑ðk1 ;…;kmÞjjcp;qðk1;…; kmÞjj ð12Þ
where cp;qðk1;…; kmÞ is the coefficient of the NARX model (1), and clearly Cðp; qÞ is a nonnegative function. Denote

H1ðjω1Þ ¼ jjH1ðjω1Þjj ð13Þ

3.2. Bound results for output spectrum

Lemma 1. For the upper bound of the nth order GFRF, it can be obtained as follows:

supf Hnðjω1;…; jωnÞ 8ω1;…;ωnAfω; �ωggrHnðjω1;…; jωnÞ
����������
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¼ 1
LðωÞ Cð0;nÞþ ∑

n

m ¼ 2
∑
m

p ¼ 1
Cðp; qÞ ∑

n�mþ1

r1 ;…;rp ¼ 1;∑ri ¼ n�q
∏
p

i ¼ 1
Hri ðωXþ1;…;ωXþ ri Þ

 !
; nZ2 ð14Þ

Proof. See Lemma 1 in [26]. □

Lemma 2. The upper bound of the nonlinear output spectrum for the whole output frequency range W1 is given as follows:

YðUÞω ¼ ∑
1

k ¼ 0
YΩ ¼ kωðUÞ ¼∑ΩAW1YΩðUÞ ¼ ∑

1

n ¼ 1
‖∑ΩAWn

YnðjΩÞ‖¼ ∑
þ1

n ¼ 1
Hnðjω1;…; jωnÞUn ð15Þ

where YΩ ¼ kωðUÞ is the upper bound of the output spectrum at frequency Ω¼ kω; kAℕ, which is given as follows:

YðjΩÞ
�� ��rYΩ ¼ kωðUÞ ¼ ∑

1

n ¼ 1

Cn�1
kþ2ðn�1Þ

2kþ2ðn�1Þ�1
Hkþ2ðn�1Þðjω1;…; jωkþ2ðn�1ÞÞUkþ2ðn�1Þ kAℕþ ð16aÞ

YðjΩÞ
�� ��rYΩ ¼ kωðUÞ ¼ ∑

1

n ¼ 1

Cn
2n

22n H2nðjω1;…; jω2nÞU2n k¼ 0 ð16bÞ

Proof. Following discussions in [29]. □

Proposition 1. The analytical relationship among the upper bound of nonlinear output spectrum, model parameters, magnitude
bound of the first order GFRF, input magnitude, and frequency variable, can be obtained as follows:

∑
Mp

p ¼ 1
∑
1

q ¼ 0
Cðp; qÞUq

 !
xp�LðωÞxþ LðωÞH1ðjωÞUþ ∑

1

m ¼ 2
Cð0;mÞUm

� �
¼ 0; pþqZ2 ð17Þ

where x is denoted for xðω;UÞ and xðω;UÞ ¼ YðUÞω ¼∑þ1
n ¼ 1Hnðjω1;…; jωnÞUn, Mp is the maximum nonlinear degree in terms of

output variable yðkÞ. Specifically, when the NARX model involves only those nonlinear terms with p¼ 1 or together with the pure
input nonlinearity, the upper bound of nonlinear output spectrum x can be obtained directly as follows:

x¼
H1ðjωÞUþð1=LðωÞÞ∑1

q ¼ m ¼ 2Cð0;mÞUm

1�ð1=LðωÞÞ∑1
q ¼ 1Cð1; qÞUq : ð18Þ

Proof. See Appendix A. □

Remark 1. The output bound x in (17) should be a real nonnegative number. If (17) possesses only one positive root, it is
clearly the output bound of the NARX model (1); when (17) has more than two positive roots, the parametric convergence
margin proposed later can help to determine the true output bound.

4. Parametric bound of convergence (PBoC)

The parametric bound of convergence (PBoC) is referred to here as a bound (e.g., C) for any characteristic parameter C
(i.e., jjCjjrC) under which the NARX model has a convergent Volterra series expansion.

Proposition 2. A formal function Γðx;C;U;ωÞ (which is a function of the upper bound of the nonlinear output spectrum x, the
frequency variable ω, and the input amplitude U, and denoted as Γ in what follows), is given as follows:

Γ ¼ 1
LðωÞ ∑

Mp

p ¼ 1
∑
1

q ¼ 0
pCðp; qÞUqxp�1; pþqZ2 ð19Þ

Then, the upper bound of the nonlinear output spectrum, i.e., the power series x¼∑þ1
n ¼ 1Hnðjω1;…; jωnÞUn is convergent when

0rΓo1, and divergent when ΓZ1.

Proof. See Appendix B. □

Remark 2. The function Γ is a nonnegative continuous and monotonically increasing function of Cðp; qÞ or the input
amplitude U.

Remark 3. When the NARX model (1) has only pure input nonlinearity, then the whole input part can be considered as a
new input. In this case, the model can be regarded as a linear model with this new input, which is not focused in this study.
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Proposition 3. Consider the NARX model except the case that the NARX model involves only the nonlinear terms with index
p¼1, or together with only pure input nonlinear terms, the analytical PBoC can be obtained by solving the following equation:

Mp�1 rows

a1;Mp a1;Mp �1 ⋯ a1;0 0 ⋯ 0
0 a1;Mp a1;Mp �1 ⋯ a1;0 ⋯ 0

⋯
0 0 ⋯ a1;Mp a1;Mp �1 ⋯ a1;0

����������

����������

8>>>><
>>>>:

¼ 0

Mp rows

a2;Mp �1 a2;Mp �2 ⋯ a2;0 0 ⋯ 0
0 a2;Mp �1 a2;Mp �2 ⋯ a2;0 ⋯ 0

⋯
0 0 ⋯ a2;Mp �1 a2;Mp �2 ⋯ a2;0

����������

����������
¼ 0

8>>>><
>>>>:

ð20Þ

where Mp takes the same definition as in Proposition 1, and

a1;p ¼ ðp�1Þ ∑
1

q ¼ 0
Cðp; qÞUq

 !
; 1rprMp; pþqZ2; ð21aÞ

a1;0 ¼ � LðωÞH1ðjωÞUþ ∑
1

m ¼ 2
Cð0;mÞUm

� �
; ð21bÞ

a2;p�1 ¼ p ∑
1

q ¼ 0
Cðp; qÞUq; 2rprMp; ð21cÞ

a2;0 ¼ ∑
1

q ¼ 1
Cð1; qÞUq�LðωÞ: ð21dÞ

Particularly, when the NARX model (1) involves only nonlinear terms with index p¼1 or together with the pure input nonlinear
terms, the PBoC can be obtained by directly solving Γ¼1, that is,

1
LðωÞ ∑

1

q ¼ 1
Cð1; qÞUq ¼ 1: ð22Þ

Proof. See Appendix C. □

Remark 4. It is interesting to see that if the NARX model involves only nonlinear terms with index p¼1 or p¼0, the
coefficients of the pure input nonlinearity do not take a role in (19), which means that these nonlinearities do not affect the
convergence bound. But except this case, the pure input nonlinearities could have great influence on the convergence
bound, which can be seen from (20) and (21b), and will also be validated in Sections 6.3 and 6.4.

Remark 5. When the input amplitude U is given, from (20) the PBoC of any model parameter of interest can be obtained.
When the parameter values are selected under the bound calculated by (20), the nonlinear system can be well
approximated by a convergent Volterra series. When all the model parameters are given, the PBoC of the input amplitude
can be obtained. The latter has been studied in [19–23,29] for some specific nonlinear systems. The result in Proposition 3 is
more general, not restrictive to any specific nonlinearity, and also less conservative due to the frequency dependent bound
used. This will be further discussed in Section 6.

Algorithm 1. Computation of PBoC:

Step 1. Calculate LðωÞ according to (4) and (11); calculate H1ðjω1Þ according to (8) and (13); calculate Cðp; qÞ using (12).
Step 2. Compute (21) to construct (20) for the applicable case.
Step 3. Solve (20) or (22) for the applicable case to obtain the PBoC.

5. The parametric convergence margin (PCM)

Practical systems always undergo various perturbations. If the values of model parameters are chosen very close to the
PBoC, the dynamic response of the nonlinear system under study would be easier to go astray from a Volterra series
expansion. Therefore, for any characteristic parameter, it is reasonable to develop a measure for assessing the convergence
margin in terms of this parameter, which is referred to here as the parametric convergence margin (PCM), before the
Volterra series expansion diverges. A larger PCM implies that the system dynamics can be well approximated by a Volterra
series expansion and stays away from its divergence.

Considering the function Γ in (19), when all the nonlinear coefficients in the NARX model are equal to 0 or the input
amplitude U ¼ 0, then Γ ¼ 0; when the nonlinear coefficients or the input amplitude reach the PBoC, then Γ ¼ 1; when the
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nonlinear coefficients or the input amplitude is out of the PBoC, then Γ41. Because of these properties, the function Γ can
be used as an overall indicator to the convergence margin of the NARX model. Therefore, the PCM is defined as follows:

PCM¼ 1�Γ ð23Þ
When the PCM is very close to 1, the NARX model possesses the largest convergence margin; when the PCM is close to 0,

the NARX model is very close to the convergent bound and has smaller convergence margin; when the PCM is negative, the
system cannot be expanded by a Volterra series and thus is not a Volterra-type system.

The function Γ in (19) involves the iterative computation (the computation of the upper bound of nonlinear output
spectrum x). In order to eliminate the iteration, the following result is needed.

Proposition 4. When the NARX model does not only possess nonlinear terms with index p¼1 or together with pure input
nonlinearity, the indicator Γ can be obtained by solving

Mp�1 rows

a1;Mp a1;Mp �1 ⋯ a1;0 0 ⋯ 0
0 a1;Mp a1;Mp �1 ⋯ a1;0 ⋯ 0

⋯
0 0 ⋯ a1;Mp a1;Mp �1 ⋯ a1;0

����������

����������

8>>>><
>>>>:

¼ 0

Mp rows

a2;Mp �1 a2;Mp �2 ⋯ a2;0 0 ⋯ 0
0 a2;Mp �1 a2;Mp �2 ⋯ a2;0 ⋯ 0

⋯
0 0 ⋯ a2;Mp �1 a2;Mp �2 ⋯ a2;0

����������

����������
¼ 0

8>>>><
>>>>:

ð24Þ

where Mp is the same as before, and

a1;p ¼ ∑
1

q ¼ 0
Cðp; qÞUq; ð25aÞ

a1;1 ¼ ∑
1

q ¼ 1
Cð1; qÞUq�LðωÞ; ð25bÞ

a1;0 ¼ LðωÞH1ðjωÞUþ ∑
1

m ¼ 2
Cð0;mÞUm; ð25cÞ

a2;p�1 ¼ p ∑
1

q ¼ 0
Cðp; qÞUq; ð25dÞ

a2;0 ¼ ∑
1

q ¼ 1
Cð1; qÞUq�ΓLðωÞ: ð25eÞ

where 2rprMp. Specifically, when the NARX model possesses only nonlinear terms with index p¼1 or together with pure input
nonlinearity, Γ can be directly obtained according to (19) because in this case Γ does not involve the iterative computation of x.

Proof. See Appendix D. □

Remark 6. When 0rΓo1, it implies that the NARX model which possesses unique steady state can be well approximated
by a convergent Volterra series, i.e., 0oPCMr1; when ΓZ1, i.e., PCMr0, the Volterra series becomes divergent and then
cannot approximate to the NARX model. From (19), it is clear that Γ is a real nonnegative number. Therefore, if (24) has no
real positive root, the nonlinear model of interest can be seen as divergent in the sense of Volterra series expansion. If there
exists more than one real positive root, the PBoC can be used to determine the true Γ for the nonlinear system. That is, when
the nonlinear coefficients are out of the PBoC, the solution larger than 1 should be the true Γ; otherwise, the solution
smaller than 1 is the true one. Similarly, when there exist more than one real positive solutions for (17), the solutions can be
substituted into (19) for calculating Γ, the true solution for output bound x should be the one who has the same Γ by (19) as
that obtained by (24).

Remark 7. It must be pointed out that, although the results developed in this study consider only a harmonic input, similar
results could be extended to more complicated cases considering general input signals by following similar techniques,
which will be done in a further investigation. Moreover, from the numerical examples below it can be seen that the PBoC
and PCM provide a very novel point of view for understanding of nonlinear influence on system dynamic response (such as
super/sub harmonics and modulation) incurred by different characteristic parameters. Some other recent advances also
vindicate that the Volterra series approach can also be used for interpretation of complicated nonlinear behavior such as
bifurcation and even chaos [21,30,31].

Remark 8. There are some other nonlinear analysis methods, such as, harmonic balance methods and nonlinear normal
mode [4], which are often computationally intensive as the nonlinear degree of the system increases [5,6]. This study
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presents a simple and novel evaluation on the nonlinear influence in terms of characteristic parameters and on the
parametric convergence bound of a nonlinear system in the sense of Volterra series expansion. This provides a very
fundamental but significant basis for nonlinear analysis and design using the Volterra series based methods [7,24–28,32].

To facilitate the computation of the PCM, the following procedure can be used.

Algorithm 2. Computation of PCM:

Step 1. Calculate LðωÞ according to (4) and (11); Calculate H1ðjω1Þ according to (8) and (13); Calculate Cðp; qÞ from (12).
Step 2. Compute (25) to construct (24) for the applicable case.
Step 3. Solve (24) or (19) for the applicable case to obtain the indicator Γ.
Step 4. Calculate (23) for the applicable case to obtain the PCM.

6. Examples and discussions

In order to illustrate the theoretical results, the NARX model in four cases with different nonlinear terms are discussed,
which is given with zero initial conditions as follows:

yðkÞ ¼ c1;0ð1Þyðk�1Þþc1;0ð2Þyðk�2Þþc3;0ð1;1;1Þy3ðk�1Þþc1;2ð1;1;1Þyðk�1Þu2ðk�1Þþc0;3ð1;1;1Þu3ðk�1Þþc0;1ð1Þuðk�1Þ:
ð26Þ

The model in (28) can be obtained by discretizing in a backward manner the following nonlinear differential equation:

m€yðtÞþc_yðtÞþk1yðtÞþk30y3ðtÞþk12yðtÞu2ðtÞþk03u3ðtÞ ¼ uðtÞ ð27Þ
where the linear part coefficients are given as m¼ 1; c¼ 0:01ω0; k1 ¼ω2

0, ω0 ¼ 20π, and uðtÞ ¼U cos ðωtÞ. Setting
Ts ¼ 1=2000 s, then uðkÞ ¼U cos ðΩkÞ ¼ U cos ðωTskÞ and c1;0ð1Þ ¼ 2�ðcTs=mÞ�ðkT2

s =mÞ ¼ 1:9987, c1;0ð2Þ ¼ ðcTs=mÞ�1¼
�0:9997, c0;1ð1Þ ¼ ðT2

s =mÞ ¼ 2:5� 10�7, c3;0ð1;1;1Þ ¼ �ðk30T2
s =mÞ, c1;2ð1;1;1Þ ¼ �ðk12T2

s =mÞ, c0;3ð1;1;1Þ ¼ �ðk03T2
s =mÞ.

The discussion starts with the case that the NARX model only possesses pure output nonlinear terms, that is,
c1;2ð1;1;1Þ ¼ c0;3ð1;1;1Þ ¼ 0, which can be obtained by discretizing the well-known Duffing oscillator equation. Several
existing results available in the literature are compared for this example. However, no existing results can be applied to the
following examples. In Section 6.2, the nonlinear term with coefficient c1;2ð1;1;1Þ is additionally considered in the
discussion. That is, only c0;3ð1;1;1Þ is set to be zero in (26). Section 6.3, is to illustrate and validate Remark 4 (the pure
nonlinear term in the case pointed by Remark 4 does not affect the PBoC and PCM), and thus considers that the NARX model
has only nonlinear terms with index p¼1 and a pure input nonlinear term. Finally, the NARX model with pure output
nonlinearity and pure input nonlinearity, that is, only c1;2ð1;1;1Þ ¼ 0 in model (26), is discussed in Section 6.4, which is used
to verify Remark 4 again, that is, except the case pointed by Remark 4, the pure input nonlinear term could greatly affect the
PBoC and PCM.

It can be shown that when all the parameters of the NARX model are given, (20) or (22) can also give an estimation of the
PBoC for the input amplitude. But this paper focuses on the PBoC for model parameters and the PCM.

In order to indicate the error between the synthesized output using Volterra series and the real output, the Normalized
Root Mean Square Error (NRMSE) is introduced,

NRMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ðysynthesizedðkÞ�yrealðkÞÞ2

∑ðyrealðkÞÞ2

vuut ð28Þ

where ysynthesized is the synthesized output and yrealðkÞ is the real output.

6.1. The NARX model with pure output nonlinearity

The model is given by the following:

yðkÞ ¼ c1;0ð1Þyðk�1Þþc1;0ð2Þyðk�2Þþc3;0ð1;1;1Þy3ðk�1Þþc0;1ð1Þuðk�1Þ ð29Þ
which can be obtained by discretizing the well-known Duffing equation. The PBoC of c3;0ð1;1;1Þ is calculated firstly, and
then when the coefficient c3;0ð1;1;1Þ and the input are given, the PCM of the NARX model is discussed. The linear
coefficients and input are given as before after Eq. (26).

The PBoC of c3;0ð1;1;1Þ can be computed with Algorithm 1. According to (21), it gives,

a1;3 ¼ 2Cð3;0Þ; a1;0 ¼ �H1ðjωÞULðωÞ;
a2;2 ¼ 3Cð3;0Þ; a2;0 ¼ �LðωÞ;
a1;2 ¼ a1;1 ¼ a2;1 ¼ 0:
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where Cð3;0Þ ¼ jc3;0ð1;1;1Þj. Then from (20), the bound satisfies the following equation:

2Cð3;0Þ 0 0 �H1ðjωÞULðωÞ 0

0 2Cð3;0Þ 0 0 �H1ðjωÞULðωÞ
3Cð3;0Þ 0 �LðωÞ 0 0
0 3Cð3;0Þ 0 �LðωÞ 0
0 0 3Cð3;0Þ 0 �LðωÞ

�������������

�������������
¼ 0: ð30Þ

By denoting

A¼
2Cð3;0Þ 0

0 2Cð3;0Þ

 !
; B¼ 0 �H1ðjωÞULðωÞ

0 0

0
�H1ðjωÞULðωÞ

 !
;

C ¼
3Cð3;0Þ

0
0

0
3Cð3;0Þ

0

0
B@

1
CA; D¼

�LðωÞ 0 0
0 �LðωÞ 0

3Cð3;0Þ 0 �LðωÞ

0
B@

1
CA; ð30Þ

is equivalent to jAjjD�CA�1Bj ¼ 0. Because Cð3;0Þ is positive, from (30) the following equation holds:

LðωÞ� 27
4

Cð3;0ÞðH1ðjωÞUÞ2 ¼ 0: ð31Þ

From Eq. (31), Cð3;0Þ can be solved, which is the PBoC of c3;0ð1;1;1Þ in terms of the input amplitude U, and the linear part
magnitude (i.e., LðωÞ and H1ðjωÞ). If the input and all the linear coefficients are given, then clearly the PBoC can be obtained.
Similarly, if all the coefficients of the model are given, the PBoC for the input can also be computed by (31).

In the simulation, the input amplitude is given as U ¼ 0:5. LðωÞ and H1ðjωÞ can be obtained from (11) and (13),
respectively. From (11), it can be obtained that LðωÞ ¼ inf fLðωÞ; Lð3ωÞ; Lð5ωÞ; Lð7ωÞ;…g [32]. Since the first several orders of
output spectra take the dominant roles, it can be simplified as LðωÞ ¼ inffLðωÞ; Lð3ωÞ; Lð5ωÞ; Lð7ωÞg [27,32]. The estimated
PBoC of jc3;0ð1;1;1Þj is shown in Fig. 1, indicating a very close estimation to the real ones (obtained by numerical
simulations) at different frequencies. The estimated bound varies a lot at different frequency and tends to be small at or
around harmonic resonance frequencies. This shows clearly the nonlinear influence and potential behavior (Volterra or
bifurcation, etc.) due to this specific nonlinearity.

To validate the effectiveness of the convergent bound above, a comparison between the model with the estimated bound
and the model with a larger nonlinear coefficient jc3;0ð1;1;1Þj is given in Fig. 2. The comparison is chosen for example at
ω¼ 0:8ω0 (to show the accuracy of the estimation around the resonant frequency in what follows). At this frequency, the
estimated PBoC is Cð3;0Þ ¼ 426:0788. Fig. 2 shows that when the coefficient c3;0ð1;1;1Þ ¼ �426:0788, the synthesized
output and the real output has a good agreement (with the NRMSE quickly decreasing to 0 as the synthesized order
increases), while for a larger nonlinear coefficient jc3;0ð1;1;1Þj, the synthesized output becomes slowly divergent with
increased NRMSE.

For comparison with other existing results [19–21,23], the PBoCs for the input amplitude obtained with different
methods are given in Fig. 3, which indicate that our result provides the closest estimation. It should be noted that all the
existing results can only be used to find an estimation of the PBoC for the input amplitude, while for the nonlinear systems
in cases B-D that will be shown later, the existing results are not applicable.
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The following discussion is to show the convergence margin, PCM, which can follow Algorithm 2. From the analysis
above, (24) is applicable for this case. According to (25), the following equations hold:

a1;3 ¼ Cð3;0Þ; a1;1 ¼ �LðωÞ; a1;0 ¼H1ðjωÞULðωÞ
a2;2 ¼ 3Cð3;0Þ; a2;0 ¼ �ΓLðωÞ
a1;2 ¼ a2;1 ¼ 0:

Then Γ can be estimated from (24), that is,

Cð3;0Þ 0 �LðωÞ H1ðjωÞULðωÞ 0

0 Cð3;0Þ 0 �LðωÞ H1ðjωÞULðωÞ
3Cð3;0Þ 0 �ΓLðωÞ 0 0

0 3Cð3;0Þ 0 �ΓLðωÞ 0
0 0 3Cð3;0Þ 0 �ΓLðωÞ

�������������

�������������
¼ 0: ð32Þ

From (32), the following equation can be obtained:

Γ3�6Γ2þ9Γ� 27Cð3;0ÞðH1ðjωÞUÞ2
LðωÞ ¼ 0: ð33Þ

From (33), Γ can be solved, which should be a real number. Then the PCM can be obtained according to (23).
The convergence margin when for example c3;0ð1;1;1Þ ¼ �153:8223 and U ¼ 0:5 is presented in Fig. 4.
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Around the resonant frequency, the PCM is equal to zero, which means that the nonlinear system with given coefficients
and input is divergent in the sense of Volterra series expansion, while at high frequencies the PCM is near to 1. This is
consistent with the previous PBoC results, and also confirms the existing knowledge about the Duffing equation [19,21]
regarding harmonic response. Numerical simulations can verify that complicated nonlinear behaviors (e.g., bifurcation) can
be observed in the frequency band where PCM¼ 0.
6.2. The NARX model with pure output nonlinearity and cross nonlinearity

In this example, the NARX model has a nonlinear cross-term with p¼1 and also has a pure output nonlinear term with
p¼3, i.e.,

yðkÞ ¼ c1;0ð1Þyðk�1Þþc1;0ð2Þyðk�2Þþc3;0ð1;1;1Þy3ðk�1Þþc1;2ð1;1;1Þyðk�1Þu2ðk�1Þþc0;1ð1Þuðk�1Þ ð34Þ

Following Algorithm 1 gives the PBoC. From (21), it can be obtained that,

a1;3 ¼ 2Cð3;0Þ; a1;0 ¼ �H1ðjωÞULðωÞ;

a2;2 ¼ 3Cð3;0Þ; a2;0 ¼ Cð1;2ÞU2�LðωÞ;
a1;2 ¼ a1;1 ¼ a2;1 ¼ 0:

where Cð3;0Þ ¼ jc3;0ð1;1;1Þj, and Cð1;2Þ ¼ jc1;2ð1;1;1Þj. Then according to (20), it gives,

2Cð3;0Þ 0 0 �H1ðjωÞULðωÞ 0

0 2Cð3;0Þ 0 0 �H1ðjωÞULðωÞ
3Cð3;0Þ 0 Cð1;2ÞU2�LðωÞ 0 0

0 3Cð3;0Þ 0 Cð1;2ÞU2�LðωÞ 0

0 0 3Cð3;0Þ 0 Cð1;2ÞU2�LðωÞ

��������������

��������������
¼ 0 ð35Þ

Similarly to Section 6.1, by partitioning the matrix and computing the determinant in (35), it can be obtained (considering
Cð3;0Þ and Cð1;2Þ are positive) that,

ðCð1;2ÞU2�LðωÞÞ3þ 27
4

Cð3;0ÞðH1ðjωÞULðωÞÞ2 ¼ 0 ð36Þ

Clearly, (36) provides an analytical relationship among the parametric bounds involving several parameter magnitudes, i.e.,
Cð3;0Þ,Cð1;2Þ, U, and the linear part of the model. Given all the other parameter magnitudes, the PBoC of the remaining one
can thus be obtained. Therefore, it can be obtained that

Cð1;2Þ ¼
LðωÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð27=4ÞCð3;0ÞðH1ðjωÞULðωÞÞ23

q
U2 : ð37Þ
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Cð3;0Þ ¼ 4
27

ðLðωÞ�Cð1;2ÞU2Þ3
ðH1ðjωÞULðωÞÞ2

: ð38Þ

In the simulation, the input amplitude is set to U ¼ 0:5, c3;0ð1;1;1Þ ¼ �153:8223 for (37), and c1;2ð1;1;1Þ ¼ �1:5382� 10�4

for (38). The estimated bound results are presented in Figs. 5 and 6. In Fig. 5, it is shown that at or around the resonant
frequency or some harmonic resonance frequencies, the PBoC for C(1,2) is zero, which means that the model with
c3;0ð1;1;1Þ ¼ �153:8223, c1;2ð1;1;1Þ ¼ 0, and U ¼ 0:5 has no convergent Volterra series expansion; Similar phenomena can
also be observed in Fig. 6 for the PBoC of C(3,0).

Similar to Section 6.1, to validate the effectiveness of the estimated bounds, take ω¼ 0:8ω0, at which the PBoCs estimated
in (37) and (38) are Cð1;2Þ ¼ 4:095� 10�4, and Cð3;0Þ ¼ 302:2338, respectively. The results in Figs. 7 and 8 show that when
the nonlinear parameter is selected under the estimated bound, the synthesized output can well approximate to the original
output, while the synthesized output becomes divergent when the corresponding parameters take larger values.

Eq. (24) can be used to estimate the convergence margin indicator Γ. Firstly, according to (25), the following equations
hold:

a1;3 ¼ Cð3;0Þ; a1;1 ¼ Cð1;2ÞU2�LðωÞ; a1;0 ¼H1ðjωÞULðωÞ;
a2;2 ¼ 3Cð3;0Þ; a2;0 ¼ ðCð1;2ÞU2�LðωÞÞΓ;
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a1;2 ¼ a2;1 ¼ 0:

Then Γ satisfies the following equation according to (24):

Cð3;0Þ 0 Cð1;2ÞU2�LðωÞ H1ðjωÞULðωÞ 0

0 Cð3;0Þ 0 Cð1;2ÞU2�LðωÞ H1ðjωÞULðωÞ
3Cð3;0Þ 0 ΓðCð1;2ÞU2�LðωÞÞ 0 0

0 3Cð3;0Þ 0 ΓðCð1;2ÞU2�LðωÞÞ 0

0 0 3Cð3;0Þ 0 ΓðCð1;2ÞU2�LðωÞÞ

��������������

��������������
¼ 0: ð39Þ

From (39), the following equation holds:

ðLðωÞÞ3Γ3�3ðLðωÞÞ2Cð1;2ÞU2Γ2þ3LðωÞðCð1;2ÞU2Þ2Γ�ðCð1;2ÞU2Þ3þ 27Cð3;0ÞðLðωÞH1ðjωÞUÞ2
4

Þ ¼ 0 ð40Þ

Then the convergence margin indicator Γ can be solved. When Γ Z1, the Volterra series expansion is divergent with
PCMo0, which is denoted by PCM¼0 in the figures. The convergence margin, PCM, can then be obtained according to (23).
The result when U ¼ 0:5, c3;0ð1;1;1Þ ¼ �153:8223 and c1;2ð1;1;1Þ ¼ �1:5382� 10�4 is presented in Fig. 9.
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Fig. 9. The parametric convergence margin (PCM) for model (34).
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From Fig. 9, the convergence margin PCM with given coefficients and input amplitude is equal to 0 around the resonant
and also some harmonic resonance frequencies, and the influence of the nonlinear cross-term with index p¼1 can be seen.
The nonlinear cross-term gives rise to a stronger nonlinear behavior, which can be observed from the smaller PCM.
The width of the frequency band where the PCM¼0 around the resonant frequency increases (compared with the case in
Section 6.1). This means that the nonlinear dynamic response of the NARX model becomes more complicated after
introducing new nonlinear term. Numerical simulations can show that at the frequency with PCM¼ 0 the system exhibits
complicated nonlinear behavior.
6.3. The NARX model with pure input nonlinearity and cross nonlinearity

The system model is given by the following:

yðkÞ ¼ c1;0ð1Þyðk�1Þþc1;0ð2Þyðk�2Þþc1;2ð1;1;1Þyðk�1Þu2ðk�1Þþc0;3ð1;1;1Þu3ðk�1Þþc0;1ð1Þuðk�1Þ ð41Þ

Eqs. (22) and (19) can be used for the computation of the PBoC and PCM, respectively. It is interesting to see that the pure
input nonlinear term with coefficient c0;3ð1;1;1Þ does not affect the PBoC of c1;2ð1;1;1Þ, the PBoC of the input magnitude,
and the PCM.

From (22), the convergent bound can be obtained,

Cð1;2ÞU2

LðωÞ ¼ 1: ð42Þ

The PBoC for c1;2ð1;1;1Þ when U ¼ 0:5 is presented in Fig. 10. The PBoC of c1;2ð1;1;1Þ is very close to 0 at or around harmonic
resonance frequencies. In order to validate that the convergent bound (PBoC of Cð1;2Þ ¼ jc1;2ð1;1;1Þj) is independent of the
pure input nonlinear parameter, the case that c0;3ð1;1;1Þ ¼ 0 and the case that c0;3ð1;1;1Þ ¼ �2:5� 10�5 are compared.
In both cases, the simulations take the same input magnitude and consider the same frequency point, i.e., U ¼ 0:5, and
ω¼ 0:8ω0. The PBoC of Cð1;2Þ is computed as 0.00142. The results are presented in Figs. 11 and 12, which show that when
jc1;2ð1;1;1Þj is out of the estimated bound, the synthesized output is divergent, and the convergent bound is independent of
c0;3ð1;1;1Þ.

The indicator Γ can be obtained from (19). When c1;2ð1;1;1Þ ¼ �1:5382� 10�4 and U ¼ 0:5, the result of the PCM is
shown in Fig. 13. The PCM at/around resonant frequency decreases to 0, indicating complicated nonlinear dynamics there.
6.4. The NARX model with pure input nonlinearity and pure output nonlinearity

The system model is given by the following:

yðkÞ ¼ c1;0ð1Þyðk�1Þþc1;0ð2Þyðk�2Þþc3;0ð1;1;1Þy3ðk�1Þþc0;3ð1;1;1Þu3ðk�1Þþc0;1ð1Þuðk�1Þ ð43Þ
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Fig. 11. Comparison of the synthesized output and the original output at ω¼ 0:8ω0 with c0;3ð1;1;1Þ ¼ 0.
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This example is given as a comparison to Sections 6.1 and 6.3 to show further how the pure input nonlinearity affects the
PBoC and the PCM. In this case, (20) works for the calculation of the PBoC. From (21),

a1;3 ¼ 2Cð3;0Þ; a1;0 ¼ �Cð0;3ÞU3�H1ðjωÞULðωÞ;
a2;2 ¼ 3Cð3;0Þ; a2;0 ¼ �LðωÞ;
a1;2 ¼ a1;1 ¼ a2;1 ¼ 0:

Then the convergent bounds satisfy the following equation:

2Cð3;0Þ 0 0 �Cð0;3ÞU3�H1ðjωÞULðωÞ 0

0 2Cð3;0Þ 0 0 �Cð0;3ÞU3�H1ðjωÞULðωÞ
3Cð3;0Þ 0 �LðωÞ 0 0

0 3Cð3;0Þ 0 �LðωÞ 0
0 0 3Cð3;0Þ 0 �LðωÞ

�������������

�������������
¼ 0 ð44Þ

From (44), the following equation can be obtained:

ðLðωÞÞ3� 27
4

Cð3;0ÞðH1ðjωÞULðωÞþCð0;3ÞU3Þ2 ¼ 0 ð45Þ



0.0000 0.0003 0.0006 0.0009 0.0012 0.0015 0.0018
0

20

40

60

80

100

120

N
R

M
SE

 (%
)

|c1,2(1,1,1)|

 Up to 1st order synthesis
 Up to 5th order synthesis
 Up to 9th order synthesis
 Up to 13th order synthesis

Computed PBoC
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It shows the relationship among different parameter bounds (i.e., U, Cð3;0Þ and Cð0;3Þ). With the other parameters given,
the bound of the remaining one can be obtained,

Cð3;0Þ ¼ 4
27

ðLðωÞÞ3
ðH1ðjωÞULðωÞþCð0;3ÞU3Þ2

ð46Þ

Cð0;3Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4ðLðωÞÞ3=27Cð3;0ÞÞ

q
�H1ðjωÞULðωÞ

U3 : ð47Þ

From (46), it is clear that the coefficient of the pure input nonlinearity (i.e., c0;3ð1;1;1Þ) does affect the estimation of the
bound of Cð3;0Þ, and from (47) it is shown that the bound of Cð0;3Þ also affects the estimation of the bound of Cð3;0Þ. This is
different from the case in Section 6.3 where the pure input nonlinearity has no effect on the PBoC.

The estimated PBoCs for Cð3;0Þ and Cð0;3Þ are shown in Figs. 14 and 15, respectively, with c0;3ð1;1;1Þ ¼ �2:3073� 10�7

in Fig. 14, c3;0ð1;1;1Þ ¼ �153:8223 in Fig. 15. The proposed method can give close computations for the PBoC around
harmonic resonance frequencies both in Figs. 14 and 15. In Fig. 14 the computed PBoC of Cð3;0Þ is very close to 0 around all
harmonic frequencies, while in Fig. 15 the PBoC of Cð0;3Þ becomes 0 in the frequency bands around some of these
frequencies.

The validation of these estimated bounds is given in Figs. 16 and 17 with ω¼ 0:8ω0 and U ¼ 0:5 in the simulations. Given
the model parameters c0;3ð1;1;1Þ ¼ �2:3073� 10�7 for (46) and c3;0ð1;1;1Þ ¼ �153:8223 for (47). The PBoCs are computed
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as C(3,0)¼281.2949 and C(0,3)¼6.6431�10�7. Figs. 16 and 17 show that the estimated bound is very effective and the
synthesized output becomes slowly divergent when the nonlinear coefficients are out of the estimated bound.

For the calculation of the PCM, firstly, the following equations hold from (25):

a1;3 ¼ Cð3;0Þ; a1;1 ¼ �LðωÞ; a1;0 ¼ Cð0;3ÞU3þH1ðjωÞULðωÞ

a2;2 ¼ 3Cð3;0Þ; a2;0 ¼ �ΓLðωÞ;

a1;2 ¼ a2;1 ¼ 0:

Then from (24), it can be obtained that

Cð3;0Þ 0 �LðωÞ Cð0;3ÞU3þH1ðjωÞULðωÞ 0

0 Cð3;0Þ 0 �LðωÞ Cð0;3ÞU3þH1ðjωÞULðωÞ
3Cð3;0Þ 0 �ΓLðωÞ 0 0

0 3Cð3;0Þ 0 �ΓLðωÞ 0
0 0 3Cð3;0Þ 0 �ΓLðωÞ

�������������

�������������
¼ 0
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from which the convergence margin indicator Γ can be obtained,

Γ ¼ 1
LðωÞ �

27Cð3;0ÞðLðωÞH1ðjωÞUþCð0;3ÞU3Þ2
4

 !1=3

ð48Þ

When U ¼ 0:5, c3;0ð1;1;1Þ ¼ �153:8223 and c0;3ð1;1;1Þ ¼ �2:3073� 10�7, the convergence margin is presented in Fig. 18.
From Fig. 18, it can be seen that the introduced pure input nonlinear term causes a smaller PCM, which means that it gives
rise to stronger nonlinear behavior. The PCM around the super harmonic resonance frequencies decreases to 0 and the
region where PCM¼ 0 becomes wider, implying that the nonlinear dynamics becomes more complicated.
7. Conclusion

The concepts PBoC and PCM are proposed and investigated for quantitative assessment on whether a given nonlinear
system has a convergent Volterra series expansion, and for evaluation of the nonlinear severity in the system. The PBoC is a
bound of a characteristic parameter, under which the output response of any given NARX model can be well approximated
by a convergent Volterra series expansion; while the PCM can evaluate the extent to which the system has a convergent
Volterra series expansion at any frequency. The computation of them can all be done easily with respect to any characteristic
parameter of interest (including model parameters, input magnitude, and frequency variable) without iterative calculation.
The results presented in this study should provide a fundamental basis and useful guidance for nonlinear analysis and
design both in the time and frequency domains using the Volterra series based theory and methods.
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Appendix A. Proof of Proposition 1

1
LðωÞ ∑

þ1

m ¼ 2
∑
m

p ¼ 1
UqCðp; qÞðYðUÞωÞpþ

1
LðωÞ ∑

þ1

q ¼ m ¼ 2
Cð0;mÞUm

¼ 1
LðωÞ ∑

þ1

m ¼ 2
∑
m

p ¼ 1
Cðp; qÞ ∑

þ1

i ¼ 1
Hiðjω1;…; jωiÞUi

 !p

Uqþ 1
LðωÞ ∑

þ1

q ¼ m ¼ 2
Cð0;mÞUm

¼ ∑
þ1

n ¼ 2

1
LðωÞ Cð0;nÞþ ∑

n

m ¼ 2
∑
m

p ¼ 1
Cðp; qÞ ∑

n�mþ1

ri ¼ 1;∑ri ¼ n�q
∏
p

i ¼ 1
Hri ðjω1;…; jωri Þ

 ! !
Un

¼ ∑
þ1

n ¼ 2
Hnðjω1;…; jωnÞUn

then, the following equation holds:

1
LðωÞ ∑

þ1

m ¼ 2
∑
m

p ¼ 1
UqCðp; qÞðYðUÞωÞpþ

1
LðωÞ ∑

þ1

q ¼ m ¼ 2
Cð0;mÞUm ¼ YðUÞω�H1ðjωÞU; pþqZ2 ðA:1Þ

Denote xðω;UÞ ¼ YðUÞω ¼∑þ1
n ¼ 1Hnðjω1;⋯; jωnÞUn, and rearrange (A.1), (17) can be obtained. The result in (18) is straight-

forward according to (17).
This completes the proof.
Appendix B. Proof of Proposition 2

When the input amplitude U increases with the model parameters fixed, the upper bound of the nonlinear output
spectrum x¼∑þ1

n ¼ 1Hnðjω1;…; jωnÞUn also increases. When any nonlinear model parameter increases with the other model
parameters and the input amplitude U fixed, according to (14), the bound of the nth order GFRF Hnðjω1;…; jωnÞ also
increases. Therefore, the upper bound of the nonlinear output spectrum x increases accordingly. Both these cases make the
function Γ increase.
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It is clear that Γ ¼ 0 when the input amplitude U ¼ 0 or all the nonlinear model parameters are zero (Cðp; qÞ ¼ 0). When
the Volterra series expansion is divergent, the upper bound of the nonlinear output spectrum x-1, thus

Γ ¼ 1
LðωÞ ∑

Mp

p ¼ 1
∑
1

q ¼ 0
pCðp; qÞUqxp�1-1:

For the case that only the nonlinear terms with index p¼1 or together with the pure input nonlinear terms are included in
the NARX model, it is obvious that there exist some ðU;Cð1; qÞÞ such that Γ ¼ ð1=LðωÞÞ∑1

q ¼ 1Cð1; qÞUq41 holds. Because Γ is a
continuous and monotonically increasing function with respect to the input amplitude U or any nonlinear model parameter,
then Γ ¼ 1 exists for some U and Cðp; qÞ.

According to (11)–(13), it is clear that LðωÞ,H1ðjωÞ, and Cðp; qÞ are no functions of the input amplitude U. When the model
parameters are given, the upper bound of the nonlinear output spectrum is only a function of the input magnitude U.
Calculate the derivative with respect to U in (17), the following equation holds:

∑
Mp

p ¼ 1
∑
1

q ¼ 0
Cðp; qÞqUq�1xpþ ∑

Mp

p ¼ 1
∑
1

q ¼ 0
Cðp; qÞUqpxp�1 dx

dU
�LðωÞ dx

dU
þLðωÞH1ðjωÞþ ∑

1

m ¼ 2
Cð0;mÞmUm�1 ¼ 0; pþqZ2:

From this equation, dx=dU can be obtained. And then the derivative of the inverse function U(x) is given by the following:

dU
dx

¼ 1
dx=dU

¼
LðωÞ�∑Mp

p ¼ 1∑
1
q ¼ 0Cðp; qÞUqpxp�1

∑Mp

p ¼ 1∑
1
q ¼ 0Cðp; qÞqUq�1xpþLðωÞH1ðωÞ

:

When Γ ¼ 1, according to (19), ∑Mp

p ¼ 1∑
1
q ¼ 0Cðp; qÞUqp xp�1 ¼ LðωÞ holds. Because LðωÞ,H1ðjωÞ, Cðp; qÞ and U are nonnegative,

thus the denominator is always larger than 0, and then dU=dx¼ 0 holds.
According to the Analytic Inversion Lemma in [33]: An analytic function locally admits an analytic inverse near any point

where its first derivative is non-zero. However, a function cannot be analytically inverted in a neighborhood of a point
where its first derivative vanishes. Because the output bound x¼∑þ1

n ¼ 1Hnðjω1;…; jωnÞUn is a power series of input
amplitude U, and it is known that the power series is analytic in the convergence region, which means that there does not
exist singularity in the convergence region.

From the discussion above, when 0rΓo1, dU=dxa0 holds, which means that no singularity exists in this region, thus x
(described by an infinite power series x¼∑þ1

n ¼ 1Hnðjω1;…; jωnÞUn) is convergent in this region. When Γ ¼ 1, the output
bound x is divergent. Because Γ increases as the input amplitude U increases or the nonlinear model parameters function
Cðp; qÞ increases, so when Γ41, there exists a smaller input amplitude U or smaller function Cðp; qÞ which can bring Γ back
to Γ ¼ 1, clearly indicating that the output bound x is divergent for Γ41.

This completes the proof.

Remark 9. Technically, the proof above is based on the Analytic Combinatorics in [33] and a similar idea was already
demonstrated in [23]. However, the results of this study cannot be seen as a straightforward extension of [23] by noticing
the following facts. The results in Lemma 2 are presented in power series, which cannot be obtained without the bound
result of the output spectrum, and also the derivation in the proof of Lemma 2 is totally different from that in [23].
The computation of the magnitude bound of the output spectrum in Proposition 1 is presented analytically in algebraic
polynomial with explicit coefficients, which is obtained based on Lemma 1. In the proof of Proposition 1, the polynomial
constructed is different from that in [23], and the key point of the derivation is mainly based on the result in Lemma 1.
The indicator Γ in Proposition 2 is the first time proposed to express whether the nonlinear system is convergent or not in
the sense of Volterra series expansion, the key point of the proof of Proposition 2 is based on the Analytic Inversion Lemma
in page 260 in [33], while the main convergence result and the proof of the result in [23] mainly follow the Singular
Inversion Theorem in p. 262 and p. 383 in [33]. Finally, in [23], the input should be affine and the result is only limited to
calculate the input bound. But in this study, the input can be any nonlinearity in polynomial form, and the result is more
general, which cannot only compute the input magnitude bound but also the parameter bounds.

Appendix C. Proof of Proposition 3

The upper bound of the nonlinear output spectrum x reaches the convergent bound when Γ¼1 holds. In the case that the
NARX model does not only involve the type of nonlinear term with index p¼1 or together with the pure input nonlinear
term, the following condition holds:

∑
Mp

p ¼ 1
p ∑

1

q ¼ 0
Cðp; qÞUq

 !
xp�1 ¼ LðωÞ; pþqZ2; ðC:1Þ

By substituting (C.1) into (17), it can be obtained that

∑
Mp

p ¼ 1
ðp�1Þ ∑

1

q ¼ 0
Cðp; qÞUq

 !
xp ¼ LðωÞH1ðjωÞUþ ∑

1

m ¼ 2
Cð0;mÞUm; pþqZ2; ðC:2Þ
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Define the formal function f ðxÞ ¼ anxnþ⋯þa1xþa0, and gðxÞ ¼ bmxmþ⋯þb1xþb0. The Sylvester matrix of f(x) and g(x)
is defined as follows:

Sylðf ; gÞ ¼

m rows

an ⋯ a0
⋯

an a0

2
64

3
75

8><
>:

n rows

bm ⋯ b0
⋯

bm ⋯ b0

2
64

3
75

8><
>:

ðmþnÞ�ðmþnÞ

ðC:3Þ

The sufficient and necessary condition for the existence of a solution to the equations

f ðxÞ ¼ 0
gðxÞ ¼ 0

(

is that the Sylvester Resultant equals to 0 [34], that is,

Resðf ; gÞ ¼ detðSylðf ; gÞÞ ¼ 0 ðC:4Þ
where detðUÞ means the determinant of the matrix, and ResðU Þ means the Sylvester Resultant of the functions. Eqs. (C.1) and
(C.2) are rewritten as follows:

∑
Mp

p ¼ 1
ðp�1Þ ∑

1

q ¼ 0
Cðp; qÞUq

 !
xp ¼ LðωÞH1ðjωÞUþ ∑

1

m ¼ 2
Cð0;mÞUm

∑
Mp

p ¼ 1
p ∑

1

q ¼ 0
Cðp; qÞUq

 !
xp�1 ¼ LðωÞ

; pþqZ2;

8>>>>><
>>>>>:

ðC:5Þ

Eq. (17) always holds no matter whether x is convergent or divergent. If there exists a (C(p, q), U, L(ω), x) that satisfies (C.1), it
also satisfies (17), and thus (C.2) holds for this (C(p, q), U, L(ω), x). Therefore, there exists an x that satisfies (C.5). Then
according to the analysis above, (C.4) holds (the Sylvester Resultant is equal to 0 in this case). According to (C.5), the
Sylvester matrix in (C.3) and (C.4) can be obtained by defining the elements in (21).

For the case that the NARX model only involves the type of nonlinear terms with p¼1 and the pure input nonlinear term,
the result in (22) is straightforward.

This completes the proof.

Appendix D. Proof of Proposition 4

Rearrange (19), the following equation holds:

∑
Mp

p ¼ 1
p ∑

1

q ¼ 0
Cðp; qÞUq

 !
xp�1�ΓLðωÞ ¼ 0; pþqZ2; ðD:1Þ

If there is a (C(p, q), U, L(ω), x, Γ) that satisfies (D.1), the corresponding part, i.e. (C(p, q), U, L(ω), x) also satisfies (17).
Thus there exists a solution for x in the following equations:

∑
Mp

p ¼ 1
∑
1

q ¼ 0
Cðp; qÞUq

 !
xp�LðωÞxþLðωÞH1ðjωÞUþ ∑

1

m ¼ 2
Cð0;mÞUm ¼ 0

∑
Mp

p ¼ 1
p ∑

1

q ¼ 0
Cðp; qÞUq

 !
xp�1�ΓLðωÞ ¼ 0

8>>>>><
>>>>>:

; pþqZ2 ðD:2Þ

which means that the Sylvester Resultant of Eq. (D.2) is equal to 0, and then similarly to Appendix C, (24) and (25) hold.
For the case of the NARX model with only the type of nonlinear terms with index p¼1 or together with pure input

nonlinearity, the result is straightforward.
This completes the proof.□
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