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More and more attentions are attracted to the analysis and design of nonlinear vibration
control/isolation systems for better isolation performance. In this study, an isolation platform
with n-layer scissor-like truss structure is investigated to explore novel design of passive/
semi-active/active vibration control/isolation systems and to exploit potential nonlinear

response of the platform has inherent nonlinearities both in equivalent damping and stiffness
characteristics (although only linear components are applied), and demonstrates good
loading capacity and excellent equilibrium stability. With the mathematical modeling and
analysis of the equivalent stiffness and damping of the system, it is shown that: (a) the
structural nonlinearity in the system is very helpful in vibration isolation, (b) both equivalent
stiffness and damping characteristics are nonlinear and could be designed/adjusted to a
desired nonlinearity by tuning structural parameters, and (c) superior vibration isolation
performances (e.g., quasi-zero stiffness characteristics etc.) can be achieved with different
structural parameters. This scissor-like truss structure can potentially be employed in
different engineering practices for much better vibration isolation or control.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

An excellent vibration isolation system can be applied widely in engineering practice such as vehicle suspension systems [1],
protection of high-precision machinery [2], space lunch or on-orbit vibration isolation [3] and so on. To suppress vibration
over a larger frequency range, an isolator so-called quasi-zero-stiffness vibration isolator (QZS-VI) is proposed and studied in
the literature [2], [4–11]. It can realize ultra-low stiffness [2], [5–9], zero stiffness [4], or negative stiffness [10,11]
characteristics by designing structural parameters. The QZS-VIs can achieve vibration suppression over a broad frequency
band, and thus remove major disadvantages of traditional linear vibration isolator systems. Even for the problems such as
large static displacement and low static stiffness of the QZS-VIs, they can also be overcome by introducing some structural
or control nonlinearity [6], [9-11]. However, strong nonlinear stiffness can induce strong nonlinear behaviors such as
jumping and bifurcation. Moreover, obvious disadvantages for the class of QZS-VIs are the easiness to lose stability, low
loading capability and potential bifurcation effect at equilibrium incurred by negative linear stiffness [10], [11]. Therefore,
structural parameters of the QZS-VIs must be carefully designed in order to realize QZS characteristics with better loading
capacity and stability.
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In order to achieve excellent vibration isolation, better loading capacity and simultaneously more robustness in stability
control, there are many vibration control systems utilizing active control strategies in the literature. Usually, to reduce the
vibration at resonant frequency is to increase the value of damping coefficient. An increase of linear damping is effective at
resonant frequency but not for other frequencies and even worse for high frequencies. Some recent studies indicate that
nonlinear damping is effective both for low and high frequencies [12–14,26]. Therefore, magneto-rheological fluid (MRF)
dampers, as a smart and controllable liquid material, are extensively studied for achieving adjustable nonlinear damping
characteristics in vibration suppression [15], [17–20]. The application of MRF dampers is thus investigated by many
researchers in various vibration controls such as rotor support systems and vehicle suspension [16–18,22].

Beneficial nonlinear stiffness and damping characteristics can also be obtained through active control. It is found that
combining classical sky-hook feedback with a feed-forward control can obtain damping improvement [21]. Zapateiro et al.
[22] design a semi-active controller for a class of vehicle suspension system utilizing MR damper. Some research results
employ H-infinite control theory for active control of vehicle suspension systems considering actuator delay and fault
[23,24]. Noticeably, the time delay in control input can also be used as a critical factor to tune system nonlinear dynamic
response and thus to achieve better vibration control performance [25,31]. A delayed-resonator vibration absorber is first
proposed by Olgac [27–29]. To broaden a valid range in frequency for suppression of vibrations, Zhao et al. [30] proposed a
delayed-resonator vibration absorber with nonlinear master and slave structures. Bhikkaji et al. [31] used integral resonant
control to damp the vibration of a collocated structure and corresponding experiment proved the effect of the control
strategy. There are also several results designing truss structure to obtain better vibration isolation. The authors in [32]
present a seat suspension system with one-layer truss. Then an active control device in an air spring assembled in this
suspension system is studied in [33]. It is demonstrated that the active control results in about 50 percent reduction of the
vibration compared with the passive one around the resonant frequency. It should be noted that, active control methods for
vibration isolation or suppression might not be preferable in practice because of its high energy cost and construction/
installation expense.

In this study, a versatile n-layer scissor-like structured vibration isolation (SLS-VI) platform is proposed to explore new design
of nonlinear vibration isolation systems (preferable in passive and/or semi-active control manners). The nonlinearity of the SLS
platform is induced by geometrical relationship of the structure, which is shown to be very helpful to equilibrium stability. It is
demonstrated that this SLS-VI platform can overcome major disadvantages of traditional spring–mass–damping vibration
isolators, the existing QZS-VI systems and active control vibration isolation systems mentioned above. The proposed SLS-VI
system can achieve superior nonlinear vibration isolation using only pure linear elements in the system with a simple and
flexible installation structure, can realize adjustable nonlinear damping and stiffness design with different structural parameters,
and thus can provide better vibration isolation performance for many engineering practices. The contributions of this study
mainly lie in the following 3 points: (a) It is shown for the first time that the SLS platform is a very versatile and beneficial system
which can achieve much better QZS property in vibration isolation; (b) The nonlinear properties of the scissor-like structure are
very beneficial in vibration isolation/control, which can be easily designed by tuning structure parameters; (c) It is demonstrated
that the scissor-like structure is a very ideal, novel, and passive solution to realization of beneficial nonlinear stiffness and
damping characteristics in vibration isolation/control. To demonstrate the advantages of the SLS-VI system, comparisons with
those existing vibration isolation methods mentioned above are given and discussed.

The paper is organized as follows. Firstly, the SLS-VI platform is introduced in Section 2. The rotational friction of every
joint of the truss structure and linear horizontal friction are taken into consideration for the modeling. Secondly, to compare
the isolation effect, the isolation effects for different structural parameters are shown in Section 3. Then, the mechanism of
isolation of the platform is discussed in Section 4. The platform can achieve better weight capacity and excellent vibration
isolation performance since the structural parameters can effectively change the equivalent stiffness and damping of the
system. Finally, a conclusion is given in Section 5.

2. The n-layer SLS-VI platform and its modeling

Consider the SLS-VI platform with n-layer truss structure in this section. A 3-layer SLS-VI system is shown in Fig. 1,
subjected to the base excitation. Each layer of the truss is scissor-like and constructed by connecting rods and corresponding
rotating joints. The supporting joints in the left bottom and top layer are free sliding along pre-designed horizontal tracks.
Obviously, the properties of contacting surface on these sliding tracks and in rotating joints can be designed for different
damping properties. Potentially, some springs can be used as indicated to achieve the stiffness of the system.

Because the platform is symmetric, the modeling of the system can be simplified to a plane problem as shown in Fig. 2,
which is the front view of the isolation platform with n-layer truss structure. The mass of the isolation object is denoted by M.
The connecting rods have the same length denoted by 2l and the assembly angle with respect to the horizon line is represented
by θ. More practically, the stiffness of the springs is supposed to satisfy a property f¼kl( � )þkn( � )3. The air damping effect is also
considered with a property f¼c1 �d(∙)/dt. All the structural parameters are listed in Table 1 in Appendix A.

The absolute motion of the mass M is denoted by y, the base excitation z, the rotation angle of each connecting rodφ, and
the horizontal motion of the left support joint at the bottom layer x. The positive direction of the motion y is upward as
shown in Fig. 2. All motion variables are listed in Table 2 in Appendix A.

The rotation motion of each rod φ is shown in Fig. 3. The connecting rods can be designed to much lighter in weight
compared with the isolation mass, sufficiently short in length and strong in stiffness (via choosing materials, e.g., steel or



Fig. 1. The 3-layer SLS-VI platform.

Fig. 2. The n-layer SLS-VI platform in modeling.
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carbon fiber etc) to reduce potential inertia or flexibility influence in dynamic response. For convenience in discussion and
for understanding dominant dynamic response of the system, the mass of the connecting rods are not considered in system
modeling of this study. Without considering the mass of connecting rods in the truss structure, the dynamic equation of the
system can be obtained by Lagrange principle. The absolute motion of the isolation object y is the generalized coordinate.
Considering the friction of each connecting joint, the kinetic energy can be written as

T ¼ 1
2
M _y2 (1)



Fig. 3. The motion of one connecting rod in the first layer.
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and the potential energy as

V ¼ 1
2
klx

2þ 1
4
knx4 (2)

The Lagrange principle is as

d
dt

∂L
∂_y

� �
� ∂L

∂y
¼ �D1�D2�D3 (3)

where L is the Lagrange function expressed as L¼T�V, D1 the dissipated energy for air damping, D2 the dissipated energy
due to structural rotational friction and D3 the dissipated energy due to horizontal friction. It can be obtained that

D1 ¼ c1ð_y� _zÞ (4)

D2 ¼ nxc2 _φ (5)

D3 ¼ c3 _x (6)

where c1 is the air damping coefficient, c2 the rotational fiction coefficient of each joint, c3 the damping coefficient of
horizontal motion and nx is defined as the number of joints which provides rotational friction. From (4–6), the effect of the
friction in this isolation platform is to suppress or dissipate the vibration energy and the function of D2 and D3 are all linear
functions of the motion φ and x.

From Fig. 2 and Fig. 3, because the relative motion between the mass M and the base is ŷ¼y�z where y is the absolute
motion of the mass M and z the base excitation, the geometrical relation of variables φ, x and ŷ can be obtained as

tan ðφþθÞ ¼ 2l sin θþ ŷ=n
2l cos θ�x

(7)

and

ð2lÞ2 ¼ 2l sin θþ ŷ
n

� �2

þð2l cos θ�xÞ2 (8)

From (7) and (8), the transport motion φ and x are expressed as

φ¼ arctan
2l sin θþ ŷ=n
2l cos θ�x

� �
�θ (9)

and

x¼ 2l cos θ�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2�ðl sin θþ ŷ=2nÞ2

q
(10)

The transport motion φ and x are shown in Fig. 4 for n¼2, l¼0.5, and θ¼π/4.
It shows clearly in Fig. 4 the nonlinear relationships among the transport motion x, φ and ŷ. Note that there are rotational

frictions in the rotational joints of each connecting rod, and there are totally six joints in each layer. Thus nx¼6n in (5) where
n is the number of layers. By substituting kinetic energy (1), potential energy (2), friction functions in (4–6) and transport
motion (9) and (10) into the Lagrange principle (3), the dynamic equation of the SLS-VI platform can be obtained as

M €yþðklxþknx3Þ dxdŷ
dŷ
dy

¼ �c1ð_y� _zÞ�nxc2 _φ�c3 _x (11)

where _φ¼(dφ/dŷ) � (dŷ/dt) and _x¼ ðdx=dŷÞ � ðdŷ=dtÞ because of (9) and (10). Substitute ŷ¼y�z into (11) and define f1, f2, f3
for the stiffness, rotational friction of joints and horizontal friction as

f 1ðŷÞ ¼ ðklxþknx3Þ
dx
dŷ

dŷ
dy

(12)
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Fig. 4. The transport motion φ, x and ŷ for n¼2, l¼0.5, and θ¼π/4. (a) Relationship between ŷ and φ; (b) relationship between ŷ and x.
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f 2ðŷÞ ¼
dφ
dŷ

(13)

f 3ðŷÞ ¼
dx
dŷ

(14)

Then the dynamic equation containing the friction of the platform is

M €̂yþ f 1ðŷÞþc1 _̂yþnxc2f 2ðŷÞ _̂yþc3f 3ðŷÞ _̂y¼ �M€z (15)

From (12–14), the expressions for f1, f2, f3 can be further derived as

f 1ðŷÞ ¼
ðŷ=2nþ l sin θÞðklxþknx3Þ
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2�ðl sin θþ ŷ=2nÞ2

q (16)

f 2ðŷÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4l2n2�ð2ln sin θþ ŷÞ2
q (17)

f 3ðŷÞ ¼
ŷ=2nþ l sin θ

n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2�ðŷ=2nþ l sin θÞ2

q (18)

It can be seen that f1, f2, f3 are continuous at ŷ¼0. Therefore, f1, f2, f3 can be expanded by Taylor series at zero equilibrium
as

f 01ðŷÞ ¼ β1ŷþβ2ŷ
2þβ3ŷ

3þβ4ŷ
4 (19)

f 02ðŷÞ ¼ ζ0þζ1ŷþζ2y
2 (20)

f 03ðŷÞ ¼ ζ3þζ4ŷþζ5ŷ
2 (21)

where the definition for β1, β2, β3, β4, ζ0, ζ1, ζ2, ζ3, ζ4, and ζ5 are listed in (B.1–B.10) in Appendix B. When kn¼0, the stiffness
property of the spring is a linear function F¼kl( � ). For the case kl¼1000, l¼0.5, θ¼π⧸4 and n¼2, the Taylor series expansion
f 01, f 02, f 03 and original functions f1, f2, f3 are compared in Fig. 5.

From Fig. 5, utilizing the Taylor series expansion, (19–21) can basically represent very well the mechanical properties of
the original stiffness, rotational friction and horizontal friction of the platform. As kn¼0, it can be seen that the equivalent
stiffness and damping properties are nonlinear functions while the spring and damper in the system are only linear
functions of motion and velocity. It is clear that the equivalent nonlinear stiffness and damping are induced by the nonlinear
geometrical relations among vertical, horizontal and rotational motions of this SLS platform. Also, Fig. 5 shows that the
stiffness function and damping functions are asymmetric at zero. Therefore, the vibration response must be asymmetric at
zero equilibrium, which requires the consideration of offset when using the harmonic balance method (HBM) [34]. It should
also be noted (see Fig. 5) that the nonlinearities involved here are basically weakly nonlinear, which cannot induce
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bifurcation, multi-stable states or chaos, and thus will not bring stability problem to the system for small excitation or usual
parameter setting. The analysis results with the harmonic balance method later will verify this clearly in Sections 3 and 4.

Substituting the Taylor series expansion (19)–(21) for f 01, f 02, f 03 into Eq. (15), the dynamic equation can be rewritten as

M €̂yþnxc2ðζ0þζ1ŷþζ2y
2Þ _̂yþc3ðζ3þζ4ŷþζ5ŷ

2Þ _̂yþc1 _̂yþβ1ŷþβ2ŷ
2þβ3ŷ

3þβ4ŷ
4 ¼ �M€z (22)

where the base excitation z¼z0 cos ω0t. The dimensionless parameters are introduced as Table 3 in Appendix A. Then
dimensionless dynamic equation of (22) is given by

ŷ″þω2
2ŷþγ1ŷ

2þγ2ŷ
3þγ3ŷ

4þ2ξ1ŷ
0 þ2ξ2ŷŷ

0 þ2ξ3ŷ
2ŷ0 ¼ �z″ (23)

where (∙)0 ¼d(∙)/dt0. In (23), the equivalent stiffness and damping characteristcs are asymmetric at zero equilibrium, which
requires the consideration of zero offset when using the Harmonic Balance Method (HBM) [34] for theoretical results. The
solution of (23) can be set as ŷ¼a0þa cos (Ωt0 þϕ) where a0 is the bias term and a is the amplitude of harmonic term. The
equations for a0 and a obtained by applying the HBM are provided by (C.1) and (C.2) in Appendix C. From (C.1– in Appendix C
and the condition sin2 ϕþcos2 ϕ¼1, the displacement transmissibility Td can be obtained as

Td ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þz20þ2az0 cos ϕ

q
z0

������
������ (24)

where a and z0 is the amplitude of relative vibration ŷ and the base excitation z.
3. Vibration isolation performance and its relationships with structural parameters

The structural parameters of the platform can be designed for different vibration isolation performance. The parameter
layer n, assembly angle θ, damping coefficient c3 induced by horizontal friction, and the length of connected rod l can all be
considered as structural parameters to be designed for different vibration isolation performance, and others are supposed to
be fixed in this study which are chosen as kl¼1000, kn¼10000, c1¼5, c2¼1, M¼10, z0¼0.05 and nx¼6n. The displacement
transmissibility Td solved by (24) can be used to reflect the vibration isolation effect with different structural parameters.
3.1. Effect of layer number n

For l¼0.5, θ¼π∕4 and c3¼1, the vibration isolation performance for different number of layer is shown in Fig. 6.
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Fig. 6 shows that the isolation effect of the platform is obviously influenced by the number of layer n. It can be seen that
increasing the number of the truss in the platform can improve the vibration isolation performance and reduce the offset
value in the displacement of the mass M (due to the asymmetrical stiffness and damping).

In Fig. 6(a), for n¼1 the resonant peak is large and there exists jumping phenomena both in the displacement
transmissibility and offset. The curve left to the jumping area in the displacement transmissibility demonstrates a hard
spring property while the right one soft spring property. The vibration amplitude for the soft spring characteristic is smaller
than that in a similar case of a traditional linear system or a Duffing system. When n¼2, the resonant frequency is reduced
to 0.5 and the resonant peak becomes obviously smaller than that for n¼1. The resonant frequency reduces to only about
0.25 for n¼4 and the peak value keeps becoming smaller, demonstrating a quasi-zero-stiffness property. Therefore, the
vibration isolation performance becomes better with the increase of the layer n.

In Fig. 6(b), the offset curve as n¼1 reflects the nonlinear property of the systemwith a jumping phenomenon. The offset
for n¼1 demonstrates soft spring characteristic induced by the asymmetry terms in the dynamic equation. With the soft
spring characteristic, the frequency range for jumping phenomena is smaller than that of isolators with hard spring
characteristic. The offset is becomes only about 0.003 for n¼4. Therefore, increasing the number of layers is helpful for
reduction of the offset phenomenon.

3.2. Effect of assembly angle θ

The other parameters are fixed as n¼2, c3¼1 and l¼0.5. The displacement transmissibility for different value of
assembly angle θ is shown in Fig. 7.

From Fig. 7, it can be seen that when θ is around or larger π/3, there is a jump phenomenon in the displacement
transmissibility and offset curve demonstrating strong nonlinear behavior, while the displacement transmissibility and
offset value both become smaller with the decrease of angle θ, intending to be a quasi-zero-stiffness property as well.

3.3. Effect of damping coefficient c3

With the other parameters set to n¼2, θ¼π∕4 and l¼0.5, the vibration isolation performance for different damping
coefficient c3 is shown in Fig. 8.

From Fig. 8, it can be seen that increasing the damping coefficient c3 can obviously decrease the vibration transmissibility
and the offset of the platform around resonant frequency, while almost does not affect both curves at low and high
frequencies. Therefore, c3 should be a critical parameter to reduce the vibration around resonant frequency.

It is known that an increase of the linear damping in a traditional spring–mass–damping isolator will improve vibration
suppression around the resonant frequency but usually deteriorate the performance much at high frequencies. This does not
happen to the proposed platform as shown in Fig. 8(a) due to the underlying equivalent nonlinear damping effect, which
will be further discussed in Section 4.

3.4. Effect of length of connecting rod l

With the other parameters set to n¼2, θ¼π∕4 and c3¼1, the displacement transmissibility for different length l is shown
in Fig. 9.

From Fig. 9(a), it can be seen that decreasing the length of connecting rod l can reduce the vibration transmissibility at
around resonant frequency but almost brings no effect at low and high frequencies (slight reduction at low frequencies).
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This is very similar to the nonlinear damping effect mentioned previously. However, Fig. 9(b) shows that the decrease of the
length l will increase obviously the offset value of the platform at high frequencies with a little reduction at around resonant
frequencies.

Considering both Fig. 8 and Fig. 9, it can be concluded that the effects of l and c3 on the vibration transmissibility are very
similar, and both are very effective and advantageous. The damping coefficient c3 has little effect on the vibration offset at
high frequencies while the rod length l influences much.

3.5. Comparisons with some existing isolation systems

3.5.1. Typical spring–mass–damping isolators
For a traditional spring–mass–damping vibration isolator with mass M, a spring having linear stiffness kl and nonlinear

stiffness kn, and damper with coefficient c1, its dynamic equation under base excitation z is given by

M €yþklðy�zÞþknðy�zÞ3þc1ð_y� _zÞ ¼ 0 (25)

Define the relative motion as ŷ¼y�zwhere z¼z0 cos ω0t and the dimensionless parameters are as Table 4 in Appendix A,
the dimensionless dynamic equation is

ŷ″þ ŷþγŷ3þ2ξŷ0 ¼ �z″ (26)

where (∙)0 ¼d(∙)/dt0. The solution of (16) can be set as ŷ¼a cos (Ωt0 þϕ). Then, the displacement transmissibility of the
spring–mass–damping isolator can be obtained similarly by (24).

The vibration isolation performance of the SLS-VI platform is compared to that of the typical spring-mass-damping
isolator system in (25). Use the same structural parameters as kl¼1000, kn¼10,000, c1¼5, c2¼1, M¼10, z0¼0.05, and
nx¼6n for considering friction of each joint in each layer, the comparison results are shown in Fig. 10.

It can be seen clearly from Fig. 10(a) that the vibration transmissibility of the SLS-VI platform is much better than that of
the typical spring–mass–damping isolator, although a little vibration offset exists for the SLS-VI platform. Firstly, the
resonant frequency of the mass–spring–damping isolator is always around 1 while it can be reduced obviously for the SLS-VI
by adjusting structural parameters such as n, θ and l. Secondly, the increase of the damping coefficient of the mass–spring–
damping isolator for example c1¼80 can improve the isolation effect at resonant frequency, but greatly deteriorate the
transmissibility at high frequencies. This is not true for the SLS-VI as mentioned before. Importantly, several structure
parameters actually contribute to the equivalent stiffness and damping characteristics of the SLS-VI. This potentially
provides a simple and very practical method for achieving different stiffness and damping characteristics in practice. This
will be further investigated in Section 4.

3.5.2. Quasi-zero-stiffness isolators
The dynamic response of a quasi-zero-stiffness isolator [2], [4–11] under base excitation can be expressed as an oscillator

with zero linear stiffness and cubic nonlinear stiffness as follows:

M €̂yþknŷ
3þc1 _̂y¼ �M€z (27)

With the dimensionless variables defined as Table 5 in Appendix A, the dimensionless equation is given by

ŷ″þγŷ3þ2ξŷ0 ¼ �z″ (28)



0.0 0.5 1.0 1.5 2.0 2.5 3.0
Frequency Ω

0
1
2
3
4

D
is

pl
ac

em
en

t
tra

ns
m

is
si

bi
lit

y 5

6
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where (∙)0 ¼d(∙)/dt0. The solution of the QZS isolator above also can be obtained by (24). Again, using the same structural
parameters as kl¼1000, kn¼10,000, c1¼5, c2¼1, M¼10, z0¼0.05, and nx¼6n, the comparison results are shown in Fig. 11.

From Fig. 11, the overall performance of the SLS-VI platform is very competitive and could be much better, compared
with that of the QZS isolator. (a) By adjusting structural parameters, both isolators can achieve quasi-zero stiffness in
vibration control. (b) To achieve a larger loading capacity, the nonlinear stiffness coefficient of the QZS should be larger.
However, a larger stiffness coefficient would result in a multi-steady state phenomenon in a wider frequency range (as seen
in Fig. 11), which is a very strong nonlinear response behavior and very dangerous (to lose stability) in vibration control. To
ensure stability, the structural parameters of the QZS isolator should be in some critical ranges. The SLS-VI basically has no
this strong nonlinear phenomenon (the jump behavior mentioned before can be easily avoided) and thus has no this
stability problem. (c) To achieve better vibration isolation performance, the stiffness coefficients of the QZS isolator should
be reduced to small. This would result in very low loading capacity. However, for the SLS-VI platform, it can be designed to
have sufficient stiffness to support a desired weight but maintaining a very competitive vibration isolation performance,
because (c1) the linear stiffness is not necessarily to be zero (compared with the QZS isolator in (28)); (c2) several structural
parameters such as n, θ and l can be used to tune the equivalent stiffness of the system conveniently. Importantly, to achieve
a better performance for the SLS-VI platform, the damping coefficients c1–c3 can all be used easily for performance
improvement (e.g. assembling a semi-active control device with linear damper on the left joint in the bottom layer of the
platform).
4. Analysis of equivalent stiffness and damping

To understand more about the nonlinear mechanism of the SLS-VI platform in vibration control and its relationship with
structural parameters, the equivalent stiffness and damping are investigated in this section. The equivalent stiffness and
damping can be obtained by the stiffness function and damping function f1, f2, f3 in dynamical equation.
4.1. Equivalent stiffness

The overall spring force of the isolation platform is given in (19), which is obviously a nonlinear function, and fromwhich
the equivalent linear and nonlinear stiffness coefficients β1, β2, β3 and β4 can be obtained, which are listed in Appendix B.

The linear stiffness coefficient β1 is a dominant factor to represent the resonant frequency of the system. To have a better
vibration isolation performance, this coefficient should obviously be reduced in order to have a low resonant frequency.
From the dimensionless transform of coefficients and (B.1), the dimensionless resonant frequency of the system is

ω2 ¼
ffiffiffiffiffi
β1
kl

s
¼ tan θ

n
(29)

With (29), the resonant frequency for different assembly angle θ and number of layer n is shown in Fig. 12.
From Fig. 12, the dimensionless resonant frequency ω2 extremely depends on the structural parameters n and θ. It shows

that increasing n or decreasing θ can both reduce the resonant frequency and thus improve isolation performance.
The nonlinear stiffness coefficients can actually influence not only the displacement transmissibility but also the

vibration offset of the platform. The three coefficients β2, β3 and β4 for different structural parameters are shown in Fig. 13.
From Fig. 13, it can be seen that as n or l decease or θ increases, the nonlinear coefficients β2, β3 and β4 increase.

Considering the results in Section 3, the increase of the nonlinear coefficients is helpful to vibration suppression but also
incurs more vibration offset.

It can also be seen that the sensitivities of the three coefficients above are more differentiable with respect to the
parameter l in a large value range for a smaller n, and basically very different with different structural parameters. The
different sensitivity of the stiffness coefficients with respect to different structural parameters provides potentially an
effective way for optimal design or realization (in a passive way) of a desired nonlinear stiffness characteristic for the SLS-VI
system, which would be of great significance to engineering practice. This will be further investigated in a future study.
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4.2. Equivalent damping

The Taylor series expansions of the damping forces due to rotational and horizontal friction are shown in (20) and (21).
The overall damping force of the system can be written as

f 0dðŷÞ ¼ c1 _̂yþnxc2ðζ0þζ1ŷþζ2ŷ
2Þ _̂yþc3ðζ3þζ4ŷþζ5ŷ

2Þ _̂y
¼ ðc1þnxc2ζ0þc3ζ3Þ _̂yþðnxc2ζ1þc3ζ4Þŷ _̂yþðnxc2ζ2þc3ζ5Þŷ2 _̂y (30)

where the coefficients ζ0, ζ1, ζ2, ζ3, ζ4, ζ5; c1, c2, c3; and nx are given as before. Obviously, this is also a nonlinear function.
Define ζl, ζn1, and ζn2 as the coefficients of the overall damping force in (30) as ζl¼c1þnxc2ζ0þc3ζ3, ζn1¼nxc2ζ1þc3ζ4, and
ζn2¼nxc2ζ2þc3ζ5, which can be further written as

ζl ¼ Cnx Uζ0;3; ζn1 ¼ Cnx Uζ1;4; ζn2 ¼ Cnx Uζ2;5 (31)

where Cnx¼[ c1 nxc2 c3], ζ0,3¼[1, ζ0, ζ3]T, ζ1,4¼[0, ζ1, ζ4]T, ζ2,5¼[0, ζ2, ζ5]T. Then Eq. (30) can be written as

f 0dðŷÞ ¼ Cnxðζ0;3þζ1;4ŷþζ2;5ŷ
2Þ _̂y (32)

It can be seen that (32) presents a nonlinear damping force which is not only a function of velocity but also depends on
the displacement, and the coefficients of this damping force are functions of structural parameters. It is clear that ζ0,3, ζ1,4
and ζ2,5 are symbolically independent. Therefore, the equivalent damping coefficient in (32) can be designed (by adjusting
structural parameters) to any nonlinear function that can be approximated by the second degree polynomial in terms of ŷ.
This definitely provides potentially an effective method for nonlinear damping design in a passive manner, which is of great
interest to engineering practice [12] and will be investigated further.

The values of the three damping coefficients ζl, ζn1 and ζn2 for different parameters are shown in Fig. 14.
From Fig. 14, ζl, ζn1, and ζn2 increasewith the decrease of n, the increase of θ, and decrease of l. Also, the damping coefficients are

linear increasing functions of c3. Thus increasing c3 can reduce the displacement transmissibility at around resonant frequency.
More specifically, it is clear that the linear damping coefficient ζl is dependent on c1 while the nonlinear damping

coefficients ζn1 and ζn2 are unrelated with c1. Therefore, the value of ζl can be adjusted by different c1 independently. The
value of ζl is shown in Fig. 15 for different value of c1, n and l.

From Fig. 15, it is easy to see that, as c1 increases, the value of ζl is raised. The increase of ζl is helpful for isolation at
around resonant frequency but increase the vibration at high frequencies. When the linear damping is reduced for high
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frequency performance, nonlinear damping must be used for low frequency vibration isolation around resonant frequency
[12–14]. Fortunately, the nonlinear damping force in (32) provides sufficient capability to achieve such an advantageous
damping system (see also Appendix B).

It should be noted that, although there are coupling effects between nonlinear damping coefficients ζn1, and ζn2 when
tuning the same structural parameters, an optimization could solve this problem since the sensitivities of those coefficients
with respect to different structure parameters are very different. For example, consider the linear and nonlinear damping
coefficients in (30) for different c3 and l which are shown in Fig. 16.

From Fig. 16, the value of ζl for c3¼1, c3¼25, and c3¼50 are very close while nonlinear coefficients ζn1 and ζn2 change
quite different asland c3 increase.
5. Conclusions

A nonlinear vibration isolation system, i.e., SLS-VI, is proposed and studied in this paper. The SLS-VI platform takes a
simple scissor-like structure and can achieve very advantageous nonlinear vibration isolation/suppression performance by
employing passive spring or damping components. By designing structural parameters, the platform can realize quasi-zero
stiffness property with much better loading capacity and equilibrium stability compared with existing QZS isolators in the
literature. Importantly, with only linear spring and/or damper components, the SLS-VI demonstrates very beneficial
nonlinear stiffness and damping characteristics in vibration isolation, compared with traditional mass–spring–damper
systems of the same equivalent springs and dampers. The platform provides novel insights into passive design of nonlinear
stiffness and/or damping properties for vibration isolation/control in engineering practice.

In practice, the SLS-VI can meet different stiffness and damping requirement for different types of excitations and
working conditions by designing structural parameters (e.g., n, l, θ). From the theoretical analysis results of this study, it can
be seen that there is no an obvious priority list to design those structural parameters. The sensitivities of equivalent stiffness
and damping properties of the system with respect to different structure parameters are very different. This presents the
possibility for different stiffness and damping design, and also indicates that an optimization process can be employed for a
detailed engineering task (considering the actual requirements on performance, size, weight, frictions and others).

The SLS system will be further studied by considering mass and flexibility of connecting rods in system modeling,
validating the theoretical results with a practical experimental platform, investigating the optimal design of structural
parameters and exploring the most potential value of the SLS platform in 3D vibration control.
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Appendix A

See Tables 1–5.
Table 1
The structural parameters of the SLS-VI.

Symbol Structural parameters Unit

kl Linear stiffness N m�1

kn Nonlinear stiffness N m�3

M Mass of isolation object kg
n Number of layer
nx Number of joints
l Length of connecting rod m
θ Assembly angle of connecting rod rad
c1 Air damping coefficient N s m�1

c2 Damping coefficient of rotational friction N s rad�1

c3 Damping coefficient of horizontal friction N s m�1



Table 3
The dimensionless transfer of SLS-VI.

Dimensionless parameters Value

ω1
ffiffiffiffi
kl
M

q
t0 ω1t
ω2

ffiffiffi
β
kl

q
γ1 β2/kl
γ2 β3/kl
γ3 β4/kl
ξ1 c1 þnxc20 þ c33

2
ffiffiffiffiffiffi
Mkl

p
ξ2 nxc21 þ c34

2
ffiffiffiffiffiffi
Mkl

p
ξ3 nxc22 þ c35

2
ffiffiffiffiffiffi
Mkl

p
Ω ω0/ω1

Table 4
The dimensionless transfer of mass-spring-damping isolator.

Dimensionless parameters Value

ω1
ffiffiffiffi
kl
M

q
t0 ω1t
γ1 kn/kl
ξ1

c1
2

ffiffiffiffiffiffi
Mkl

p
Ω ω0/ω1

Table 5
The dimensionless transfer of quasi-zero-stiffness isolator.

Dimensionless parameters Value

ω1
ffiffiffiffi
kl
M

q
t0 ω1t
γ kn/kl
ξ1

c1
2

ffiffiffiffiffiffi
Mkl

p
Ω ω0/ω1

Table 2
The motion and variables of SLS-VI.

Symbol Structural parameters Unit

y Absolute motion of isolation
object

m

z Base excitation m
ŷ Relative motion of isolation

object and base
m

φ Rotation transport motion rad
x Horizontal transport motion m
z0 Amplitude of base excitation z m
ω0 Frequency of base excitation z rad s�1

a0 Offset of vibration ŷ
a Amplitude of relative motion ŷ
ϕ Phase of relative motion ŷ
Td Displacement transmissibility
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Appendix B

The expression of β1, β2, β3, β4, ζ0, ζ1, ζ2, ζ3, ζ4, and ζ5 in (19–21) are as follows:

β1 ¼
kl tan 2θ

n2 (B.1)

β2 ¼
3klsec4θ sin θ

4n3l
(B.2)

β3 ¼
kn
n4 � 4ðklþ2knl

2 cos 2θÞsec3θ�5klsec5θ

8n4l2 cos θ
(B.3)

β4 ¼
5 sin θð5klþ2knl

2�2kl cos 2θ�2knl
2 cos 4θÞ

64n5l3 cos 8θ
(B.4)

ζ0 ¼
1

2nl cos θ
(B.5)

ζ1 ¼
sin θ

4n2l2 cos 3θ
(B.6)

ζ2 ¼
ð2� cos 2θÞ
16n3l3 cos 5θ

(B.7)

ζ3 ¼
tan θ

n
(B.8)

ζ4 ¼
1

2n2l cos 3θ
(B.9)

ζ5 ¼
3 sin θ

8n3l2 cos 5θ
(B.10)

Appendix C

The equations for a0, a and ϕ of the response of SLS-VI obtained by the HBM are as follows:

a20γ1þ
a2γ1
2

þa30γ2þ
3
2
a0a2γ2þa40γ3þ3a20a

2γ3þ
3a4γ3
8

þa0ω2
2 ¼ 0 (C.1)

2aξ1Ωþ2a0aΩþ2a20aξ3Ωþ 1
2 a

3ξ3Ω
� 	

cos ϕ

það2a0γ1þ3a30γ2þ4a30γ3�Ω2þω2
2Þ sin ϕþa3

3
4
γ2þ3a0γ3

� �
sin ϕ¼ 0 (C.2)

2a0aγ1þ3a0aγ2þ 3
4 a

3γ2þ4a30aγ3þ3a0a3γ3
� 	

cos ϕ

�að2ξ1Ωþ2a0ξ2Ωþ2a20ξ3ΩþΩ2�ω2
2Þ sin ϕþ 1

2
a3ξ3Ω sin ϕþz0Ω2 ¼ 0 (C.3)
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