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Abstract
The imaging technique based on guided waves has been a research focus in the field of damage
detection over the years, aimed at intuitively highlighting structural damage in two- or
three-dimensional images. The accuracy and efficiency of this technique substantially rely on
the means of defining the field values at image pixels. In this study, a novel probability-based
diagnostic imaging (PDI) approach was developed. Hybrid signal features (including temporal
information, intensity of signal energy and signal correlation) were extracted from ultrasonic
Lamb wave signals and integrated to retrofit the traditional way of defining field values. To
acquire hybrid signal features, an active sensor network in line with pulse–echo and pitch–catch
configurations was designed, supplemented with a novel concept of ‘virtual sensing’. A hybrid
image fusion scheme was developed to enhance the tolerance of the approach to measurement
noise/uncertainties and erroneous perceptions from individual sensors. As applications, the
approach was employed to identify representative damage scenarios including L-shape
through-thickness crack (orientation-specific damage), polygonal damage (multi-edge damage)
and multi-damage in structural plates. Results have corroborated that the developed PDI
approach based on the use of hybrid signal features is capable of visualizing structural damage
quantitatively, regardless of damage shape and number, by highlighting its individual edges in
an easily interpretable binary image.

(Some figures may appear in colour only in the online journal)

1. Introduction

Many engineering assets including aircraft, civil infrastructure
and pressure vessels are serving in adverse working conditions,
entailing regular and timely integrity evaluation over their
lifespan. Traditional nondestructive evaluation (NDE) (e.g.
radiography, acoustic holography and infrared thermography)
requires downtime of an asset for such an inspection. In
contrast, structural health monitoring (SHM) uses permanently
installed sensors for real-time and continuous surveillance on
integrity of an asset during its normal operation. Such a
technique revamps the conventional maintenance philosophy,
therefore attracting more and more attention. Successful
implementation of SHM can increase operational efficiency,
improve reliability, reduce exorbitant maintenance costs and

extend the residual service life of ageing assets. In this aspect,
Lamb waves, the modality of guided waves in thin plate-
or shell-like structures, have been increasingly employed to
develop various SHM techniques [1–9].

As an elastic disturbance disseminated omnidirectionally
and rapidly in a medium, Lamb waves possess the capability
of interrogating local properties of the medium in a prompt
manner, outperforming local NDE techniques which are quite
labour-intensive and time-consuming due to the point-to-point
scanning fashion. Operated in an ultrasonic frequency range,
short wavelengths (of the order of a few millimetres) endow
Lamb waves to access damage of small dimensions, while
this task can hardly be satisfactorily fulfilled by other SHM
methods capitalizing on global structural features such as
eigenfrequencies or modal curvature. Therefore, Lamb-wave-
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based SHM offers an outstanding compromise between local
NDE and global SHM in terms of resolution, practicality and
detectability.

When implementing Lamb-wave-based SHM, actuators
and sensors often form a sensor network to be affixed to
the structure under inspection. They work collaboratively
to generate and receive ultrasonic Lamb waves, from which
various signal features associated with the damage are
extracted. However, in practice the signals are prone to
contamination by measurement noise and uncertainties, posing
difficulty in feature extraction. Moreover, Lamb waves are
inherently of a dispersive and multimodal nature. All of these
make interpretation of captured Lamb wave signals and feature
extraction a highly challenging task, and sometimes this task
can be a very subjective manner depending on individual
operators.

To tackle these deficiencies, there has been increasing
interest in introducing imaging techniques to Lamb-wave-
based SHM. The ultimate output of an imaging technique is an
easily interpretable and intuitive image reflecting the overall
‘health’ status of the inspected structure. Often operated in
an automatic manner, this technique can efficiently minimize
the dependence on subjective interpretation of signals
by individual operators. Nevertheless, traditional imaging
approaches, typified by Lamb wave tomography [10–12], often
require dense wave paths for image reconstruction. This
results in either rotation of the inspected object by very
tiny increments or use of a large number of deliberately
allocated transducers, fairly narrowing the application domain
of imaging techniques for SHM.

To enhance the practicality of Lamb-wave-based SHM in
conjunction with the use of imaging techniques, alternative
methods have been explored, exemplified by a recent
breakthrough: probability-based diagnostic imaging (PDI).
A PDI method attempts to describe a damage event using
a binary greyscale image. The field value at each image
pixel is linked with the probability of damage presence at
the spatial point of the inspected structure that exclusively
corresponds to this pixel [13]. Most prevailing damage
detection and SHM techniques define identified damage using
deterministic parameters (e.g. coordinates of damage location
and size of damage). Rather than using deterministic
parameters, PDI presents damage in terms of its presence
probability. This is deemed as an improvement over the
traditional way to represent results because damage detection
is actually a procedure of ‘predicting’ something unknown.
Thus identification results should ideally be delivered using
‘probability’ associated with damage presence, because the
underlying significance of ‘probability’ is more consistent
with the manner of ‘predicting’. Representatively, temporal-
information-based PDI [14–20] converts the arrival time
of damage-scattered wavepackets to spatial loci reflecting
the possibility of damage occurrence, and subsequently
applies geometric triangulation to locate the damage. Signal-
correlation-based PDI [21–23] hypothesizes that a low
correlation between two signals captured from a damaged
structure and from its intact counterpart implies a high
probability of damage presence along the signal acquisition

path and vice versa. Based on this, the damage can be located
by seeking intersections of several paths along which the
captured signals exhibit low correlation. Phased-array-based
PDI [22, 24] uses the superposition of wavefronts generated
by a series of arrayed sensors, sequentially activated with time
delays, to scan the entire inspection area and locate damage if
additional signal scattering is captured.

In spite of the fact that most approaches in this field
have the capacity of locating damage, quantitative depiction of
damage including its shape and size is still among those highly
challenging tasks. This difficulty is particularly accentuated for
orientation-specific damage of sizeable length in a particular
dimension (e.g. a crack or a notch) because such sort of
damage exerts strong directivity to wave propagation and, as a
consequence, the damage-scattered waves may not be captured
efficiently at certain sensing locations in the absence of prior
knowledge on damage orientation.

A novel PDI approach in conjunction with the use of
hybrid signal features was developed, based on relationships
between (i) temporal information and damage location,
(ii) intensity of signal energy and damage orientation/shape
and (iii) signal correlation and damage location/severity. An
active sensor network in conformity to pulse–echo and pitch–
catch configurations was designed, supplemented with a novel
concept—‘virtual sensing’, to capture hybrid signal features.
The approach was validated by predicting representative
damage scenarios including L-shape through-thickness crack
(orientation-specific damage), polygonal damage (multi-edge
damage) and multi-damage in aluminum plates.

2. Probability-based diagnostic imaging (PDI) using
hybrid signal features

In most PDI approaches, the planar area of an inspected
structure is first meshed and projected to an image, each
image pixel corresponding exclusively to a spatial point of the
structure. The value of an image pixel is termed field value in
what follows, which can be linked to the probability of damage
presence at the spatial point of the structure corresponding to
that pixel, using appropriately extracted signal features.

In this study, various signal features were extracted from
captured Lamb wave signals for establishing different genres of
field value using different mechanisms, which were then fused
using a hybrid fusion scheme. The basic philosophy of this
proposed PDI technique is illustrated in figure 1. In particular
it is noteworthy that the hybrid fusion of various genres of
field value as indicated in the figure was developed based
on thorough consideration of the mathematical properties of
individual fusion schemes, rather than simply stacking all
available information together. Therefore this hybrid fusion
exercise has solid and explicit justification for each step (to be
addressed in section 3).

To acquire various signal features associated with damage,
an active sensor network in conformity to the pulse–echo
and pitch–catch configurations was designed. Pulse–echo and
pitch–catch are two configurations for allocating the sensor
and actuator in a sensing path. In the former, a sensor
collocated with the actuator is used to ‘listen to’ the wave
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Figure 1. Basic philosophy of the proposed PDI approach using
hybrid signal features and a hybrid fusion scheme.

echoed back from the damage upon interaction between the
incident wave and the damage; while in the latter, an incident
signal is activated by the actuator to propagate across the
object under inspection and a sensor at the far-field of the
object receives the damage-scattered waves. In this study, both
configurations were used to generate different genres of field
values, respectively.

2.1. Time-of-flight (ToF)-based field value (first genre of field
value)

ToF, defined as the time consumed for a wavepacket to travel
a certain distance, is one of the most straightforward features
of a wave signal. Consider a sensor network consisting of
N pulse–echo pairs. For a given pulse–echo pair, Ai − Si

(i = 1, 2, . . . , N , Ai serves as the actuator and Si the sensor), a
local coordinate system can be established in which the origin
is between Ai and Si , and the damage centre is presumed to be
at (xD, yD), as sketched in figure 2. Provided the propagation
velocity V of the selected wave mode is constant before and
after interaction with the damage, there exists a set of nonlinear
equations for the entire sensor network:

L Ai −D + L D−Si

V
= �ti (i = 1, 2, . . . , N), (1)

where �ti is the sum of (i) the ToF for the incident wave
to propagate from Ai to the damage and (ii) the ToF for the
damage-reflected wave to propagate from damage to Si . L Ai −D

and L D−Si represent the distances between Ai and the damage,
and the damage and Si , respectively. Because the distance
between Ai and Si is much smaller than L Ai −D and L D−Si ,

it can be hypothesized that L Ai −D = L D−Si =
√

x2
D + y2

D .
Mathematically, equation (1) depicts a series of circle-like loci,
indicating possible damage locations. Each locus is namely the

Figure 2. Relative positions among actuator Ai , sensor Si and
damage in the local coordinate system for sensing path Ai − Si .

prior perceptions regarding the presence of damage from the
perspective of the pulse–echo pair which creates such a locus.

Further, we mesh the inspected planar area using K × L
nodes virtually. It is understandable that the mesh nodes right-
located on an above-established locus have the highest degree
of probability of damage presence; for the others, the greater
the distance to the locus the lower the probability damage
exists there. To quantify the probabilities at all nodes with
regard to all loci, a cumulative distribution function, F(zi), is
introduced, defined by [13]

F(zi) =
∫ zi

−∞
f (z) · dz, (2)

where f (z) = 1
σi

√
2π

exp[− z2

2σ 2
i
] is the Gaussian distribution

function, representing the probability density of damage
presence at mesh node (xm, yn) (m = 1, 2, . . . , K ; n =
1, 2, . . . , L), established by sensing pair Ai − Si . zi = ‖χ i −
μi‖, where χ i is the location vector of node (xm, yn) and μi is
the location vector of the point on the locus created by Ai − Si

that has the shortest distance to (xm, yn). σi is the standard
variance and is selected based on a series of trials. Given a
distance, zi , the probability of damage presence at (xm, yn),
I (xm, yn), established by sensing path Ai − Si , becomes

I (xm, yn)|I = 1 − [F(zi ) − F(−zi )]. (3)

The probability of damage presence at node (xm, yn), defined
by equation (3), can be illustrated in figure 3. In the figure,
the x axis refers to the distance between a spatial node
and a root locus, while the y axis refers to the probability
density. The dark region represents the probability density of
the structure being completely healthy at the discussed spatial
node, whereas two white regions represent the probability
density of the structure being in possession of damage at the
discussed node. When zi reaches zero (the discussed node is
right located on the established root locus), the dark region
retreats to zero. In equation (3), subscript I stands for the
first genre of field value in the approach that is based on sole
ToF-related signal features. Figure 4 exemplarily displays
a probability image obtained using equation (3), where the
lighter the greyscale, the greater the possibility of damage
existing at that pixel (each pixel exclusively corresponds to a
spatial point of the structure under inspection).
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Figure 3. Normal distribution of the probability density with regard
to the presence of damage at a specific spatial node of the structure
under inspection.

Figure 4. A typical probability image established by a sensing path
using the first genre of field value (diagram showing inspection area
only covered by the sensor network).

2.2. Enhanced first genre of field value

A ToF-based field value defined by equation (3) can facilitate
a procedure of locating damage, but its effectiveness in
depicting damage shape, size and severity is debatable. That is
because different locations of damage can lead to a significant
difference in ToF of damage-scattered waves; but discrepancies
in damage shape, size or severity often cause changes in
temporal information at an unperceivable level only.

As concluded in the authors’ previous work [25], the
intensity of damage-reflected wave energy can be a sensitive
indicator for damage orientation, as correlated in figure 5
in which the strongest reflection is captured with normal
incidence, and with the increase of angle of wave incidence,
the intensity of crack-reflected signal energy quickly decreases.
Based on this, the first genre of field value was re-defined
by integrating extracted signal features associated with the
intensity of signal energy as

I (xm, yn)
′|I = I (xm, yn)|I × �

�max
, (4)

Figure 5. Intensity of signal energy (A0 mode) reflected by a crack
vs. angle of wave incidence (dotted line: FE simulation results, solid
line: experimental results; normalized by the magnitude of
damage-reflected wave at a normal incidence θ = 0◦).

where I (xm, yn)
′|I is the enhanced first genre of field value

at pixel (xm, yn). � is the intensity of damage-reflected
wave energy which has already been compensated for wave
attenuation as propagation distance using f ′(t) = f (t) ·

√
d√
d0

( f ′(t) and f (t) are the compensated and original wave signals,
respectively; d and d0 are the propagation distances at which
the wave signal is captured and a reference distance [25]).
�max is the extremum of � obtained via all available actuator–
sensor pairs in the sensor network. Integrating (i) intensity
of damage-reflected wave energy, which is susceptible to
damage orientation, with (ii) ToF-related information, which is
sensitive to damage location, the enhanced first genre of field
value is able to highlight the orientation of damage, in addition
to its location.

2.3. Signal-correlation-based field value (second genre of
field value)

It is appreciated that the correlation coefficient between
two signals captured from the inspected structure (current
signal) and from its ‘healthy’ counterpart (baseline signal)
can quantitatively indicate changes in the structure along or
near the sensing paths via which these signals are acquired.
The physical intuition behind this is that a captured wave
signal would change drastically if a defect right locates on
or very close to its sensing path, presenting a relatively small
correlation coefficient between two signals. In contrast, the
signal deviation would be trivial if the defect is away from the
sensing path, leading to high similarity between two signals
(i.e. a great correlation coefficient). The correlation coefficient
has, in particular, proven susceptibility to changes in signal
phase (leading to different ToFs) as well as changes in local
signal amplitude (leading to different intensities of signal
energy) [26], therefore advantageous over other signal features
in terms of the sensitivity to phase delay and reduction in signal
amplitude. Signal features associated with signal correlation
were therefore extracted in this approach to develop the second
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Figure 6. A typical probability image established by a sensing path
using the second genre of field value (diagram showing inspection
area only covered by the sensor network).

genre of field value, in accordance with a pitch–catch sensor
network configuration.

Considering two wave signals of the same length X =
{x1, x2, . . . , xn} (current signal) and Y = {y1, y2, . . . , yn}
(baseline signal) (both having n sampling points) captured via
a sensing path having an angle of α relative to a pre-selected
benchmark direction, the second genre of field value is defined
as

I (α)|II = 1 − ρ, (5)

where ρ is the correlation coefficient between signals X and Y ,
defined as

ρ = CXY

τX · τY
=

∑n
i=1(xi − μX )(yi − μY )√∑n

i=1(xi − μX )2 ·
√∑n

i=1(yi − μY )2
.

(6)
In the above, CXY is the covariance of X and Y ; τ and μ are
the standard deviation and mean of the signal, respectively,
distinguished by different subscripts for the two signals.
Subscript II stands for the second genre of field value in
the approach that is based on sole correlation-related signal
features. In terms of equation (5), all the pixels along a
sensing path hold the same field value. Because X and Y
are two signals captured via the same sensing path in the
same structure, the greater the similarity between them, the
closer to unity is the coefficient, leading to low field values
at pixels along this sensing path and indicating low probability
of damage existence near this sensing path; in contrast, in the
case damage occurs in or close to a particular sensing path,
the correlation coefficient between two signals becomes low,
resulting in high field values at pixels along this sensing path.

2.4. Enhanced second genre of field value

The mathematical nature of equation (6) makes a small discrep-
ancy between two signals become magnified considerably in
the correlation coefficient, and as a result the image established

Figure 7. Schematic of a sensor network consisting of five physical
sensing paths and a virtual sensing path.

in terms of the second genre of field value often shows a very
narrow band of highlight along the sensing path, if part of the
damage is in the path or very close to it, while pixels at other
regions of the image hold very low field values. In other words,
a particular sensing path can only sense damage near it, making
the field value defined by equation (5) highly inert to distant
damage. By way of illustration, figure 6 presents a probability
image using the second genre of field value established by
a sensing path passing through damage, to observe that only
those pixels along this sensing path have very high field values.

Such a trait of the second genre of field value can
be beneficial to detection of multi-damage, but it poses
demanding requirements on the density of sensing paths to
cover the inspection area. Although introducing more sensing
paths certainly helps achieve a denser coverage and enhance
the ability to detect damage at more random locations, merits
of the developed PDI approach over traditional tomography
relying on a large number of actuator–sensor pairs are impaired
fairly. To overcome this deficiency, an interpolation method
based on a novel concept, ‘virtual sensing’, was developed,
aimed at virtually generating more sensing paths but not at the
expense of introducing more physical sensors. To understand,
consider a sensor network comprised of an actuator, A, and
five sensors, S1, S2, S3, S4 and S5, forming five sensing paths:
A−S1, A−S2, A−S3, A−S4 and A−S5, shown schematically
in figure 7. Knowing that the angle of each sensing path with
regard to a benchmark direction (e.g. A − S5) is α1, α2, α3,
α4 and α5 (α5 = 0◦ for the current selection of benchmark
directions), respectively, the second genre of field values at
pixels along these five sensing paths can be calculated in terms
of equation (5), leading to I (α1)|II, I (α2)|II, I (α3)|II, I (α4)|II
and I (α5)|II, respectively. Apart from those sensing paths
configured by the physically existing actuator (A) and sensors
(S1, S2, S3, S4 and S5), virtual sensing paths connecting A and
an imaginary sensor (Svirtual) located at any position of interest
within the inspection area can also be formed virtually.
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For the exemplificative case in figure 7, the second genre
of field values at all pixels along a virtual sensing path,
A − Svirtual (with an angle of αvirtual relative to the benchmark
direction), can be obtained using the field values of two
physical sensing paths which are clockwise and anticlockwise
closest to A − Svirtual, by linearly scaling their respective field
values and angles, as

I (αvirtual)|II = I (αk)|II + (αvirtual − αk)
I (αk+1)|II − I (αk)|II

αk+1 − αk

(αk+1 < α < αk), (k = 1, 2, 3, 4). (7)

I (αvirtual)|II is the second genre of field value for this virtual
sensing path. The same as a physical sensing path, all pixels
along a virtual sensing path hold the same second genre of field
value. By virtue of the concept of ‘virtual sensing’, the second
genre of field value at all pixels across the entire inspection
region, even for those areas in which there is no any physical
sensing path passing through, can be determined by changing
αvirtual by a tiny increment (1◦ in this study). The concept of
‘virtual sensing’ virtually and significantly expands the sensor
network coverage without the need of more sensors.

3. Imaging fusion scheme

In terms of equations (4), (5) and (7), various signal features
extracted from captured wave signals were used to develop
different genres of field value. The probability image
established by a sensing path, whichever genre is used, is
defined as the source image hereinafter. A source image is
the prior perceptions regarding damage from the viewpoint of
the sensing path that creates this image. In practice, a source
image contains not only information associated with damage
but unwanted features such as ambient noise and measurement
uncertainties, multiple wave modes and reflections from
structural boundaries. These unwanted signal features possibly
dim damage-associated features and weaken perceptions from
individual source images. To circumvent this, image fusion
was introduced in the approach. The ultimate deliverable of
the fusion was a resulting image. During fusion, a pixel was
considered at a time (other pixels were not considered) and the
field value at this pixel in the resulting image was calculated by
appropriately amalgamating corresponding field values at this
pixel in individual source images.

Considering a sensor network consisting of N pairs of
actuators and sensors ((Ai , Si ), i = 1, 2, . . . , N) as shown
in figure 8, two types of sensing configurations are available:
pulse–echo (Ai − Si (i = 1, 2, . . . , N)) and pitch–catch
(Ai − Sj , (i, j = 1, 2, . . . , N , but i �= j )), respectively. Upon
extraction of signal features (ToF, intensity of signal energy
and correlation coefficients),

(i) for every single pulse–echo path, the first genre of
field value (ToF-based with integrated intensity of signal
energy) is calculated using equation (4). Each sensing path
thus creates a source image and the one established by the
i th pulse–echo path is denoted by I ′

i |I;
(ii) for every actuator Ai , the second genre of field value

(correlation coefficient-based) is first calculated using
equation (5), in which physically existing paths Ai − Sj

Figure 8. An active sensor network consisting of N pairs of actuator
and sensor.

( j = 1, 2, . . . , N , but j �= i ) contribute N − 1 probability
images. Subsequently, with the concept of ‘virtual
sensing’, a series of virtual sensing paths connecting Ai

with imaginary sensors at different locations are virtually
formed by changing αvirtual with an increment of 1◦. Thus,
each virtual path renders a probability image as well, in
accordance with the principle described by equation (7).
All these probability images, from N − 1 physical paths
and all virtual paths, are aggregated, to create a source
image for the current actuator (Ai ), denoted by Ii |II.
To summarize the above, each actuator (N in total) offers a

source image via pulse–echo configuration and another source
image via pitch–catch configuration. Then, a hybrid fusion
scheme was developed to fuse all available source images in
the sensor network, as

Phybrid = 1

N

N∑
i=1

(I ′
i |I ∩ Ii |II), (8)

as a flowcharted in figure 9, where Phybrid is the field value in
the ultimate resulting image.

The incentive to develop such a hybrid fusion scheme is
twofold:

(i) an arithmetic fusion (‘
’ in equation (8)) equally takes
into account all prior perceptions from source images
and well-decentralizes individual contributions. Although
the arithmetic fusion guarantees a full inclusion of prior
perceptions from all source images, information in all
source images including ambient noise and measurement
uncertainty is also engaged, which might ‘pessimistically
exaggerate’ the possibility of damage presence, leading to
false alarm (pseudo damage); and

6
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Figure 9. Flowchart of the proposed hybrid fusion scheme.

(ii) a conjunctive fusion (‘∩’ in equation (8)) multiplicatively
processes source images, and a low field value at a pixel in
any source image can lead to significantly low likelihood
of damage presence at that pixel in the ultimate resulting
image.

Through the hybrid fusion, damage-related information
(commonality in individual source images) stood out and noise
(random information in individual source images) is filtered.

4. Applications to structural damage identification

The developed PDI approach, active sensor network and
hybrid fusion scheme were employed to identify various types
of structural damage, including L-shape through-thickness
crack (strong orientation-specific damage), polygonal damage
(multi-edge damage) and multi-damage in aluminum plates.

4.1. L-shape crack (strong orientation-specific damage)

An aluminum plate (600 mm × 600 mm × 1.5 mm) was fixed
along its four edges on a testing table, and an L-shape crack

comprised of two through-thickness edges (edges I and II, each
being 25 mm long and 1.5 mm wide) was introduced into the
plate using a fine blade, as seen in figure 10. Sixteen circular
piezoelectric lead zirconate titanate (PZT) wafers (nominal
diameter: 5 mm, thickness: 0.5 mm each) were surface-
mounted on the plate to form an active sensor network. Such a
sensor network provided eight pulse–echo sensing paths, Ai −
Si (i = 1, 2, . . . , 8) and 7 × 8 = 56 pitch–catch sensing paths,
Ai − Sj (i, j = 1, 2, . . . , 8, i �= j ). The diagnostic signal
(Hanning-window-modulated five-cycle sinusoid tone bursts at
a central frequency of 450 kHz) was generated in MATLAB®

and downloaded to an arbitrary waveform generation unit
(Agilent® E1441 on a VXI platform), in which D/A conversion
was performed. The analogue signal was amplified to 60
Vp−p using a linear amplifier (PiezoSys® EPA-104) to drive
each PZT actuator in turn. Wave signals were captured using
an oscilloscope (HP™-54810A) at a sampling rate of 25
MHz. Shielded wires and standard BNC connectors were used
to minimize measurement noise. All captured signals were
normalized with regard to the magnitudes of their respective
incident waves for eliminating differences in soldering and
bonding for individual wafers.
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Figure 10. Specimen configuration for identifying an L-shape crack
(unit: mm) (PZT wafers in the sensor network being symmetric
relative to x and y axes).

As an example of signals captured via the pulse–echo
configuration, figure 11(a) exemplarily displays the current
and corresponding baseline signals sensed by A3 − S3. In
order to obtain the first genre of field value, two signals were
applied with Hilbert transform (HT) [27], in figure 11(b),
whose difference is shown in figure 11(c) to strengthen an
extra wavepacket scattered by the damage. In the difference
signal, the damage-reflected fundamental order antisymmetric
mode (A0) can be observed explicitly (at the current selection
of excitation frequency, the A0 mode dominates, whereas
the fundamental-order symmetric mode (S0) is substantially
suppressed. Accordingly, the defect-reflected S0 mode
is very weak in comparison with the defect-reflected A0

mode, benefiting subsequent signal interpretation and feature
extraction), featuring high intensity, thanks to the relatively
small angle of wave incidence along A3 − S3 with regard to
edge II (θ < 5◦). In terms of equation (4), the source image
established by A3−S3 was constructed, in figure 12. Following
the same principle, each pulse–echo path in the sensor network
(eight in total) respectively provided a source image.

As an example of signals captured via the pitch–catch
configuration, figure 13 shows the current and corresponding
baseline signals acquired by A2−S5 to observe that magnitudes
of both S0 and A0 modes in the current signal are much
weaker than those in the baseline signal. Such a reduction
in magnitude can be attributed to the fact that path A2 − S5

right-passed through a partial of the damage, and both S0 and
A0 modes captured via this sensing path were prominently
modulated by the damage. This led to a relatively small
correlation coefficient (ρ = 0.891) between the current and
baseline signals. In terms of equation (5), the second genre
of field values at pixels along all physical pitch–catch paths
were calculated. Further, for each actuator, the field values
along all virtual sensing paths radiated from this actuator were
obtained by increasing α with an increment of 1◦, following
the mechanism of ‘virtual sensing’ described by equation (7).

Figure 11. (a) Current and baseline signals acquired via pulse–echo
sensing path A3 − S3 (normalized by the magnitude of incident
waves); (b) energy distribution of signals in (a) obtained using HT
and (c) difference between two signals in (b).

Every physical or virtual sensing path contributed a probability
image, respectively, and all of them were aggregated for this
actuator, as detailed in section 3. By way of illustration,
figure 14 exhibits the probability image when A2 served as
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Figure 12. Source image established by A3 − S3 (diagram showing
inspection area only covered by the sensor network).

Figure 13. Current and baseline signals acquired via pitch–catch
sensing path A2 − S5 (normalized by the magnitude of baseline
signal).

actuator and αvirtual varied in the range of [0, π] relative to the
x axis, with known field values along seven physical sensing
paths A2 − Sj ( j = 1, 3, . . . , 7, 8). Applied with the hybrid
image fusion scheme defined by equation (8), all source images
established by pulse–echo and pitch–catch paths in the sensor
network were fused and the ultimate resulting image is shown
in figure 15(a).

To further examine the effectiveness of the hybrid fusion,
source images provided by sole pulse–echo paths and by sole
pitch–catch paths, respectively, were fused in accordance with
a pure arithmetic fusion scheme as

Ppulse−echo = 1

N

N∑
i=1

I ′
i |I (for eight pulse–echo paths),

(9a)

Ppitch−catch = 1

N

N∑
i=1

Ii |II (for eight actuators), (9b)

Figure 14. Source image established by physical sensing paths
A2 − Sj ( j = 1, 3, . . . , 7, 8) and virtual sensing paths (diagram
showing inspection area only covered by the sensor network).

where Ppulse−echo and Ppitch−catch are the field values in their
respective ultimate resulting images, shown in figures 15(b)
and (c). It can be seen that the fusion using sole pulse–
echo paths, figure 15(b), enables an approximate depiction of
the damage shape by roughly highlighting the orientation of
two crack edges, but a number of pseudo-damage locations
(false alarms) are included in the image; the one using
sole pitch–catch paths, figure 15(c), on the whole pinpoints
the location of the damaged zone but fails to describe
the damage shape under the interference of a great deal
of noise. Unsatisfactory identification results as seen in
figures 15(b) and (c) are attributable to the nature of arithmetic
fusion in equation (9), through which all prior perceptions
from individual sensing paths including noise are equally
amalgamated and reflected in the ultimate resulting images.
With an increase in involved sensing paths (more source
images), damage-associated information is de-emphasised
and meanwhile noise/uncertainties irrelevant to damage stand
out in the ultimate image. In contrast, the hybrid fusion,
figure 15(a), is able to accurately highlight the location,
orientation, shape and size of two individual edges, efficiently
screening false alarms. Such a capacity of hybrid fusion is
due to the facts that (i) the arithmetic fusion in the scheme
guarantees a full inclusion of prior perceptions from all
individual source images and (ii) the conjunctive operation
remains commonality in all source images (damage-associated
signal features) and screens out random components (noise in
individual source images).

4.2. Polygonal damage (multi-edge damage)

As an extension of the above application, the approach was
used to identify polygonal damage formed by five edges
(edges I, II, III, IV and V) in an aluminum plate with the
same dimensions and sensor network configuration, as seen in
figure 16. Five damage edges have different lengths (25, 25,
21, 22 and 22 mm, respectively) and angles relative to the x
axis (65◦, 133◦, 41◦, 92.5◦ and 168◦, respectively).
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Figure 15. Ultimate resulting images for L-shape crack using
(a) hybrid fusion scheme, (b) sole pulse–echo configuration and
(c) sole pitch–catch configuration (diagram showing inspection area
only covered by the sensor network; short black line: real edge of
L-shape crack; white ellipse: area containing most pseudo-damage
locations).

A fused image using the sole pulse–echo configuration
is displayed in figure 17, rendering a limited description of
damage shape, in which only edges I, II and III can be

Figure 16. Specimen configuration for identifying polygonal damage
(unit: mm) (PZT wafers in the sensor network being symmetric
relative to x and y axes; insert: sensitive areas of edges IV and V).

highlighted. Abundant pseudo-damage locations are noticed
in the image. The pseudo-damage can be seen to even hold
higher probabilities of presence than actual damage (reflected
by the higher field values (the first genre) at pixels in those
circled areas). Such a deficiency of fusion indicates that the
effectiveness of the approach may be jeopardized if only the
information acquired via pulse–echo configuration was relied
on.

In parallel, fused images using the sole pitch–catch
configuration without and with the assistance of ‘virtual
sensing’ are displayed in figures 18(a) and (b), respectively.
In figure 18(a), pixels along physical paths, A1 − S4, A2 − S5

and A3 − S7 can be seen to hold higher field values (the second
genre), implying a higher possibility of damage presence along
these three sensing paths. As commented previously, the way
to define the second genre of field value in terms of equation (5)
makes a sensing path very sensitive to the damage near it,
while highly inert to damage which is distant from it. When
fused with other pitch–catch paths, these three paths became
dominant. With such limited information, the identified results
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Figure 17. Ultimate resulting image for polygonal damage using
sole pulse–echo paths (diagram showing inspection area only
covered by the sensor network; white ellipse: area containing most
pseudo-damage locations).

in figure 18(a) fail to quantitatively describe the multi-edge
damage. On the other hand, using the concept of ‘virtual
sensing’, the sensor network was virtually densified. As a
direct result, prior perceptions from individual source images
were well decentralized and noise was largely removed. As
seen in figure 18(b), apart from an indication of damage
location, an approximate depiction of the size of the polygonal
damage was also achieved. But it is noteworthy that, although
use of virtual sensing can compensate for insufficient source
images, the fusion using sole pitch–catch configuration does
not have a capacity of pinpointing individual damage edges,
and the predicted damage shape shown in figure 18(b) largely
deviates from reality.

Applied with the hybrid fusion scheme, figure 19(a)
shows the ultimate resulting image, to observe that common
perceptions of source images were intensified, whilst noise
in each source image was suppressed considerably. Full
geometric details of edges I, II and III are ascertained, and
rough locations of edges IV and V can be recognized but
with dim depiction on the edge orientation and length. This
is attributable to the fact that each orientation-specific edge
possesses a sensitive region in which the angle of wave
incidence (θ in figure 5) is sufficiently small, so as to ensure
the damage-scattered wave energy is captured efficiently by at
least one pulse–echo sensing path. According to figure 5, the
sensitive regions of edges IV and V are indicated in the insert of
figure 16. With the current sensor network configuration, there
is no pulse–echo sensing path passing through the sensitive
regions of edges IV and V, making it difficult to identify these
two edges provided the sole pulse–echo-configuration-based
first genre of field value is used. Furthermore, if 50% of the
maximum field value in the ultimate resulting image is set as a
threshold to draw a definitive conclusion that damage occurs,
the shape of the polygonal damage can be clearly depicted, as
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Figure 18. Ultimate resulting image for polygonal damage using
sole pitch–catch paths (a) without and (b) with the assistance of
virtual sensing (diagram showing inspection area only covered by the
sensor network; white ellipse: area containing most pseudo-damage
locations).

shown in figure 19(b), upon forcing all field values which are
less than this threshold to be zero. In this case, the description
on edges I, II and III becomes more legible, but edges IV and
V are further hidden because the field values of those pixels
located on these two edges in the ultimate image are less than
the threshold. But at any rate, locations of all edges of the
polygonal damage were ascertained using the hybrid fusion
scheme.

4.3. Multi-damage

To identify multi-damage within the same inspection area is
usually a tanglesome task, due to the challenge and difficulty
in isolating different waves scattered from multi-damage. To
examine the feasibility of the developed PDI approach in
identifying multi-damage, the aluminum panel bearing the
polygonal damage used in the above case was introduced with
a through-thickness crack, referring to figure 20 (20 mm in
length and 0.64 mm in width). In the developed PDI, natures of
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Figure 19. (a) Ultimate resulting image for polygonal damage using
hybrid fusion scheme and (b) image in (a) upon applying a threshold
of 0.5 (diagram showing inspection area only covered by the sensor
network; short black line: real edge of polygonal damage).

the first and second genres of field value endow a sensing path
to perceive the damage most sensitively near it only. Such a
trait can be beneficial to detecting multi-damage. For example,
pairs A1 − S1 and A1 − S4 in this application offer crucial
information for the polygonal damage, while pairs A8 − S8

and A6 − S8 provide more information regarding the crack.
Furthermore, with the concept of ‘virtual sensing’, this active
sensor network was expanded virtually, able to provide larger
coverage and avoid insufficient acquisition of signal features.
With the hybrid image fusion scheme, the ultimate resulting
image is exhibited in figure 21(a). Similar as in section 4.2,
with a pre-set threshold (50% of the maximum field value in
the ultimate resulting image), all damage cases are depicted
accurately and quantitatively, figure 21(b), including damage
locations, shapes and sizes, matching well the reality.

In all the above three applications, it can be seen that
the image fusion plays an essential role in PDI in screening
unwanted signal features and standing out damage-associated

Figure 20. Specimen configuration for identifying multi-damage
(unit: mm) (PZT wafers in the sensor network being symmetric
relative to x and y axes).

features. It facilitates a phenomenal improvement in the
tolerance and robustness of PDI to measurement noise and
uncertainties, as well as erroneous perceptions from individual
sensing paths. It is also noteworthy that, in principle, an
elastic-wave-based identification approach can detect damage
that is greater than half the size of the wavelength. Generally
speaking, the higher an excitation frequency, the smaller is
the detectable damage, which however is at the expense of
more dispersion of the generated Lamb waves. Therefore
it is important to select an optimal frequency in practical
implementation, so as to achieve a suitable compromise
between damage detectability and signal recognizability. That
is the reason why a frequency of 450 kHz was selected in
this study, at which the wavelength of the selected wave mode
was around 6.7 mm, enabling damage of 3.4 mm or more in
dimension to be detected.

5. Conclusion

Hybrid signal features including ToF, intensity of signal
energy and signal correlation were extracted from captured
Lamb wave signals with the assistance of an active sensor
network and a novel concept—‘virtual sensing’. Various
signal features were integrated to develop a retrofitted PDI
approach. A hybrid image fusion scheme was developed,
able to enhance the tolerance of the approach to measurement
noise and possible erroneous perceptions from individual
sensing paths. Satisfactory identification results for three
selected damage cases, including L-shape through-thickness
crack (strong orientation-specific damage), polygonal damage
(multi-edge damage) and multi-damage in structural plates,
have demonstrated the effectiveness of the developed PDI
approach in quantitatively visualizing structural damage in an
easily interpretable binary image by highlighting individual
damage edges, regardless of its shape and number. However,
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Figure 21. (a) Ultimate resulting image for multi-damage using
hybrid fusion scheme and (b) image in (a) upon applying a threshold
of 0.5 (diagram showing inspection area only covered by the sensor
network; short black line: real edge of damage).

inefficiency of the approach has also been observed for some
extreme cases in which there is no effective sensing path
passing through the sensitive region of the damage. To include
more signal features by taking full advantage of the sensor
network is anticipated to circumvent this problem, constituting
the ongoing efforts of the authors. Conclusions have also
articulated that a judicious selection of image fusion scheme
is crucial for a PDI technique to deliver precise and accurate
identification.
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