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a b s t r a c t

A damage characterization framework based on the “pseudo-excitation” (PE) approach
has recently been established, aimed at quantitatively identifying damage in beam-, plate-,
and shell-like structural components. However, it is envisaged that the effectiveness of the
PE approach can be restricted in practical implementation, due to the involvement of

uncertainties can overwhelm the damage-associated signal features upon mathematical
differentiation. In this study, the PE approach was revamped by introducing the weighted
integration, whereby the prerequisite of satisfying the local equilibrium conditions was
relaxed from “point-by-point” to “region-by-region”. The revamped modality was thus
colloquially referred to as “weak formulation” of the PE approach, as opposed to its
original version which is contrastively termed as “strong formulation”. By properly
configuring a weight function, noise immunity of the PE approach was enhanced, giving
rise to improved detection accuracy and precision even under noisy measurement
conditions. Furthermore, the ‘weak formulation’ was extended to a series of coherent
variants through partial integration, rendering a multitude of detection strategies by
selecting measurement parameters and configurations. This endowed the PE approach
with flexibility in experimental manipulability, so as to accommodate various detection
requirements. As an application of the “weak formulation”, a continuous gauss smoothing
(CGS)-based detection scheme was developed, and validated by localizing multiple cracks
in a beam structure, showing fairly improved noise tolerance.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

“Pseudo-excitation” (PE) is a damage detection framework, recently developed by virtue of exploring and calibrating
damage-induced perturbation to the local dynamic equilibrium of a structural component [1–4]. The effectiveness of the
approach has been examined rigorously, using various damage scenarios in diverse structural components (e.g., beam [1,2],
and plate [3]) as well as complex engineering structures (e.g., multi-component structures [3], and steel-reinforced concrete
slabs [4]). Notably, the PE approach is not restricted by the type of damage (viz., crack, notch, delamination, material
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Nomenclature

c [m] Standard deviation of gauss function
D [Nm] Bending stiffness of thin plate
DI Damage index of ‘strong formulation’ of PE

technique
DI Damage index of ‘weak formulation’ of PE

technique

dm [m] Distance between adjacent
measurement points

f [Hz] Vibration frequency
h [m] Thickness of plate
I [m4] Moment of inertia
N Number of points in the integration interval
S [m2] Cross section area
xc [m] Center of integration interval
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degradation, etc.) and its number within the inspection region, and the approach has proven sensitivity to the boundary of a
damaged zone in particular. Residing on an explicit physical cornerstone, the PE approach can be used to construct assorted
damage indices (DIs) with different structural vibration parameters. It exhibits prominent advantages in some aspects over
conventional global vibration-based [5–11] or local guided-wave-based [12–19] damage detection techniques, including the
following:
(1)
 higher sensitivity to damage of small dimension, owing to the use of high-order equation of motion (in contrast, a global
vibration-based approach is usually insensitive to damage before it reaches a conspicuous extent, while a local guided-
wave-based method can be limited by the wavelength of the selected wave mode);
(2)
 capability of locally interrogating the inspection region point-by-point, thus independent of a global model of the entire
structure;
(3)
 by the same token, applicability to detection of multi-damage, regardless of the type of respective damage;

(4)
 independence of prior information on structural boundaries (meaning the complexity of a system would not limit the

applicability of the approach) and modal behavior (i.e., a deliberately generated mode shape of the structure is not of
necessity); and
(5)
 no need to reference a benchmark structure or a baseline signal, therefore immunity from possible interferences from
fluctuating environment (e.g., varying temperature).
The original version of the PE approach requests that the local equilibrium of the structural component be examined
rigorously at every single inspection point. Such a ‘strong’ prerequisite may downgrade practicability of the PE approach, as
a result of the connatural vulnerability of the constructed DI to measurement noise and uncertainties. That is because the
local dynamic equilibrium of a structural component features high-order derivatives of the structural dynamic deflection
(e.g., d4vðxÞ=dx4 for a beam component where vðxÞ is the flexural displacement of the component at location x, while
∂4vðx; yÞ=∂x4 for a plate component with vðx; yÞ is the flexural displacement of the component at x; yð Þ). During the fourth-
order differentiation, measurement noise and uncertainties unavoidably included in vðxÞ and vðx; yÞ are to be magnified to a
significant level, masking the damage-induced changes in DI and jeopardizing the robustness of the approach.

In recognition of such deficiencies, the original PE approach was revamped by introducing the weighted integration,
aimed at enhancing the noise immunity of the approach when deployed under noisy measurement conditions. In brief, the
prerequisite of satisfying the local equilibrium is relaxed from “point-by-point” to “region-by-region”. To highlight such
relaxation, the revamped modality of the PE approach is colloquially called “weak formulation”, as opposed to its original
version otherwise termed as “strong formulation”. Such relaxation creates a twofold merit:
(1)
 by properly configuring a weight function, the effect of measurement noise and uncertainties strengthened upon high-
order differentiation can be largely reduced within a selected integration interval; and
(2)
 by properly selecting measurement parameters and configurations, a series of coherent variants of the “weak
formulation” can be derived using partial integration, leading to a multitude of detection strategies, to accommodate
various detection requirements.
As an application, a weighted function was designed using the classic Gaussian function, and the correspondingly
developed “weak formulation”, called continuous gauss smoothing (CGS), was validated by localizing multiple cracks in a
beam-like structure.

2. “Strong formulation” of PE approach

Considering an intact Euler–Bernoulli beam component with a homogeneous isotropic material nature, a one-
dimensional DI, denoted by DIðx; tÞ, can be defined by quantifying damage-induced local perturbation to the dynamic
equilibrium of the component, which reads as

DIðx; tÞ ¼ ∂2

∂x2
EI xð Þ∂

2v x; tð Þ
∂x2

� �
þρS xð Þ∂

2v x; tð Þ
∂t2

; (1a)
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where vðx; tÞ is the dynamic deflection of the component at location x at time t. E, ρ, I and S are the complex modulus of
elasticity (comprehending material damping), density, cross-sectional moment of inertia, and area of the component in its
pristine status, respectively. It is noteworthy that v x; tð Þ can be obtained from a broad spectrum of vibration conditions of the
structure that are either instantaneous or steady. For a pristine beam component (free of any damage in the absence of
external surface excitation), DIðx; tÞ ¼ 0. As Eq. (1a) describes a local equilibrium, the boundary conditions of the beam are
not of interest.

Specifically, under a steady vibration, vðx; tÞ can be replaced with the steady vibration deflection of the beam, wðxÞ.
Assuming that the beam possesses a uniform cross-section and constant material properties, Eq. (1a) can be simplified, in a
harmonic regime, as

DI xð Þ ¼ EI
d4w xð Þ
dx4

�ρSω2w xð Þ; (1b)

where ω is the angular vibration frequency of the steady vibration. In the case that the excitation is not harmonic, one
frequency component in the frequency domain after Fourier transform can also be used.

Eqs. (1a) and (1b) reveal that the PE approach is, in essence, a dynamic response-based damage detection philosophy.
In practice, wðxÞ can be measured discretely using well-defined techniques such as accelerometers, laser holography or
Doppler laser vibrometer, with which DI can be constructed via a finite difference scheme. By way of illustration, DI at
measurement point i in a discrete form can be expressed, by involving four neighboring measurement points from point
i�2 to iþ2, as

DIi ¼
EI

d4m
wi�2�4wi�1þ6wi�4wiþ1þwiþ2
� ��ρSω2wi; (1c)

where dm is the distance between two adjacent measurement points and wi is the flexural displacement measured at point i.
Similarly, a two-dimensional DI can be derived for a homogeneous isotropic plate-like component, based on the plate

theory, as

DI x; y; tð Þ ¼D∇4v x; y; tð Þþρh
∂2v x; y; tð Þ

∂t2
; (2a)

or, under a steady vibration, as

DI x; yð Þ ¼D∇4w x; yð Þþρhω2w x; yð Þ; (2b)

where D¼Eh3/12(1�v2). In the above, v x; y; tð Þ and w x; yð Þ signify the dynamic deflection and vibration deflection under
steady vibration, respectively; D is the bending stiffness; h and ν are the thickness and Poisson's ratio of the component,
respectively.

Likewise, the two-dimensional DI can be re-defined in a discrete form, using a finite difference scheme, as

DIi;j ¼Dc χ4xi;j þ2χ2x2yi;j þχ4yi;j

� �
þphcω2wi;j: (2c)

Here wi,j is the flexural displacement of the plate measured at point (i, j), and

χ4xi;j ¼
∂4w
∂x4

¼ 1
Δ4
x

ðwiþ2;j�4wiþ1;jþ6wi;j�4wi�1;jþwi�2;jÞ; (2d)

χ4yi;j ¼
∂4w
∂y4

¼ 1
Δ4
y

ðwi;jþ2�4wi;jþ1þ6wi;j�4wi;j�1þwi;j�2Þ; (2e)

χ2x2yi;j ¼ ∂4w
∂2x∂2y

¼ 1
Δ2
xΔ

2
y

wiþ1;jþ1�2wiþ1;jþwiþ1;j�1�2wi;jþ1
� þ4wi;j�2wi;j�1þwi�1;j�1�2wi�1;jþ1wi�1;j�1

�
; (2f)

where Δx and Δy are the intervals between two adjacent measurement points along the x- and y-axes, respectively.
The underlying philosophy of PE approach-based damage identification can be stated as follows:
(1)
 for a pristine component in its intact status and in the absence of any external excitation, the DI (defined by Eqs. (1) or
(2)) remains zero across the component, owing to the strict satisfaction of local equilibrium on every infinitesimal
fragment of the component. By way of illustration, an Euler–Bernoulli beam fragment is shown schematically in Fig. 1(a).
In the figure, M x; tð Þ and Q ðx; tÞ are the internal bending moment and shear force, respectively; q x; tð Þ is the distribution
density of the external excitation, with q x; tð Þ ¼ 0 signifying the absence of any external excitation; and
(2)
 when damage (say a damaged zone Ω) occurs, DI along the boundary of Ω fluctuates due to the damage-induced shear
forces, bending and torsion moments; within Ω, DI smoothly varies, provided the material and geometry are continuous
within Ω (but they can be different from those outside of Ω). Note that, although the isolated fragment in Fig. 1(a) is free
of any external force, the internal forces and moments exerted by the rest of the component still exist, on the sharing
boundaries between the fragment and the rest of the component.



Fig. 1. Forces and moments, satisfying local equilibrium, applied on (a) an infinitesimal beam element and (b) a beam fragment with finite length.
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The nature of the DI alludes to that the vibration of a structural component bearing a damaged zone Ω can be equivalent
to that of its pristine counterpart, with fictitious “external” forces applied on the surface over Ω. Therefore, these fictitious
“external” forces are referred to as “pseudo-excitation” (PE). Equations (1) and (2) also articulate that DI, though associated
with the damage, is developed using the material and geometrical parameters of the component in an intact region (free of
damage). Any drastic oscillation in DI implies the existence of damage therein; and the distribution profile of DI can thus be
used to quantitatively evaluate a damaged zone. It has been demonstrated that the most prominent oscillations of DI can be
perceived along the boundaries of a damaged zone [1].

3. “Weak Formulation” of PE approach

3.1. Motivation

However, the DI based on the “strong formulation” of the PE approach is prone to the contamination from measurement
noise and uncertainties which may overwhelm the damage-induced perturbation to the local equilibrium. That is because
the noise and uncertainties contained in an experimentally captured w xð Þ (for beam component) or w x; yð Þ (for plate
component) can become overwhelmingly dominant upon fourth-order differentiation (e.g., ∂4wðxÞ=∂x4 or ∂4wðx; yÞ=∂x4).

For illustration, the distribution of DI constructed via numerical simulation for a plate component is presented in Fig. 2(a)
and (b), respectively, for the noise-free and noise-corrupted measurement [3] (denoted by DIexacti;j and DInoisyi;j , respectively).
In the absence of noise, Fig. 2(a), the damaged zone, small in size, can be located precisely using the PE approach, as
evidenced by the prominent changes in DI along the damaged zone, contrasting the poor detection resolution obtained
using the noise-contaminated vibration displacements as shown in Fig. 2(b). It is noteworthy that the level of the added
noise, in Fig. 2(b), is as low as only 1 percent of the magnitude of the maximum vibration displacement of the plate. The
unintelligible detection results from DInoisyi;j can be attributed to the strong noisy interference in the damage-induced
changes in DI after fourth-order derivation of the vibration displacements. It is thus of vital necessity to enhance the noise
immunity of the PE approach.

3.2. General expression of “Weak Formulation”

For the Euler–Bernoulli beam component in Fig. 1(a), the DI constructed using Eq. (1b)– the “strong formulation” of the
PE approach – can be retrofitted within an integration interval, instead of at every single point, by introducing the weighted
integration as

DI ¼
Z xc þ τ=2

xc � τ=2
DI xð ÞUη x�xcð Þ½ �dx; (3)



Fig. 2. Two-dimensional DI constructed for plate components using vibration displacements (a) with and (b) without noise influence.
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where DI is the re-defined DI within integration interval xc�τ=2; xcþτ=2
� 	

, centralized at xc with a length of τ. This
integration interval is denoted by Ξ in what follows. η xð Þ is a weighting function which can, in principle, take an arbitrary
form. The bar over DI signifies the re-defined DI is an integral within Ξ rather than at a specific point. By regulating xc and τ,
the position and length of Ξ can be adjusted, serving as a “scanning window” to examine the entire component ‘region-by-
region.’ Similarly, the two-dimensional expression of DI towards a plate component can also be developed using the dual-
integration along x� and y�axes with a two-dimensional integration interval.

Fluctuation of DI can be an indicator to damage occurrence during the “scanning” of the window. Different from the
detection using DI (with “strong formulation”) to examine the inspection region “point-by-point”, the detection based on
the use of DI is executed “region-by-region”. In that sense, the prerequisite of satisfying the local equilibrium condition has
been relaxed from “point-by-point” to “region-by-region”.

In an extreme case by setting η xð Þ ¼ 1, it has DI ¼ R
ΞDI xð Þdx, which possesses explicit physical implication: as shown in

Fig. 1(b) for the exemplary fragment in Fig. 1(a), DI represents the summation of all the “pseudo-exactions” applied over the
surface of Ξ. Certainly, η xð Þ can be designed optimally, by taking a sophisticated form so as to accommodate specific
purposes and to improve the detection accuracy (to be detailed in subsequent sections).
3.3. Variants of “Weak Formulation”

Substituting Eq. (1b) into (3) yields

DI4 ¼
Z
Ξ

EI
d4w xð Þ
dx4

�ρSω2w xð Þ
" #

η x�xcð Þdx: (4a)



X. Hao et al. / Journal of Sound and Vibration 337 (2015) 181–198186
The subscript “4” accentuates that this damage index is based on the fourth-order derivative of w xð Þ. To take a step further,
Eq. (4a) can be extended to the following variants, using partial integration, as

DI3 ¼ EI
d3w xð Þ
dx3

Uη x�xcð Þ
" #xc þ τ=2

xc � τ=2

�
Z
Ξ

EI
d3w xð Þ
dx3

U
dη x�xcð Þ

dx
þρSω2 Uη x�xcð ÞUw xð Þ

" #
dx; (4b)

DI2 ¼ EI
d3w xð Þ
dx3

Uη x�xcð Þ�d2w xð Þ
dx2

U
dη x�xcð Þ

dx

" #xc þ τ=2

xc � τ=2

þ
Z
Ξ

EI
d2w xð Þ
dx2

U
d2η x�xcð Þ

dx2
�ρSω2 Uη x�xcð ÞUw xð Þ

" #
dx; (4c)

DI1 ¼ EI
d3w xð Þ
dx3

Uη x�xcð Þ�d2w xð Þ
dx2

U
dη x�xcð Þ

dx
þdw xð Þ

dx
U
d2η x�xcð Þ

dx2

" #xc þ τ=2

xc � τ=2

�
Z
Ξ

EI
dw xð Þ
dx

U
d3η x�xcð Þ

dx3
þρSω2 Uη x�xcð ÞUw xð Þ

" #
dx; (4d)

and

DI0 ¼ EI
d3w xð Þ
dx3

Uη x�xcð Þ�d2w xð Þ
dx2

U
dη x�xcð Þ

dx
þdw xð Þ

dx
U
d2η x�xcð Þ

dx2

"
�w xð ÞUd

3η x�xcð Þ
dx3

#xc þ τ=2

xc � τ=2

þ
Z
Ξ

EI
d4η x�xcð Þ

dx4
�ρSω2 Uη x�xcð Þ

" #
w xð Þdx: (4e)

In the above, the subscript of DIk (k¼ 0; 1; 2; 3; 4) points out the highest order of w xð Þ involved. DIk defined by Eqs. (4b)
to (4e) are the variants of original “weak formulation” (Eq. (4a)).

The “weak formulation” defined by Eq. (4a), as well as its variants in different modalities (from Eqs. (4b) to (4e)), features
a twofold characteristic:
(1)
 mathematically, DIk of different orders (k¼ 0; 1; 2; 3; 4) are identical, independent of η xð Þ, although numerical errors
might exist among different expressions in numerical computation; and R
(2)
 any variant of “weak formulation” contains two terms: an “integration part” ( Ξ ½ �dx) � the operation of integration
within Ξ, and a “boundary part” (�½ �xc þ τ=2

xc � τ=2) � the operation of subtracting relevant terms at the boundary of Ξ.
Specifically, in the “integration part”, the order of derivative of w xð Þ decreases stepwise from three in DI3 to zero in DI0;
while in the “boundary part”, the order of derivative of η xð Þ increases from zero in DI3 to three in DI0.
The above characteristic endows the “weak formulation” with a dual-merit, compared with its strong counterpart:
(1)
 an enhanced immunity to noise interference, because the level of measurement noise can be largely averaged due to the
weighted integration; and
(2)
 a diversity of experimental implementation options by using the variants of DIk. This offers certain flexibility towards
practical applications of the PE approach, as elaborated in the following
3.3.1. Flexible selection of η xð Þ
The variants, compared with their original form of the ‘weak formulation,’ take a more complicated appearance which

involves more parameters and in particular at a lower differential order. It is however feasible to simplify the expression of
these variants by tactically choosing η xð Þ. A sophisticated design of η xð Þ is able to achieve a twofold aim: (i) suppressing the
influence from measurement noise and strengthening signal features pertaining to damage, and (ii) eliminating several
terms in the variants which may be difficult to obtain, for instance, the “integration part” or “boundary part”, to simplify the
expression of DIk.

3.3.2. Flexible selection of measurands
The derivatives of w xð Þ in the variants are linked to different measurands to be acquired. For instance, d2w xð Þ=dx2 and

dw xð Þ=dx can be obtained by measuring the local strains and angle of rotation of the component, respectively. Thus, various
measurands can be chosen depending on the needs and available measurement means, for example, to achieve an enhanced
noise immunity by measuring multiple types of measurands.

3.3.3. Flexible selection of measurement points
The “integration part” and “boundary part” are mutually independent in the variants, and this creates the possibility

to construct two parts separately – using different densities of measurement points � for example a higher density of
measurement points within the “integration part”, while lower in the “boundary part”. Notably, a sophisticated adjustment
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of measurement density and positions can facilitate optimization of the experimental configuration, in turn leading to
improved detection accuracy (to be discussed in later sections).

3.3.4. Flexible selection of noise-influenced terms
It is apparent that the measurement noise and uncertainties are included in w xð Þ and its derivatives only. From DI4 to DI0,

the noise-influenced terms are transferred among the derivative of w xð Þ with various orders. Particularly, as seen in DI0, the
measurement noise is associated with w xð Þ in the “integration part” only, while all the high-order derivatives of w xð Þ,
including measurement noise and uncertainties, are transferred to the “boundary part”. Such a trait of the “weak
formulation” can be conducive to minimizing the noise influence on detection precision under noisy measurement
conditions, by properly selecting the measurement parameters (to be discussed in subsequent sections).

From the above statements, it can be seen that if using Eq. (4a) only, the “weak formulation” shows large similarity with
other signal processing techniques such as wavelet transform, the principle of which also resides on the weighted
integration. However, the variants of the “weak formulation” play a number of important roles far beyond signal processing,
largely contributing to the development of new detection strategies.

4. Implementation of “Weak Formulation”

It is straightforward that the selection of η xð Þ essentially determines the ultimate form of DIk. By way of illustration,
a classic Gaussian function is used as η xð Þ, to configure the “weak formulation”.

4.1. Principle

With the classic Gaussian function, η xð Þ can be defined as

η xð Þ ¼ e�ðx2=2c2Þ; xA �τ=2; τ=2
� 	

(5)

where c is the standard deviation of the Gaussian function. The mathematical property of the Gaussian function [20]
confines majority of the energy of η xð Þ within Ξ, while vanishing at boundaries of Ξ, as explained in Fig. 3(a). Furthermore,
the derivatives of η xð Þ at different orders, from dη xð Þ=dx to d4η xð Þ=dx4, as well as at the boundaries, become zero, as
illustrated in Fig. 3(b) to (e). This characteristic of the Gaussian function eliminates all the “boundary parts” in the variants of
“weak formulation” in Eqs. (4b)–(4e), greatly simplifying the expression of DIk. Benefiting from this, the accordingly
simplified “weak formulation” and its variants at different orders, termed as continuous gauss smoothing (CGS), read as

DI4�CGS ¼
Z xc þ τ=2

xc � τ=2
EI
d4w xð Þ
dx4

�ρSω2w xð Þ
" #

η x�xcð Þdx; (6a)

DI3�CGS ¼ �
Z xc þ τ=2

xc � τ=2
EI
d3w xð Þ
dx3

U
dη x�xcð Þ

dx
þρSω2 Uη x�xcð ÞUw xð Þ

" #
dx; (6b)

DI2�CGS ¼
Z xc þ τ=2

xc � τ=2
EI
d2w xð Þ
dx2

U
d2η x�xcð Þ

dx2
�ρSω2 Uη x�xcð ÞUw xð Þ

" #
dx; (6c)

DI1�CGS ¼ �
Z xc þ τ=2

xc � τ=2
EI
dw xð Þ
dx

U
d3η x�xcð Þ

dx3
þρSω2 Uη x�xcð ÞUw xð Þ

" #
dx; (6d)

DI0�CGS ¼
Z xc þ τ=2

xc � τ=2
EI
d4η x�xcð Þ

dx4
�ρSω2 Uη x�xcð Þ

" #
w xð Þdx: (6e)

“CGS” in the subscript differentiates the simplified “weak formulation” from its original forms defined by Eq. (4).
By changing Ξ (via adjusting xc in Eq. (6)) within which η xð Þ is defined, the integration window can shift along the
inspection region.

4.2. Numerical simulation

The feasibility of using CGS for quantitative identification of structural damage was evaluated using the finite element
(FE) simulation first.

4.2.1. FE model
Considering an Euler–Bernoulli cantilever beam, 1200 mm in length, with geometrical and material properties listed in

Table 1, the beam was clamped at its left end as shown in Fig. 4.



Fig. 3. The characteristic profiles of (a) η xð Þ; (b) dη xð Þ=dx; (c)d2η xð Þ=dx2; (d) d3η xð Þ=dx3; and (e) d4η xð Þ=dx4 (τ¼ 10).
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An FE model for the beam, with 600 beam elements evenly across the beam length, was created using commercial FE
code ANSYSs. A harmonic point-force excitation of 1000 Hz was applied at x¼ 10 mm (referring to Fig. 4 for the coordinate
system). Note that selecting a resonance frequency of the structure is not of necessity; actually it is preferable to apply this
method at an off-resonance regime, so as to minimize the effect of system damping. But it has been shown in a previous
study [1] that a relatively high frequency corresponds to strong noise immunity of the PE technique, and thus the frequency
was selected to be higher than the third natural frequency. The beam bore a damaged zone at 820; 840½ � mm, which was
simulated by reducing the Young’s modulus by 50 percent of their original value within the damaged zone. To avoid the
influence from the excitation, an inspection region, xA 200; 1200½ � mm, was selected to exclude the vicinity of the
excitation point.

The flexural displacement at each FE node (corresponding to the measurement point in a subsequent experiment) in the
absence of noise interference, denoted by wexact

i , was obtained using ANSYSs, which was then numerically contaminated



Table 1
Material and geometrical properties of the cantilever beam in FE analysis.

Density ρ kg=m3
� 	

2700

Young's modulus E GPa½ � 70
Beam length L mm½ � 1200
Width b mm½ � 10
Thickness h mm½ � 10

[200,1200mm]x∈

[820,840mm]x∈
Damaged zone 

L=1200 mm

x=10 mm 

Inspection region 

Fig. 4. A cantilever beam bearing a small damaged zone in FE analysis.
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with added noise as

wnoisy
i ¼wexact

i U 1þεið ÞUejφi ; (7)

where wnoisy
i is the noise-corrupted counterpart of wexact

i ; εi is a Gaussian random real number related to the magnitude of
wexact

i ; and φi is another Gaussian random real number related to the phase of wexact
i . In the succeeding analysis,

μ εið Þ ¼ μ φi
� �¼ 0, σ εið Þ ¼ 1% and σ φi

� �¼ 11 (μ and σ signify the mathematical manipulation to calculate the mean and the
standard deviations, respectively). The noise of such a level is indistinguishable between wexact

i and wnoisy
i .

4.2.2. Identification of damage using “Strong Formulation”
With wexact

i and wnoisy
i , the correspondingly constructed DIexact and DInoisy, using the “strong formulation” of the PE

approach (Eq. (2c)), are displayed in Fig. 5. DIexact, Fig. 5(a), explicitly and accurately indicates the location of the damaged
zone by revealing its two ends. On the contrary, DInoisy, Fig. 5(b), fails to pinpoint the damaged zone, because the added
noise, though low in its level, masks the damage-induced changes in the damage index significantly, which can be
attributed to the drastic magnification of the noise in the signal during the fourth-order differentiation. Such an observation
is in agreement with the analyses made previously.

4.2.3. Identification of damage using CGS-based “Weak Formulation”
wexact

i and wnoisy
i were then processed with CGS-based “weak formulation” defined by Eq. (6a). Fig. 6(a) to (h) presents

correspondingly constructed DI
exact
4�CGS and DI

noisy
4�CGS, using various integration windows (when τ=λ of Ξ equals to 0.27, 0.5, 1

and 1.32, respectively; λ is the vibration wavelength of the beam which is 0.3 m under the current excitation frequency).
With a smaller Ξ (Fig. 6(a) and (b)), both DI

exact
4�CGS and DI

noisy
4�CGS show greater similarity, respectively, with DIexact and DInoisy in

Fig. 5 which are obtained using the “strong formulation”. This implies that the anticipated advantages of the “weak
formulation” over “strong formulation” tend to be obscure when the integration interval becomes smaller. On the contrary,
with an increase in Ξ, a dual effect can be observed: (i) the detection resolution decreases, as seen in Fig. 6(a), (c), (e) and (g)
for DI

exact
4�CGS, because of a progressively enlarged Ξ; (ii) the noise immunity of the damage index increases, in Fig. 6(b), (d), (f)

and (h) for DI
noisy
4�CGS, because of the intensified averaging of measurement noise with more measurement points included

in Ξ.
It is therefore crucial to strike a balance between the detection resolution and the noise immunity for the CGS-based

damage index through optimizing τ=λ. In Fig. 6, it is obvious that a reasonable compromise can be reached when τ=λ¼ 1, �
the case in Fig. 6(f), with which the damaged zone can be located with satisfactory resolution using DI

noisy
4�CGS. However, to

achieve such a compromise is a challenging task, as the adjustment of τ=λ simultaneously changes the number of the
measurement points included in Ξ (N in the following), incurring additional influence on the detection accuracy.

To interrogate such an influence from N, τ=λ is kept to be constant (i.e., τ=λ¼ 1), and N is reduced gradually from 151 to 38
in this case, giving rise to different detection results obtained using DI

exact
4�CGS and DI

noisy
4�CGS, as shown in Fig. 7(a) to (f) (N¼ 151

in (a) and (b); N¼ 76 in (c) and (d); N¼ 38 in (e) and (f)). It can be seen that the distribution of DI
exact
4�CGS basically remains

unchanged regardless of N. However, the decrease in N affects the distribution of DI
noisy
4�CGS considerably. These observations

reveal that, at a given τ=λ, the noise influence becomes more phenomenal with less measurement points in Ξ, � a possibility
to suppress noise along with improved detection accuracy in practical implementations. On the other hand, reduction in N
simultaneously increases dm (the distance between two adjacent measurement points), in turn influencing detection
accuracy as well. Further insight into the relationship among different parameters (e.g., τ, dm, and N) and their influence on
detection accuracy is to be given in Section 4.4.



Fig. 5. Constructed DIi using the “strong formulation” using (a) noise-free and (b) noise-contaminated vibration displacements.
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Similarly, different orders of the CGS-based damage indices, DI
noisy
3�CGS, DI

noisy
2�CGS, DI

noisy
1�CGS, and DI

noisy
0�CGS, at the above said

optimal setting when τ=λ¼ 1 (N¼ 151), were obtained using Eqs. (6b) to (6e), and their distribution is displayed in Fig. 8,
highly resembling those results in Fig. 6 in which DI

noisy
4�CGS is concerned. The high similarity among different orders of the

“weak formulation”, from DI
noisy
4�CGSto DI

noisy
0�CGS confirms the mathematical nature of the “weak formulation”, as illustrated

previously in Section 3.3: DIk of different orders (k¼ 0; 1; 2; 3; 4) are in principle identical, provided there are sufficient
measurement points within Ξ.
4.3. Experimental validation

4.3.1. Setup
Experimental validation was subsequently conducted, to identify multiple cracks in a cantilever beam (aluminum 6061,

Young's modulus: 68.9 GPa, mass density: 2700 kg/m3, and Poisson’s ratio: 0.27) which was fixed-supported on a testing
table (NEWPORTs ST-UT2), as sketched in Fig. 9. The defined inspection region, shown in Fig. 9, featured a length of
550 mm, a constant width of 30 mm and a uniform thickness of 8 mm, within which two through-width cracks
(1.2 mm�30 mm�2 mm for each, i.e., 0.2 percent of the beam-span) were pre-treated at 220 mm and 380 mm from
the clamped end of the beam, respectively. Notably, the irregular shape of the beam, i.e., non-constant width near the free
end, was intentionally designed, in order to demonstrate the effectiveness of the PE technique and its “weak formulation” in
detecting damage in beam components with complex boundary geometries. A harmonic point-force excitation of 2000 Hz
was applied on the beamwith an electromechanical shaker (B&Ks4809), near the free end of the beam, this leading to a λ of
0.18 m approximately. A scanning Doppler laser vibrometer (Polytec®PSV- 400B) was used to measure the out-of-plane
flexural deflections at 210 measurement points (with a spacing interval of 2.6 mm), along the central line of the beamwithin
the inspection region. It took circa twenty minutes to finish a single test. During the scanning, the measurement noise may
come from a variety of sources, such as the measurement error of the PSV, the non-perfect boundary condition of the
cantilever beam, the non-perfect excitation provided by the electro-mechanical shaker, etc.



Fig. 6. Distributions of (a) DI
exact
4�CGS when τ=λ¼ 0:27( N¼ 41); (b) DI

noisy
4�CGS when τ=λ¼ 0:27( N¼ 41); (c) DI

exact
4�CGS when τ=λ¼ 0:5 (N¼ 76); (d) DI

noisy
4�CGS when

τ=λ¼ 0:5 (N¼ 76); (e) DI
exact
4�CGS when τ=λ¼ 1 ( N¼ 151); (f) DI

noisy
4�CGS when τ=λ¼ 1 (N ¼ 151); (g) DI

exact
4�CGS when τ=λ¼ 1:32 (N¼ 201); and (h) DI

noisy
4�CGS when

τ=λ¼ 1:32 (N¼ 201).
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Fig. 7. At τ=λ¼ 1, distributions of (a) DI
exact
4�CGS when N¼ 151; (b) DI

noisy
4�CGS when N¼ 151; (c) DI

exact
4�CGS when N ¼ 76; (d) DI

noisy
4�CGS when N ¼ 76; (e) DI

exact
4�CGS

when N¼ 38; and (f) DI
noisy
4�CGS when N¼ 38.
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4.3.2. Results and discussion
As representative results, the absolute values of wi across the inspection region under the above excitation are shown in

Fig. 10(a), along with the damage index constructed using “strong formulation” of the PE approach shown in Fig. 10(b). As
anticipated, the “strong formulation”-based damage index fails to delineate any damage, because of the interference from
measurement noise. On the contrary, DI4�CGS calculated using Eq. (6a) is displayed in Fig. 11 (for several τ=λ values, namely,
different Ξ). In Fig. 11(a) (when τ=λ¼ 0:14), the “weak formulation” of the PE approach does not present significantly
improved de-noising effect, and the profile of corresponding DI4�CGS shows great similarity with that of the index calculated
using “strong formulation” shown in Fig. 10(b). When τ=λ is increased to 0.33, improvement of detection accuracy is
observed, as shown in Fig. 11(b), whereby the location of one of the two cracks can be identified, more or less, though the
other is yet masked by the noise. With an even greater Ξ (when τ=λ¼ 0:6), satisfactory detection accuracy is reached, in
Fig. 11(c), in which locations of both cracks are identified precisely. However, progressive enlargement of τ=λ does not lead to
further improved detection accuracy, instead a decrease of the resolution is noticed, as seen in Fig. 11(d) where τ=λ¼ 0:95.
This is in consistent with the conclusion drawn previously that a balance between the detection resolution and noise



Fig. 8. At τ=λ¼ 1, distributions of (a) DI
noisy
3�CGS; (b) DI

noisy
2�CGS; (c) DI

noisy
1�CGS; and (d) DI

noisy
0�CGS.

Cracks

Beam component

Inspection region 
Excitation

Fig. 9. Experimental validation: (a) schematic of a cantilever beam bearing two cracks and (b) photo of the cracks in the inspection region.
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Fig. 10. (a) The vibration displacements of the beam subject to the excitation and (b) the constructed DIi using the ‘strong formulation.’
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immunity can be obtained through optimizing τ=λ. In addition, it can be seen that, although the cracks are of the same
parameters, the corresponding magnitudes are different as presented in Fig. 11(c). This can be attributed to the fact that the
magnitudes of the damage indices of the PE technique vary in accordance with the variation of internal bending moments
along the beam [1]. Thus the differences in the magnitude of damage indices are mainly attributed to the differences of
bending moments at the two crack locations.

The influence of measurement points included in Ξ (viz., N) on the detection accuracy was then gauged by fixing τ=λ to
be 0.6. It is reasonable to see from Fig. 12(a) to (d) that the detection accuracy declines progressively as N decreases. In
particular, in Fig. 12(c) (when N¼ 12), a pseudo peak of DI4�CGS (indicating pseudo damage) is observed in the intact region
of the beam, and in Fig. 12(d) (when N¼ 6), the DI4�CGS becomes indistinguishable to reveal the position of either of the two
cracks, because of insufficient measurement points included Ξ.
4.4. Estimate of noise effect

As commented in Section 3, the effect of measurement noise in the “weak formulation” can be transferred between the
“integration part” and the “boundary part”, at different orders of the damage index. One can thus make use of such a trait, to
facilitate the selection of measurement parameters and experimental configurations with reduced noise effect.

In this backdrop, the “weak formulation” provides a means to estimate the noise effect on the detection accuracy.
Mathematically, the integral of any function, say f xð Þ, within an integration interval between a and b can be expressed,
according to the principle of Riemann integral [21], asZ b

a
f xð Þdx¼ lim

n-1
∑
n

k ¼ 1
f xnk
� �

Δxk; (8)

where xnk is an arbitrary point in the sub-interval Δxk. Provided the measurement density is sufficiently large (viz., there are
sufficient measurement points to depict the profile of w xð Þ accurately), DI0�CGS defined by Eq. (6e), without and with noise
influence, can be approximated, respectively, as

DI
exact
0�CGS ¼ dm U ∑

N

r ¼ 1
Γr Uwexact

r ; (9a)



Fig. 11. Distributions of DI4�CGS when (a) τ=λ¼ 0:14 (N¼ 11); (b) τ=λ¼ 0:33 (N ¼ 25); (c) τ=λ¼ 0:6 (N¼ 45); and (d) τ=λ¼ 0:95 (N ¼ 71).
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DI
noisy
0�CGS ¼ dm U ∑

N

r ¼ 1
Γr Uwnoisy

r ; (9b)

where

Γr ¼
EI

d4m
ηr�2�4ηr�1þηr�4ηrþ1þ6ηrþ2
� ��ρSω2ηr : (9c)

In the above, r is a sequence number of the measurement point locally defined in Ξ. The high-order derivative of η xð Þ in
Eq. (6e) can be calculated using a finite difference scheme defined by Eq. (9c). Note that Γr in Eq. (9a) and (9b) is free of noise
interference. In Eq. (9b), assuming wnoisy

r can be expressed in a simplified form (similar to Eq. (7)), as

wnoisy
r ¼wexact

r U 1þθrð Þ; (10)

where θr is a Gaussian random number, with the mean and standard deviation being μ θrð Þ (μ θrð Þ ¼ 0) and σ θrð Þ, respectively.
θr can be either a real number related to the magnitude of wexact

r , or a complex number related to both the magnitude and
phase of wexact

r . Then Eq. (9b) can be expanded to

DI
noisy
0�CGS ¼ dm U ∑

N

r ¼ 1
Γr Uwexact

r U 1þθrð Þ

¼ dm U ∑
N

r ¼ 1
Γr Uwexact

r þdm U ∑
N

r ¼ 1
Γr Uwexact

r Uθr ¼DI
exact
0�CGSþΘ; (11a)

where

Θ¼ dm U ∑
N

r ¼ 1
Γr Uwexact

r Uθr : (11b)

Thus, the noise influence on DI
exact
0�CGS, all included in Θ, is now isolated. It is important to note that in practical measurement,

θr is a random variable associated with rth measurement point. According to the theory of probability and statistics [22], Θ is
also an independent random variable subject to individual integration interval, conforming to Gaussian distribution, with its



Fig. 12. At τ=λ¼ 0:6, distributions of DI4�CGS when (a) N¼ 45; (b) N ¼ 23; (c) N ¼ 12; and (d) N¼ 6.
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mean and standard deviation being

μ Θð Þ ¼ 0; (12a)

and

σ Θð Þ ¼ dm U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

k ¼ 1
Γr Uwexact

r

� �2s
Uσ θrð Þ: (12b)

Therefore, the level of noise effect included in DI
noisy
0�CGS can be estimated quantitatively in terms of σ Θð Þ, which can also be

used to estimate the noise effect in different orders of the “weak formulation” from DI
noisy
1�CGS to DI

noisy
4�CGS, as all the expanded

expressions are mathematically identical. In Eq. (12b), σ Θð Þ is substantially determined by several parameters, including
(i) dm, associated with measurement density; (ii) τ, related to the formality of selected η xð Þ and the position of Ξ (serving as a
scanning window along inspection region); (iii) N, associated with both the measurement density and the selected τ; and
(iv) σ θkð Þ, signifying the initial level of measurement noise included in vibration displacement.

As stated in Section 4.2.3, at a given τ=λ, a smaller N corresponds to a greater dm. Assuming the summation in Eq. 9(a) is a
constant regardless of the change in the measurement density, the value of ∑N

k ¼ 1 Γr Uwexact
r

� �2 is inversely proportional to
dm. However, because of the square root of ∑N

k ¼ 1 Γr Uwexact
r

� �2 involved in Eq. (12b), dm actually plays a dominant role in
determining the magnitude of σ Θð Þ. Thus the increase of noise levels along with the decrease of N, as seen in Figs. 7 and 12,
can be attributed to the enlargement of dm.

Reaching this point, it is pertinent to note that the key parameters of the “weak formulation”, which essentially impacts
on the detection accuracy and the noise immunity, have been expressed explicitly, and linked quantitatively to the noise
influence using Eq. (12). Based on these conclusions, measurement parameters can be selected appropriately and adjusted
optimally, so as to minimize the noise effect on the detection accuracy. Eq. (12b) is particularly suitable to be used in
numerical study as wexact

r can be obtained directly, and in experimental conditions, the overall trend of the noise level can
also be calculated by approximating wexact

r through a curve-fitting algorithm based on measured data. It should also be
emphasized that in order to improve the accuracy of numerical integration, advanced algorithms other than the above
Riemann integral can also be used, though the philosophy of noise estimate remains the same. Moreover, the above means
of noise effect estimate is not only applicable to the “weak formulation” of the PE approach, but also to other methods in
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conjunction with the use of high-order derivatives of vibration signals such as mode shape curvature [23–26], and other
signal processing techniques relying on weighted integration for instance wavelet analysis [27–30].

5. Concluding remarks

A retrofitted modality of the previous PE approach (called “strong formulation”) was developed by introducing the
weighted integration, which was contrastively termed as “weak formulation”. Sharing the same rationale (by gauging
damage-induced perturbation to the local dynamic equilibrium of a structural component), all the merits of the “strong
formulation” of the PE approach are inherited by the “weak formulation”, but the latter exhibits improved capacity in
tolerating measurement noise and uncertainties compared with the former. A series of coherent variants of the “weak
formulation” was established, offering a diversity of detection strategies through selecting measurement parameters and
configurations, and endowing the PE approach with flexibility in experimental manipulability. As an application of the
“weak formulation”, a continuous gauss smoothing (CGS)-based damage detection scheme was developed, and validated
numerically and experimentally by localizing multiple cracks in a beam-like structure, showing satisfactory detection
accuracy and improved noise immunity. It has been shown that an optimal selection of the scanning window (i.e., τ=λ)
is critical to influence the detection accuracy and the robustness of the approach when measurement noise is not to be
ignored. A compromise between the detection resolution and the noise immunity of the CGS-based damage index could
be reached by optimizing τ=λ. In addition, it was found that subject to a given τ=λ, the noise influence increases with a
decrease in N, the number of measurement points within the integration interval. These all together are conducive to
enhance the noise immunity of the approach when implemented under noisy measurement conditions. In addition,
DI0�CGS can be made use of to explicitly quantify the relationship between the measurement density (dm and N), width of
integration (σ θkð Þ) and the level of noise influence (σ θrð Þ), facilitating selection of measurement parameters and
experimental configurations so as to reduce the noise effect.
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