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The problem of the shape optimization of acoustic enclosures is investigated in this paper.
A general procedure, comprising a Wavelet–Garlerkin formulation and a so-called vertex-
driven shape optimization is proposed to deal with the general problem of internal sound
field prediction and the optimization of the boundary shape. It is shown that, owing to the
compactly supported orthogonal property and the remarkable fitting ability, Daubechies
Wavelet can be used as a global basis to approximate the unknown sound field on a
relatively large interval globally instead of piecewise approximation like most of element
based methods do. This feature avoids meshing the boundary of the enclosure, although
vertex points are needed to define the boundary shape, whose positions keep updating
during the shape optimization process. A rectangular enclosure is used as benchmark to
assess and validate the proposed formulation, by investigating the influence of some key
parameters involved in the formulation. It was shown that the sound pressure along the
entire boundary of the rectangular enclosure can be accurately approximated without
meshing. The same enclosure with an inner rigid acoustic screen is then used to reduce
the sound pressure level within a chosen area through optimizing the shape of the screen,
which shows the remarkable potentials of the proposed approach as a shape optimal tool
for inner sound field problems.

Keywords: Shape optimization; internal sound filed; irregular enclosure; wavelet-
Galerkin.

1. Introduction

The acoustic problem inside an enclosure becomes increasingly important due to
the extensive use of cavities in real life structures, such as industrial enclosures,
office partitions, aircraft cabins and vehicle compartments [Liu et al., 2006a] etc.
Sound field inside a cavity depends on the cavity shape, which either impacts on
the sound distribution in an acoustic system, or affects the coupling between the
cavity and a surrounding flexible wall [Zheng and Wei, 2013; Geng and Li, 2012;
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Chen et al., 2012] in a vibro-acoustic system [Fahy and Gardonio, 2007]. Typical
examples include the shape optimization of the car body to improve the interior
sound distribution in the acoustic design of automobile [Marburg and Hardtke, 2001;
Koo et al., 1998]; design of inner partitions in cavities [Succi, 1987]; optimization of
internal partitions in mufflers [Lee and Kim, 2009; Chiu and Chang, 2008; Mimani
and Munjal, 2011] or resonators [Kost et al., 2011] etc. Therefore, topological or
shape optimization of acoustic cavities is of significant relevance to both scientific
research and engineering applications.

It is obvious that shape optimization of acoustic cavities requires a solver to cal-
culate the internal sound field. Among existing methods, analytical solutions only
apply to a few cavities with simple geometries such as rectangular or cylindrical,
which allow separation of variables in Cartesian and cylindrical coordinate system,
respectively [Levine, 2001]. For cavities of more complex shapes, various so-called
semi-analytical methods were developed [Succi, 1987; Dowell et al., 1977; Missaoui
and Cheng, 1997], by pushing the analytical treatment to its limit before deploying
numerical descretizations. Most of these methods, however, involve stringent limita-
tion on the cavity shapes such as a slight distortion from a regular one [Succi, 1987],
a combination of regular-shaped sub-cavities with known eigen-functions [Dowell
et al., 1977] or a combination of the aforementioned scenarios [Missaoui and Cheng,
1997; Anyunzoghe and Cheng, 2002]. As a last resort, numerical solvers such as finite
element methods (FEM) and boundary element method (BEM) have long been rec-
ognized as the most versatile tools to deal with systems of various shapes. These
numerical methods need to decentralize the model including building CAD model
and meshing. In particular, if the enclosure shape is to be optimized to get a desired
sound pressure distribution, the traditional FEM/BEM requires meshing the geom-
etry in every optimization loop, which is time consuming and cumbersome. This
seriously limits the FEM/BEM in the application of shape optimization [Liu et al.,
2006b]. Successful cases include local shape optimization [Marburg, 2002; Marburg
and Hardtke, 2002] or local boundary modification [Givoli and Demchenko, 2000],
in which only slight modification of the shape was entertained.

FEM/BEM discretizes the solution region into elements or short intervals, over
which the solution is approximated using local basis such as polynomials of fixed
order. For the local basis, continuity conditions must be imposed across sub-interval
boundaries. This imposes tremendous difficulty in coping with boundary changes
incurred in the shape optimization problems. This problem can be possibly solved if
a global basis can be used. A global basis is the one in which the base functions have
support over the entire region. However, conventional base functions such as polyno-
mials and spline functions cannot provide a precise solution for the complex solution
space like sound fields in the cavities [Peng and Cheng, 2008]. Lack of appropriate
function basis becomes the bottleneck hampering the application of global expan-
sion method in complex solution space. In a broader sense, there is a real need for
developing flexible tools which are inductive to optimization of inner acoustics field.
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The objective of this work is to explore the feasibility of using wavelets as global
expansion functions under the Galerkin framework to solve the general cavity prob-
lem and its shape optimization in particular. For the sake of convenience, the method
is referred to as wavelet-Galerkin Method (WGM), which largely inspires from the
recent progress in using Wavelets for solving differential equations in various fields
[Jaffard, 1992; Wang, 1998; Maleknejad and Lotfi, 2006]. Wavelet is shown to possess
some appealing features such as compact support, flexible scaling and translation,
and ability to express any square integrable function on the real axis. In the present
work, Daubechies wavelet scaling function is used as basis function to expand the
unknown sound pressure under Galerkin framework globally. This method will han-
dle cavities of arbitrary shape without requiring any modal information a priori.
Meanwhile the method does not need the meshing process like FEM/BEM does,
owing to the extraordinary fitting ability of the Daubechies wavelet. A boundary
treatment is then proposed, which is conducive to shape optimization in cavities.

In order to illustrate the process, we propose to investigate a general two-
dimensional (2D) cavity formed by segments connected by a number of pre-set
nodes. In a broad sense, the segments can be curves of any shapes such as arcs or
spline, as long as they can be described by relatively simple curve functions. For
illustration purposes, however, we will limit to straight segments. In this sense, only
polygonal cavities will be dealt with in this paper. Without losing generality, dif-
ferent complex-shaped cavities can be approximated by moving the nodes. Figure 1
shows an example in which, by relocating the nodes, a general polygonal cavity can
evolve to represent (a) a vehicle compartment, (b) an enclosure with partitions and
(c) an aircraft cabin.

The outline of the paper is as follows. The proposed WGM is first formulated.
Problems involved in the implementation phase including boundary treatment and
the parameter selection of wavelets, such as the resolution level and the support
length are investigated. A rectangular enclosure with exact solutions is selected as a

Fig. 1. Examples of a polygonal cavity and its evolution.
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benchmark for validation purposes. Applications to a rectangular enclosure with an
inner partition are demonstrated for further validation. The same example is then
used to optimize the partition shape toward the creation of a quiet zone inside the
enclosure.

2. Formulation

2.1. Kirchhoff–Helmholtz equation and Galerkin framework

Consider a general acoustic area R enclosed by a boundary Γ as shown in left part of
Fig. 1. The wave equation governing the sound pressure field excited by a harmonic
source in the enclosure reads

∇2p+ k2p = −iωρ0Qδ(r − rs), (1)

where p is the acoustic pressure; k = ω/c− iα with ω, c ρ0 and α being the angular
frequency of the excitation source, the sound speed, density and the absorption
coefficient of the acoustic medium, respectively. i =

√−1; Q is the source strength;
and δ(r − rs) is Dirac delta function.

The sound field inside the enclosure can be described by Kirchhoff–Helmholtz
equation which is the boundary integral form of Eq. (1) [Bai, 1992]:

β(r0)p(r0) +
∫

Γ

p(r)
∂G

∂n
(r, r0)dΓ −

∫
Γ

G(r, r0)
∂p

∂n
(r)dΓ + iωρ0QG(rs, r0) = 0,

(2)

where

β(r0) =




0 if r0 /∈ R ∪ Γ

1 if r0 ∈ R

1/2 if r0 ∈ Γ,Γ a smooth surface

θ/4π if r0 ∈ Γ,Γ a nonsmooth surface

.

The complex variable p(r) denotes the sound pressure at the location r. The position
vector r0, r and rs denote the positions of the calculated point where the pressure
is being evaluated, the position of a point on the surface S and the position of
any sources inside the enclosure. The free-space Green’s function is G(r, r0) =
−iH(2)

0 (kr)/4 for the Helmholtz equation in a 2D space. r = |r0 − r|. The directional
directive ∂/∂n ≡ n · ∇ with n being the outward normal to the boundary Γ.

The Kirchhoff–Helmholtz equation shows that the acoustic pressure inside the
enclosure can be determined by the normal particle velocity and the pressure at
the boundary, as well as the inner sources. The pressure and the velocity at the
boundary, however, are inter-related. When r0 and r are all chosen at the bound-
ary, the pressure at the boundary can be worked out. Then the solutions at the
boundary are used in Eq. (2) again to get the inner sound pressure, leading to the
boundary integral equation form.

1550009-4

In
t. 

J.
 A

pp
l. 

M
ec

ha
ni

cs
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 H

O
N

G
 K

O
N

G
 P

O
L

Y
T

E
C

H
N

IC
 U

N
IV

E
R

SI
T

Y
 o

n 
02

/0
5/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

January 24, 2015 8:34 WSPC-255-IJAM S1758-8251 1550009

Shape Optimization of Acoustic Enclosures

If the boundary is meshed to short interval and polynomials or other relative
simple functions are used to expand the unknown field in the short interval at the
boundary, the approach retreats to classical BEM. In contrast to BEM, the Galerkin
approach does not require that the boundary integral equations be satisfied at every
single point. Instead, Eq. (2) is enforced in a weighted average as:∫

Γτ

p̂(τ)β(τ)p(τ)dΓτ +
∫

Γτ

p̂(τ)
∫

Γσ

p(σ)
∂G(σ, τ)
∂n

dΓσdΓτ

−
∫

Γτ

p̂(τ)
∫

Γσ

G(σ, τ)
∂p(σ)
∂n

dΓσdΓτ +
∫

Γτ

p̂(τ)Qδ(r − rs)G(σ, τ)dΓσdΓτ = 0,

(3)

where τ and σ are points at the boundary; α(τ) is defined by Eq. (2); p̂(τ) is a
weighting function. This formulation carries a clear interpretation: the approximate
Galerkin solution is the exact solution projected onto the subspace consisting of
all functions which are linear combinations of the shape functions. The Galerkin
solution is therefore the linear combination which is the “closest” to the exact
solution.

To solve Eq. (2), the unknown function p(σ) and ∂p(σ)
∂n can be expanded as

p(σ) =
∑

i

aiϕi(σ), (4)

∂p(σ)
∂n

=
∑

j

bjϕj(σ). (5)

According to Galerkin framework, the weighting function p̂(τ) can be set as

p̂(τ) = ϕk(τ), (6)

where ϕi(σ), ϕj(σ) and ϕk(τ) are expansion set, which can be any function, such
as polynomials. Wavelets will be adopted here. The difference between these two
bases will be compared in Sec. 3.1.3. ai and bj are unknown coefficients.

After substituting Eqs. (4)–(6) into Eq. (3), Eq. (3) can be rearranged into the
following matrix form

La + Mb = R, (7)

where

Lk,i =
∫

Γτ

β(τ)ϕk(τ)ϕi(τ)dΓτ +
∫

Γτ

ϕk(τ)
∫

Γσ

ϕi(σ)
∂G(σ, τ)
∂n

dΓσdΓτ , (8)

Mk,j = −
∫

Γτ

ϕk(τ)
∫

Γσ

ϕj(σ)G(σ, τ)dΓσdΓτ , (9)

Rk = −
∫

Γτ

ϕk(τ)
∫

Γσ

q(rs)G(σ, τ)dΓσdΓτ , (10)
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ai = ai, (11)

bj = bj, (12)

in which a, b are unknown coefficient vectors for acoustical pressure p and derivative
of acoustical pressure ∂p(σ)/∂n, respectively. Equation (7) applies to the boundary.
For conventional Dirichlet or Neumann boundary conditions, a or b vanishes; for
mixed boundary condition, a relationship between a and b exists. For multiple
boundary conditions, the solution can be worked in the corresponding boundary
segments.

2.2. Wavelet basis and global expansion

The prevailing idea of the proposed wavelet-Garlerkin formulation is to approximate
the unknown sound field at the entire boundary by a combination of predefined
wavelet bases, as expressed in Eqs. (4) and (5). This is fundamentally different
from BEM, or other element based method, in which the boundary is meshed into
small pieces to be approximated locally. The obvious challenge is to find a suitable
basis with necessary fitting capability to approximate the solution on a relatively
large interval globally instead of approximating a function piecewise. The apparent
benefit is that, without meshing the boundary, the method can be very efficient
especially for shape optimization problems. Hereafter, we will demonstrate that
wavelet functions can fulfill this requirement.

2.2.1. Daubechies wavelet

Daubechies wavelet is a family of compactly supported orthogonal wavelets includ-
ing both highly localized and highly smooth members. Each wavelet member is
governed by a set of L (an even integer) coefficients {hj : j = 0, 1, . . . , L − 1}
through two-scale relations

ϕ(x) =
L−1∑
j=0

hjϕ(2x− j) (13)

and

ψ(x) =
1∑

j=2−L

(−1)jh1−jϕ(2x− j), (14)

where ϕ(x) and ψ(x) are called scaling function and mother wavelet, respectively.
The fundamental support of the scaling function ϕ(x) is the interval [0, L − 1]
while that of the corresponding wavelet ψ(x) is in the interval [1 − L/2, L/2].
The coefficients hj in the two-scale relation (13) are called the wavelet filter coeffi-
cients. Values of these coefficients can be found in the literature [Chen et al. 2006].
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Correspondingly, the scaling function ϕ(x) has the following properties:∫ ∞

−∞
xkψ(x)dx = 0, k = 0, 1, . . . , L/2 − 1. (15)

It is noted that the property (15) is equivalent to that of the elements of the set
{1, x, . . . , xL/2−1} are linear combinations of ϕ(x − k), integer translates of ϕ(x).
So the scaling function ϕ(x) can be used to approximate a function on an interval
[Chen et al., 2006].

2.2.2. Wavelet expansion and basis selection

Choosing Daubechies wavelet as basis, Eqs. (4)–(6) can be converted to

p(σ) =
∑

j

am,jϕm,j(σ), (16)

∂p(σ)
∂n

=
∑

j

bm,jϕm,j(σ), (17)

p̂(τ) = ϕm,j′(τ), (18)

ϕm,j(x) = 2m/2ϕ(2mx− j), (19)

where ϕ(·) is the wavelet scaling function; m the resolution level; j an integer
translation and Lr the expansion length. A single resolution Daubechies wavelet
scaling function (j = 0) and its series with different translations (j = −3,−2, . . .4, 5)
are shown in Fig. 2. It shows that wavelet scale functions have compact support,
flexible scaling, translation and strong oscillation. These properties provide great
potential in global expansion, especially for problems with complex boundary.

Fig. 2. Single resolution Daubechies wavelet scaling functions series with different translations.
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The problem now is to choose the suitable range of integer translation j. Con-
sidering Eq. (16), all the wavelet scaling functions between the expansion domain
[0, Lr] should be included into the expansion set. However, using Eqs. (16) and (17)
in Eq. (7) requires the calculation of

∫
Γτ
ϕk(τ)dΓτ . As the wavelet scale function

ϕk(τ) is a compact support function, when
∫
Γτ
ϕk(τ)dΓτ equals to zero, the matrix

system L, M and R defined by Eqs. (8), (9) and (10) are singular and the problem
becomes underdetermined. So the expansion set of Eqs. (16) and (17) should be
modified as below to avoid such occurrence:

p(σ) =
2m�Lr�−1−l2∑
j=−L+2+l1

am,jϕm,j(σ), (20)

∂p(σ)
∂n

=
2mLr−1−l2∑
j=−L+2+l1

bm,jϕm,j(σ), (21)

where l1 > 0 and l2 > 0 are correction values. Procedure to determine l1 and l2 are
detailed as follows. �•� means rounding the number to the nearest integers greater
than or equal to itself.

The integration of wavelet scale function can be defined as

θ(x) =
∫ x

0

ϕ(y)dy. (22)

Method for calculating the above integration is given by Chen et al. [1996]. In light
of the above definition,

∫
Γτ
ϕk(τ)dΓτ can be converted to

∫ Lr

0

ϕm,j(x)dx = 2−m/2(θ(2mLr − j) − θ(−j)), (23)

where j = −L+ 2 + l1, . . . , 2m�Lr� − 1 − l2. j is substituted into Eq. (23) and the
correction values can be worked out considering the property of θ(x) [Chen et al.,
1996] to avoid zero value. This gives

l1 = 0, (24)

l2 = �(2m�Lr� − Lr)	. (25)

Equations (20) and (21) can then be converted to

p(σ) =
2m�Lr�−1−�(2m�Lr�−Lr)�∑

j=−L+2

am,jϕm,j(σ), (26)

∂p(σ)
∂n

=
2m�Lr�−1−�(2m�Lr�−Lr)�∑

j=−L+2

bm,jϕm,j(σ). (27)

The above modified expansion set will guarantee nonzero values for
∫
Γτ
ϕk(τ)dΓτ

such that avoiding the singularity of L, M and R. �•	 means rounding the number
to the nearest integers less than or equal to itself.
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As an example, Fig. 2 shows how to choose the expansion set. The wavelet scale
functions with zero value in the expansion domain or with the value that can lead
to the zero integration value of

∫
Γτ
ϕk(τ)dΓτ should be removed from the expansion

set (dashed line).

2.3. Shape optimization

The proposed WGM is a global expansion method in the sense that fine meshing
of the geometry model is not needed. Taking advantage of this feature, a shape
optimization strategy is proposed as follows.

A procedure named vertex-driven shape optimization is demonstrated in Fig. 3
in which the boundary of a polygonal cavity to be optimized is defined by a
number of nodal points/nodes. Some of the nodal points have fixed positions,
referred to as fixed points, whilst others are called control points whose posi-
tions can be changed to form a boundary of different shape. Upon assigning ini-
tial positions to all nodal points, WGM approach is deployed to calculate the
inner sound field to get the cost function determined by the optimization objec-
tive. During the optimization, the positions of the control points will be adjusted
to get an optimized result. In the whole procedure, there is no need to mesh
between the points, the positions of the control points and the shape of the
cavity will not stop changing until convergence to the final optimal shape is
achieved.

In principle, there are various physical quantities to be optimized. As an example,
the problem of optimizing the shape of an acoustic enclosure to control the sound
pressure level, L, in a predefined local area inside the enclosure is chosen. L is

Fig. 3. Vertex-driven optimization procedure.
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approximated as

min
r∈R

L(r) = 10 log
1
n

n∑
i=1

10Li(r)/10dB, (28)

where Li(r) is the SPL of the test point i at location r. R = {r | r ∈ S}, S is the
pre-defined quiet-area in the cavity.

In principle, any optimization algorithm can be used. Considering the com-
plicity of the objective function with unknown knowledge on its derivatives, an
optimization algorithm based on genetic algorithm (GA) [Renner and Ekárt, 2003]
will be adopted here. Global optimization methods like GAs show robust behav-
ior, especially if the design analysis algorithm has convergence problems and does
not return with objective function values for all demanded design points. MIGA is
a class of general-purpose search method providing a remarkable balance between
exploration and exploitation of the results that is characteristics of GA. The main
feature of MIGA that distinguishes it from the traditional GA is the fact that
each population of individuals (i.e., a set of probable solutions) is divided into
several sub-populations called “Island”. All traditional genetic operations, such as
selection, crossover and mutation, are performed separately on each Island. Some
individuals are then selected from each Island and are migrated to different Islands
periodically. Two parameters control the migration process: migration interval and
migration rate. The migration operation in MIGA keeps the diversity of probable
solutions and hence increases the chance of obtaining the global optimal solution.
Discussion on the optimization algorithm itself is beyond the scope of this paper.

Making use of commercial optimization package iSight in conjunction with the
Matlab code for the WGM solver, the shape optimization procedure is implemented
as shown in Fig. 4. The program iSight is used to define the optimization flow con-
sisting of initialization, an optimization loop and post-processing. The optimization
routine based on MIGA supplied by iSight interacts with the acoustic solver based
on WGM. When the optimization program requires a new design evaluation, iSight
invokes a Matlab script which calculates the acoustic response with a new updated
shape, which is feedbacked to MIGA optimizer. The optimization loop proceeds as
the enclosure shape evolves until the optimized shape is reached. Due to the parallel
property of MIGA, the optimization controlled by iSight may be split into multiple
programs running in a heterogeneous computational environment.

3. Numerical Studies

3.1. Numerical examples

The WGM was first applied to a 2D rectangular enclosure for validation purposes.
The enclosure has a dimension of 2.0m by 1.2m. A monopole source is placed
inside the rigid-walled enclosure (0.1m, 0.1m) as shown in Fig. 5. The original
point is set at left bottom.
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Fig. 4. Sketch of the shape optimization procedure realized with iSight.

3.1.1. Validation

The frequency response of the sound pressure at (1.9m, 0.1m) was compared
with analytical solutions based on modal superposition using 2500 modes [Anyun-
zoghe and Cheng, 2002] in Fig. 6. In the calculation, the absorption coefficient α
was set to be 0.01. WGM used L = 10 and m = 5 wavelet basis. Figure 6 shows
a perfect agreement between the two methods since the two lines are barely dis-
tinguishable. The pressure contours in the cavity, as well as the error in terms of
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Fig. 5. Rectangular enclosure with/without internal partial partition.

Fig. 6. Magnitude of the sound pressure at the receiver in the rectangular enclosure using WGM
and analytical modal superposition method. The sound source is located at (0.1 m, 0.1m).

sound pressure level, at one arbitrary frequency of 115Hz are also compared in
Fig. 7. Again, the pressure responses are almost the same everywhere inside the
cavity. The maximum deviation is typically below 0.5 dB as shown in Fig. 7(c).
Same comparisons carried out for other frequencies (not shown here) also show a
good agreement between the two sets of results. It is relevant to note that in the
WGM, no meshing was performed and entire boundary, comprising four edges, was
treated as one single piece, over which the sound pressure was approximated using
the same set of wavelet approximation.

3.1.2. Convergence and adaptive rule

Using the same configuration, the convergence of WGM and adaptive rule are
investigated. The error with respect to the exact solution is calculated considering
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(a)

(b)

(c)

Fig. 7. Contour plots showing the pressure field at 115 Hz inside the rectangular enclosure. The
contour lines are at 5 dB intervals. (a) WGM, (b) modal superposition, (c) error in the sound
pressure level field at 115 Hz between WGM and modal superposition method.
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different wavelet support lengths L, wavelet resolution m and Gauss integration
point number.

Figure 8 shows the absolute error of the frequency response function between the
source and the receiver calculated by WGM compared with the modal superposition
model from 20Hz to 500Hz. Figures 8(a) and 8(b) set the wavelet resolutionm fixed
and consider different wavelet support lengths L. When m = 1, the absolute error
becomes extremely large as the frequency is over 250Hz (Fig. 8(a)). When m = 3,
Fig. 8(b) shows that the absolute error is quite small compared with m = 1. In both
cases, the error varies slightly with L. These observations seem to suggest that the

(a)

(b)

Fig. 8. (a) Absolute error at the receiver point using different wavelet support lengths L = 8
(solid), L = 10 (dashed) and L = 12 (dotted) with wavelet resolution m being fixed at 1. (b)
Absolute error at the receiver point using different wavelet support lengths L = 8 (solid), L = 10
(dashed) and L = 12 (dotted) with wavelet resolution m being fixed at 3. (c) Absolute error at
the receiver point using different wavelet resolution m = 2 (solid), m = 3 (dashed) and m = 4
(dotted) with wavelet support length L being fixed at 8.
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(c)

Fig. 8. (Continued)

wavelet resolution m significantly impacts on the calculation accuracy, while the
wavelet support length L only exerts slight influences.

For a given support length L, more accurate result can be obtained as the
wavelet resolution level m increases up to 4. This can be better shown in Fig. 8(c)
with L = 8. However, there seems to have an optimal point starting from which
error starts to increase when further increasing m. Considering Eq. (2), the interior
sound field is determined by the sound pressure at the boundary. So the maximum
error at the boundary with respect to the analytical result is chosen as criteria
during the simulation.

E = 20 log(max(pΓ − pΓa)/pref), (1)

where pΓa is the sound pressure calculated by analytical method, pref = 20µPa.
Figure 9(a) shows the maximum error E at the boundary defined by Eq. (1) at
480Hz. The error first decreases and then increases while m increases starting from
m = 4. In order to explain this phenomenon, Fig. 9(b) shows the magnitude of
the singular values of the matrix L when m varies from 4 to 7. It can be seen
that the singular values fall off at a relatively constant rate until around the 280th
singular value where the level begins to decay rapidly. The implication is that with
this number of Gauss integration point the use of more than 280 wavelet bases is
likely to produce a poorly conditioned result. Small singular values imply that the
wavelet bases have almost no effect on the pressure component that corresponds to
that singular value. The number of Gauss integration point for all the cases above
is set as 340.

The problem becomes better conditioned by increasing the number of Gauss
integration point. This can be illustrated by looking at the singular values of the
matrix L with the support length L = 8 and resolution m = 6 at 480Hz (Fig. 10).
In this case the smallest singular value using 682 Gauss integration point is more
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(a)

(b)

Fig. 9. (a) Maximum absolute error at the boundary using different wavelet support lengths
L = 8(+), L = 10(o), L = 12(∗) and L = 14(x) while wavelet resolution m is increased from 3 to 7
at 480Hz. (b) Magnitude of the singular values of the matrix L, using different wavelet resolution
m = 4 (dash dot), m = 5 (dotted), m = 6 (dashed), and m = 7 (solid) while wavelet support
length L = 8 at 480Hz.

than 7 orders of magnitude larger than that using 340 Gauss integration point.
Consequently, the error decreases by using more Gauss points (Fig. 10). However, an
increase in the number of Gauss points will not take effect for low wavelet resolution
level, as illustrated in Fig. 10 with m = 4, in which case the singular value remains
the same when number of Gauss points increases. One plausible reason is that for
lower wavelet resolution level, fewer Gauss points is enough for evaluation, similar to
sampling points used in signal processing. But for higher wavelet resolution level,
more Gauss integration points are needed. If the level of error is unacceptable,
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Fig. 10. Magnitude of the singular values of the matrix L using 682 Gauss integration points
with resolution m = 4 (dotted), 340 Gauss integration points with resolution m = 4 ( ), 682
Gauss integration points with resolution m = 6 (dash dot) and 340 Gauss integration points with
resolution m = 6 (solid) at 480 Hz.

potentially both the resolution level and the Gauss integral number need to be
increased. Based on the above, the following adaptive algorithm is proposed:

Step 1. Set an acceptable threshold for the error at boundary defined by Eq. (29);

Step 2. Set an initial wavelet resolution level m and the Gauss integration point
number. For each frequency, calculate the maximum error at the boundary. If the
maximum error is larger than threshold preselected go to Step 3, otherwise continue
the calculation.

Step 3. Increase the wavelet resolution level m if the maximum error is decreased
while m is increased until the threshold is met. Otherwise, the Gauss integration
point number should be increased to meet the threshold. Set the new wavelet reso-
lution level m and the Gauss integration point number as default, and go to Step 2.

3.1.3. Comparisons with polynomial basis

The exceptional fitting capability of the wavelet basis in the proposed WGM scheme
to approximate the solution on a relatively large interval globally is demonstrated in
this section. This has been done by making comparisons with polynomial basis using
the previous rectangular cavity. For a fair comparison, high order linear polynomials
are deployed. The sound source excitation is deliberately put close to the boundary
at (1.1 m, 0.1m), in order to better show the phenomenon.

Figure 11 compares the magnitude of frequency response at the receiver obtained
in the following three scenarios: using 58 wavelet basis ( ) with L = 10 and m = 3;
using 180 polynomial terms (dashed) and modal superposition using 2500 modes
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Fig. 11. Magnitude of the sound pressure at the receiver in the rectangular enclosure using 58
wavelet basis (*), 180 polynomial basis (dashed) and modal decomposition (solid).

(solid) from 20Hz to 500Hz. It can be seen that the responses calculated using
wavelet basis and modal method match quite well. However, as the frequency
increases, the result of polynomial basis deviates from the result of analytical solu-
tion more and more. This can be interpreted as a result of the difference in the fitting
ability between the polynomial basis and wavelet basis. As the frequency increases,
the sound field in the cavity becomes more complex, and much more polynomial
terms are needed to achieve acceptable global expansion.

To further support the aforementioned argument, Fig. 12 shows the magnitude
of the frequency response along the entire boundary of the rectangular enclosure at
80Hz. It can be seen that WGM gives a perfect description of the sound pressure
variation over the entire boundary as compared to the analytical solutions, whilst
the error due to the polynomial basis can be clearly seen, especially near the sound
source position, where the sound distribution is more complex due to its proximity
to the sound source. It is obvious that wavelet basis shows its strong ability to carry
out global expansion versus polynomial basis. The fundamental reason behind this
can be analyzed by comparing the magnitude of the singular values for the two
bases. It can be observed that the singular values of wavelet basis is kept at almost
the same level while those of polynomial basis fall off at a relatively large rate,
reaching the ill-condition scenario much easier than wavelet basis does.

Similar analysis was conducted for a higher frequency at 280Hz. For comparison
purposes, results using 111 wavelet basis with L = 10 and m = 4, and 180 poly-
nomial basis are compared against analytical modal solutions using 2500 modes.
Figure 13 shows that, along the boundary of the enclosure, the accuracy of the
polynomial basis degrades seriously while wavelet basis still maintains its high
accuracy.
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Fig. 12. Magnitude of the sound pressure along the boundary in the rectangular enclosure using 58
wavelet basis (�) with L = 10 and m = 3, 180 polynomial basis (dashed) and modal decomposition
(solid) at 80 Hz.

Fig. 13. Magnitude of the sound pressure along the boundary in the rectangular enclosure using
111 wavelet basis (�) with L = 10 and m = 4, 180 polynomial basis (dashed) and modal decom-
position (solid) at 280 Hz.

Based on the above analysis, two important points are worth noting. Firstly,
the wavelet basis shows high performance at global expansion under the Galerkin
framework, even when handling complex sound field. Secondly, compared with the
traditional polynomial basis, the wavelet basis is more robust against ill-condition
problem.
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Fig. 14. A rectangular enclosure with an internal partial partition.

3.2. Rectangular cavity with an internal partial partition

WGM is used to handle a rectangular cavity with an internal partial partition,
as depicted in Fig. 14. The rectangular cavity has the same dimension as the one
used previously, with an acoustically rigid internal wall of thickness 0.002m located
at (0.8 m, 0.0m).

3.2.1. Validation

Before optimization, the result obtained from the WGM is first compared with the
FEM solutions from SYSNOISE for validating the implementation of the WGM. In
the WGM, L = 10, m = 3. Figure 15 shows that the results obtained using these

Fig. 15. Magnitude of the sound pressure at the receiver in the rectangular enclosure with an
internal partial partition using wavelet basis (solid) and FEM by SYSNOISE (dashed).
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(a1) WGM (a2) FEM

(b1) WGM (b2) FEM

Fig. 16. Contour plots showing the sound pressure distribution inside the rectangular enclosure
with an internal partial partition for the first two modes. Results were obtained using WGM (left
column) and SYSNOISE right column), respectively. The contour lines are at 5 dB intervals. (a1,
a2): First mode at 62 Hz; (b1, b2) second mode at 121Hz.

two methods match well and the maximum error over the whole frequency range is
about 1 dB. This comparison is supplemented with pressure contours in the cavity
at the first two modes in Fig. 16. The sound pressure distribution is found to be
almost the same everywhere inside the cavity between the two sets of results. This
simulation confirms that the WGM can be used to accurately model the acoustic
field inside a cavity when complexities are present inside.

3.2.2. Optimization of the internal partition for the creation of a quiet zone

As an example, the shape optimization procedure, as detailed in Sec. 2.3, is applied
to the above configuration to show the capability of the proposed WGM in shape
optimization problem. As optimization objective, the sound pressure level within
the rectangular box behind the partition (Fig. 16(a)) is to be minimized at 121Hz
by changing the shape of the partition, as defined by Eq. (28). The rectangular box
is 0.3m by 0.4m with its left bottom corner located at (0.8m, 0.3m). 44 positions,
uniformly distributed inside the box, have been used to calculate the average SPL.
The distance between each test point is 0.01m.

As illustrated in Fig. 14, the boundary of the cavity, as well as the bottom and
top positions of the partition, is defined by eight fixed points, while the partition
wall is decentralized to seven pairs of control points to keep the thickness of the
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Table 1. Location of shape control points of internal partition.

Parameters Position Position (After Position (After Position (After
(Original) 10 generation) (After 15 generation) 20 generation)

Point Pair 1 (0.5, 0.0) (0.500, 0.0) (0.500, 0.0) (0.500, 0.0)
Point Pair 2 (0.5, 0.1) (0.431, 0.1) (0.527, 0.1) (0.527, 0.1)
Point Pair 3 (0.5, 0.2) (0.580, 0.2) (0.441, 0.2) (0.505, 0.2)
Point Pair 4 (0.5, 0.3) (0.580, 0.3) (0.548, 0.3) (0.452, 0.3)
Point Pair 5 (0.5, 0.4) (0.431, 0.4) (0.567, 0.4) (0.569, 0.4)
Point Pair 6 (0.5, 0.5) (0.441, 0.5) (0.431, 0.5) (0.559, 0.5)
Point Pair 7 (0.5, 0.6) (0.559, 0.6) (0.537, 0.6) (0.559, 0.6)
Point Pair 8 (0.5, 0.7) (0.431, 0.7) (0.431, 0.7) (0.431, 0.7)
Point Pair 9 (0.5, 0.8) (0.500, 0.8) (0.500, 0.8) (0.500, 0.8)

partition constant. These control points are to be moved in the shape optimization
procedure as described in Fig. 3. The initial locations of the control point pairs are
given by the second column in Table 1. The locations are marked by the positions
of control points over the left-hand side of the partition wall (Fig. 14). The wall
thickness is fixed as 0.02m.

The control parameters of MIGA based on iSight platform are tabulated in
Table 2. The convergence criteria used is to ensure that the values for the objective
function between the two consecutive iterations is lower than 10−2.

Using the multi-island GA, the shape of the partition is varied and optimized.
Starting from the initial configuration shown in Fig. 17(a), the evolution of the
partition shape is illustrated by Fig. 17(b) (after 10 generation) and Fig. 17(c) (after
15 generation), before reaching the final configuration shown in Fig. 17(d). Evolution
of the control points during the optimization procedure is given by Table 1.

It can be seen from Fig. 17 that convergence can be achieved relatively quickly
using the present optimization strategy. More specifically, the SPL inside the box
varies from 106dB to 116dB in the initial configuration. After 10 generations, the
variation range retreats to 104dB–114dB. Continuing its evolution, the optimal
configuration is reached in Fig. 17(d), in which the SPL inside the box varies from
95dB to 109 dB. As compared to the initial straight partition, the optimized par-
tition shape reduces the average SPL inside the box from 111 dB to 100dB, corre-
sponding to a reduction of 11 dB in the targeted area.

Table 2. MIGA parameters.

Parameters Value

Sub-population size 25
Number of island 10
Number of generation 20
Rate of crossover 0.8
Rate of mutation 0.01
Rate of migration 0.5
Interval of migration 3
Total iterative number 5000
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(a) (b)

(c) (d)

Fig. 17. Sound pressure distribution inside the enclosure with an internal partial partition. (a)
Straight partition before optimization, (b) after 10 generations, (c) after 15 generations and (d)
after 20 generations, average SPL level reduced from 111 dB to 100 dB, as compared to the initial
configuration.

Results also suggest that the acoustic field distribution inside the enclosure,
especially within the predefined area, can be significantly altered by appropriate
changes in its geometry or internal geometrical setting. This can be interpreted as a
result of the alteration to the mode-shapes of the enclosure. This is particularly rel-
evant in some applications in which noise control inside the entire volume is difficult
to achieve. Creation of a quite zone within a limited area may be an attractive and
feasible solution. The presently proposed methodology may find its applications in
those cases.

4. Conclusions

A general procedure is proposed to deal with the general problem of internal sound
field prediction and the optimization of the boundary shape. Owing to the com-
pactly supported orthogonal property of the wavelet and its extraordinary fitting
capability, Daubechies wavelet scaling function is proposed as a global basis function
to expand the unknown sound pressure under the general Galerkin framework. A
method named vertex-driven shape optimization is established and demonstrated.
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Using acoustically rigid rectangular cavity as a benchmark problem, the pro-
posed WGM is shown to be able to achieve high accuracy without any boundary
meshing. The accuracy of the WGM strongly depends on the resolution level m and
the number of Gauss integration points, and in principle also on the wavelet support
length L, but to a much less extent. As long as the support length Lis larger than
the expansion domain, the accuracy keeps almost the same. The accuracy increases
when the value of the resolution level m increases to a certain value, beyond which
ill-conditioned problem may take place. This ill-condition problem can be eased by
increasing the number of Gauss integration points based on the adaptive refining
strategy proposed in the paper.

Based on the strong ability of wavelet scale functions in approximating unknown
functions in a relative large interval, the proposed WGM allows global expansion
and therefore allows flexible handling of the cavity boundaries in a unified way
without meshing the geometry model like FEM/BEM usually does. This empowers
the new approach with its superiority in acoustic mutation and shape optimization
problems over other conventional simulation methods. Potentials of the approach are
demonstrated using a polygonal cavity with internal partial partition by following
a vertex-driven shape optimization procedure proposed in this paper.

As a final note, it is relevant to mention that, although numerical studies
reported in this paper only focused on two-dimensional polygonal cavities, in prin-
ciple, the proposed methodology should apply to more complex cavities in which
the boundary segments can be described by curved segments of any shapes such as
arcs or spline, as long as they can be described by relatively simple curve functions.
It is also possible to extend the method to three-dimensional problems.

Acknowledgments

The authors wish to acknowledge a grant from Research Grants Council of Hong
Kong Special Administrative Region, China (PolyU 152026/14E).

References

Anyunzoghe, E. and Cheng, L. [2002] “Improved integro-modal approach with pressure
distribution assessment and the use of overlapped cavities,” Applied Acoustics 63(11),
1233–1255.

Bai, M. R. [1992] “Study of acoustic resonance in enclosures using eigenanalysis based on
boundary element methods,” The Journal of the Acoustical Society of America 91(5),
2529–2538.

Chen, M. Q., Hwang, C. and Shih, Y. P. [1996] “The computation of wavelet-galerkin
approximation on a bounded interval,” International Journal for Numerical Methods
in Engineering 39(17), 2921–2944.

Chen, L. M., Chen, M. J., Pei, Y. M., Zhang, Y. H. and Fang, D. N. [2012] “Optimal
design of sandwich beams with lightweight cores in three-point bending,” International
Journal of Applied Mechanics 4(03).

1550009-24

In
t. 

J.
 A

pp
l. 

M
ec

ha
ni

cs
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 H

O
N

G
 K

O
N

G
 P

O
L

Y
T

E
C

H
N

IC
 U

N
IV

E
R

SI
T

Y
 o

n 
02

/0
5/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

January 24, 2015 8:34 WSPC-255-IJAM S1758-8251 1550009

Shape Optimization of Acoustic Enclosures

Chiu, M. C. and Chang, Y. C. [2008] “Shape optimization of multi-chamber cross-flow
mufflers by SA optimization,” Journal of Sound and Vibration 312(3), 526–550.

Dowell, E. H., Gorman III, G. and Smith, D. A. [1977] “Acoustoelasticity: General the-
ory, acoustic natural modes and forced response to sinusoidal excitation, including
comparisons with experiment,” Journal of Sound and Vibration 52(4), 519–542.

Fahy, F. J. and Gardonio, P. [2007] Sound and Structural Vibration: Radiation, Transmis-
sion and Response (Academic Press, New York).

Geng, Q. and Li, Y. [2012] “Analysis of dynamic and acoustic radiation characters for a
flat plate under thermal environments,” International Journal of Applied Mechanics
4(03).

Givoli, D. and Demchenko, T. [2000] “A boundary-perturbation finite element approach
for shape optimization,” International Journal for Numerical Methods in Engineering
47(4), 801–819.

Jaffard, S. [1992] “Wavelet methods for fast resolution of elliptic problems,” SIAM Journal
on Numerical Analysis 29(4), 965–986.

Koo, B. U., Ih, J. G. and Lee, B. C. [1998] “Acoustic shape sensitivity analysis using the
boundary integral equation,” The Journal of the Acoustical Society of America 104(5),
2851–2860.

Kost, B., Baumann, B., Germer, M., Wolff, M. and Rosenkranz, M. [2011] “Numerical
shape optimization of photoacoustic resonators,” Applied Physics B 102(1), 87–93.

Lee, J. W. and Kim, Y. Y. [2009] “Topology optimization of muffler internal partitions for
improving acoustical attenuation performance,” International Journal for Numerical
Methods in Engineering 80(4), 455–477.

Levine, H. [2001] “Acoustical cavity excitation,” The Journal of the Acoustical Society of
America 109(6), 2555–2565.

Liu, Z. S., Lu, C., Wang, Y. Y., Lee, H. P., Koh, Y. K. and Lee, K. S. [2006a] “Prediction
of noise inside tracked vehicles,” Applied Acoustics 67(1), 74–91.

Liu, Z. S., Lee, H. P. and Lu, C. [2006b] “Passive and active interior noise control
of box structures using the structural intensity method,” Applied Acoustics 67(2),
112–134.

Maleknejad, K. and Lotfi, T. [2006] “Expansion method for linear integral equations by
cardinal B-spline wavelet and Shannon wavelet as bases for obtain Galerkin system,”
Applied Mathematics and Computation 175(1), 347–355.

Marburg, S. [2002] “Efficient optimization of a noise transfer function by modification of
a shell structure geometry — Part I: Theory,” Structural and Multidisciplinary Opti-
mization 24(1), 51–59.

Marburg, S. and Hardtke, H. J. [2001] “Shape optimization of a vehicle hat-shelf: Improv-
ing acoustic properties for different load cases by maximizing first eigenfrequency,”
Computers & Structures 79(20), 1943–1957.

Marburg, S. and Hardtke, H. J. [2002] “A general concept for design modification of shell
meshes in structural-acoustic optimization — Part II: Application to a floor panel
in sedan interior noise problems,” Finite Elements in Analysis and Design 38(8),
737–754.

Mimani, A. and Munjal, M. L. [2011] 3D acoustic analysis of spherical chamber having
single inlet and multiple outlet: An impedance matrix approach, International Journal
of Applied Mechanics 3(04), 685–710.

Missaoui, J. and Cheng, L. [1997] “A combined integro-modal approach for predicting
acoustic properties of irregular-shaped cavities,” The Journal of the Acoustical Society
of America 101(6), 3313–3321.

1550009-25

In
t. 

J.
 A

pp
l. 

M
ec

ha
ni

cs
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 H

O
N

G
 K

O
N

G
 P

O
L

Y
T

E
C

H
N

IC
 U

N
IV

E
R

SI
T

Y
 o

n 
02

/0
5/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

January 24, 2015 8:34 WSPC-255-IJAM S1758-8251 1550009

S. Zhang & L. Cheng

Peng, S. Z. and Cheng, L. [2008] “An improved acoustical wave propagator method and
its application to a duct structure,” The Journal of the Acoustical Society of America
123(2), 610–621.
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