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Dynamic vibration absorbers are commonly designed and tuned to suppress vibrations of
one vibration mode of a vibrating structure even it is a multi degree-of-freedom (MDOF)
or continuous structure. Resonance at other vibration modes of the structure may still
occur if the exciting force has a wide frequency band. A subsystem approach is proposed

structure to which they are attached. The transfer function between the counteracting
force from the vibration absorber and the vibration amplitude can then be derived for the
comparison of their counteracting forces to the primary system. The major advantage of
using the proposed method is that different designs of vibration absorber can be analysed
separately from the primary system and therefore the dynamics characteristics of
different designs of vibration absorber can be compared efficiently.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Forced vibration of machines and civil structures under broadband excitation is commonly seen. It can cause the
problems of structural damage and reduce the accuracy in machine control. Therefore, various vibration suppression devices
were proposed for different mechanical systems for reducing the vibration problems [1–17]. Performance indices were also
proposed in different applications to measure the vibration suppression performance of these vibration suppression devices.

Design of vibration absorbers can be optimized according to the optimization criterion chosen to suit the requirements of
a given application. One of the most common performance indices is H1 optimization criterion [1,4–8,10,13,14], which is to
minimize the maximum amplitude magnification factor, i.e. H1 norm, of the primary system. The method can best handle a
vibrating system under sinusoidal excitations. Another commonly used performance index is H2 optimization criterion
[2–4,9,11,12,14,15], which aims at reducing the total vibration energy of the vibrating system under white noise excitation.
In this optimization criterion, the area under the frequency response curve of the primary system, i.e. H2 norm, is
minimized. However, the analytical derivations of both H1 and H2 optimum parameters of the vibration absorbers found in
literature are made for only one vibration mode of the primary vibrating system because of the complication in the
derivation if other vibration modes are considered as well. If the primary vibrating system is a MDOF or continuous system,
then the vibration responses of those untargeted modes will be neglected. However, the responses of these untargeted
modes can be significant if the exciting force has a wide frequency band such that many vibration modes of the primary
system are excited.
x: þ852 2365 4703.
. Wong).

www.sciencedirect.com/science/journal/0022460X
www.elsevier.com/locate/jsvi
http://dx.doi.org/10.1016/j.jsv.2014.12.039
http://dx.doi.org/10.1016/j.jsv.2014.12.039
http://dx.doi.org/10.1016/j.jsv.2014.12.039
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsv.2014.12.039&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsv.2014.12.039&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsv.2014.12.039&domain=pdf
mailto:mmwowong@polyu.edu.hk
http://dx.doi.org/10.1016/j.jsv.2014.12.039


Fig. 1. Schematics of a vibrating structure attached with a (a) ground-hooked spring and damper (Case 1), (b) standard dynamic vibration absorber
(Case 2), (c) variant dynamic vibration absorber (Case 3), and (d) active–passive vibration absorber (Cases 4–7).
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In this article, a subsystem approach is proposed for analysis of the added stiffness and damping to the primary vibrating
structure to which they are attached. The novelty in this work is the new approach of comparing the added stiffness and
damping to the primary structure of different designs of dynamic vibration absorber (DVA) by “transforming” the DVA to the
equivalent ground-hooked spring and damper as illustrated in Fig. 1. The added stiffness and damping to the primary
vibrating structure of six different designs of dynamic vibration absorbers found in literature are derived and compared. The
major advantage of the proposed analysis method is that the added stiffness and damping to the primary vibrating structure
from the vibration absorber is modelled independent of the primary structure. The suppression capability of different
absorbers can then be determined and compared by calculating the vibration response of the coupled system by using the
mathematical model of the baseline model. Since there is no need to derive the individual vibration response expression of
the coupled system in each of the cases being considered, the proposed method provides a more efficient way for the
calculation of the vibration response of the structure after an absorber is attached. To the knowledge of the authors, the
proposed approach of comparing different DVAs is original and never be reported before in the literature. As illustrated in
the response spectra in Figs. 2 and 3, the added stiffness and damping due to the absorber will in general shift the resonant
frequencies and damp down the peak responses of the vibrating structure. As illustrated in Fig. 1, the added stiffness and
damping due to the absorber generate the counteracting force to the vibrating structure at the attachment point. While the
traditional methods such as poles analysis [16,17] and the norms of the response transfer function of the primary structure
[10,22] measure the vibrations of the primary structure together with the vibration absorber as a whole dynamic system,
the proposed analysis method provides a simpler modelling and a more efficient way for estimating the added stiffness and
damping from the absorber to the primary structure. Since the added damping effect from the absorbers to the primary
system can be analysed separately from the primary system, different designs of vibration absorber can be compared more
efficiently.
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Fig. 2. Mean square vibration amplitude, ðρAω1
2=LÞ R1

0 W x; sð Þ=P sð Þ
�� ��2dx, of the simply supported beam in Fig. 1 with ca¼0 and stiffness ka=ρAω2

n¼0 ( ),
1 (——), 2 (- - -) and 5 (––––).
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Fig. 3. Mean square vibration amplitude, ðρAω2
1=LÞ

R L
0 W x; sð Þ=P sð Þ
�� ��2dx, of the simply supported beam in Fig. 1 with ka¼0 and dimensionless damping

coefficient ca=ρAω1¼0.01 ( ), 0.1 (——), 0.2 (- - -) and 0.5 (––––).
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Six common vibration absorber designs listed as Cases 2–7 in Table 1, including two passive and four active–passive
absorbers, are analysed using the proposed subsystem analysis method. In comparison to the baseline ground hooked spring
and damper referred to Case 1 in Table 1, some important characteristics of typical dynamic vibration absorbers on the
untargeted resonances of the primary structures are revealed.

2. Multi degree-of-freedom vibrating system with a single degree-of-freedom vibration suppression device

Seven common types of vibration suppression devices as listed in Table 1 are considered in the following and their added
stiffness and damping effect on the untargeted vibration modes are analysed and compared.

2.1. Vibration suppression with a ground hooked spring and damper (case 1)

Without loss of generality, consider a simply supported beam excited by an external force p tð Þg xð Þ within a domain
xA 0; Lð Þ with a ground hooked spring and damper at x¼ xa as shown in Fig. 1. Assuming an Euler–Bernoulli beam, the
equation of motion of the beam may be written as

ρA
∂2w
∂t2

þEI
∂4w
∂x4

¼ p tð Þg xð Þþ f a tð Þδ x�xað Þ (1a)

f a tð Þ ¼ �kaw xa; tð Þ�ca _w xa; tð Þ (1b)



Table 1
Vibration suppression devices and their transfer functions.

Case Vibration suppression device Refs. Schematic diagrams Transfer function of Fa=W

1 Spring and damper [1]

ka ca

w

kþcs

2 Standard dynamic vibration absorber [1–4, 14,
18–21]

w

wa
ms2 csþkð Þ
ms2 þ csþk

3 Variant vibration absorber [5–9]

wa

w

k ms2 þ csð Þ
ms2 þ csþk

4 Undamped hybrid vibration absorber with
displacement and velocity feedback

[10,11] wa

w

f

f

mks2
ms2 þbsþk�a where

f ¼ awa�b _wa

5 Damped hybrid vibration absorber with
displacement feedback

[13]
wa

f

f

ms2 csþkþað Þ
ms2 þ csþk where f ¼ a w
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Table 1 (continued )

Case Vibration suppression device Refs. Schematic diagrams Transfer function of Fa=W

6 Damped hybrid vibration absorber with displacement and
velocity feedback

[12]
wa

f

f

ms2 bþ cð Þsþkþað Þ
ms2 þ csþk where

f ¼ awþb _w

7 Damped hybrid vibration absorber with acceleration feedback [15]
wa

f

f

ms2 as2 þ csþkð Þ
ms2 þ csþk where f ¼ a €w
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where f a tð Þ is the force due to the spring and damper acting on the beam; E the modulus of elasticity; A the cross section
area; I the second moment of area and ρ the density of the beam. g xð Þ and δ x�xað Þ may be expanded as

gðxÞ ¼
X1
i ¼ 1

aiφiðxÞ (1c)

δðx�xaÞ ¼
X1
i ¼ 1

biφi xð Þ (1d)

where φi xð Þ is the eigenfunction of the beamwithout any other devices and the Fourier coefficients ai and bi may be written,
respectively, as

ai ¼
R L
0 g xð Þφi xð Þdx

L
and bi ¼

φi xað Þ
L

: (1e)

Performing Laplace transformation in Eq. (1b), the force acting on the beam due to the ground hooked spring and
damper in the steady state may be written as

Fa ¼ �kaW xað Þ� jωcaW xað Þ (2a)

where j2¼�1. The mean square vibration amplitude of the beam can be derived and written as [21]

1
L

Z L

0

W x; jωð Þ
P jωð Þ

����
����
2

dx¼ 1
ρAω2

n

� �2 X1
u ¼ 1

au�bu
P1

v ¼ 1
av=ðγ2v �λ2Þ

ð1=ðηþ jζλÞÞþ
P1

v ¼ 1
bv=ðγ2v �λ2Þ

� �
γ2u�λ2

��������

��������

2

(2b)

where

ωn ¼ βn
2

ffiffiffiffiffiffi
EI
ρA

s
; βn ¼

nπ
L
; γv ¼

ωv

ωn
; λ¼ ω

ωn
; η¼ ka

ρAωn
2 and ζ ¼ ca

ρAωn

A numerical example is presented in the following for illustration of the effect of this vibration suppression device
(Case 1) to the untargeted vibration modes of the primary beam structure. Assuming the length of the beam is L¼ 1 m with
a cross section 0:025 m� 0:025 m. The spring and damper are attached at xa ¼ 0:5 m of the beam as shown in Fig. 1. The
material of the beam is aluminium with ρ¼ 2710 kg m�3 and E¼ 6:9 GPa. The Fourier coefficients ai and bi can be written,
respectively, as

ai ¼ 2
nπL; i¼ 2n�1 nAN

else ai ¼ 0; and (3a)
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bi ¼
2
L
sin

iπx0
L

� �
(3b)

The beam is assumed to be excited by a white noise. The frequency responses of the beam in terms of mean square
vibration amplitude with only spring support (kaa0, ca¼0) and only damper support (ka¼0, caa0) are calculated using
Eq. (2b) with results plotted in Figs. 2 and 3 respectively. The absorber is tuned at the first natural vibration mode of the
beam and therefore ωn is replaced by ω1 in the calculations. The resonance frequencies are increased when ka increases as
shown in Fig. 2 and the mean square vibration amplitude at resonances are reduced when ca increases as shown in Fig. 3. So
the stiffness ka creates a shift of the resonance frequencies of the beam while the damping ca has the effect of changing the
mean square vibration amplitude of the beam at resonances.

Using Case 1 as the baseline design model, the equivalent stiffness ka and damping coefficient ca of two passive dynamic
vibration absorbers (Cases 2 and 3) and four passive–active vibration absorbers (Cases 4–7) are derived in the following and
compared to Case 1. The comparisons give new insights into the dynamic effect of different designs of vibration absorbers
applied to multi degree-of-freedom vibrating systems with excitation of wide frequency band.

2.2. Passive dynamic vibration absorber (Cases 2 and 3)

Consider the standard dynamic vibration absorber [1–3] (Case 2) as shown in Fig. 4. The equation of the motion can be
expressed as

m €wa ¼ �k wa�w xað Þð Þ�c _wa� _w xað Þð Þ (4a)

f a ¼ k wa�w xað Þð Þþc _wa� _w xað Þð Þ (4b)

where fa is the force generated by the vibration suppression device onto the primary mass. Eliminating wa using Eqs. (4a)
and (4b) and taking Laplace transformation, the transfer function of Fa=W xað Þ can be derived as

Fa
W xað Þ ¼ � ms2 csþkð Þ

ms2þcsþk
(5a)

where Fa and W xað Þ are the Laplace transform of fa and w xað Þ, respectively.
At steady-state vibration, Eq. (5a) may be rewritten with s¼ jω as

Fa ¼
mω2 kþ jcωð Þ
k�mω2þ jcω

W xað Þ

¼
mkω2 k�mω2

� �þm cω2
� �2� 	

� jω5m2c

k�mω2
� �2þ cωð Þ2

W xað Þ (5b)

Comparing Eq. (2a) with Eq. (5b) above, the equivalent stiffness ka ωð Þ and ca ωð Þ of the absorber Case 2 to Case 1 can be
written respectively as

ka ωð Þ ¼ �mkω2 k�mω2
� �þm cω2

� �2
k�mω2
� �2þ cωð Þ2

; and (6a)

ca ωð Þ ¼ m2cω4

k�mω2
� �2þ cωð Þ2

: (6b)

Eqs. (6a) and (6b) show that ka ωð Þ � 0 and ca ωð Þ � 0 at low excitation frequencies (ωE0), suggesting no counteracting
force and hence no vibration suppression effect of the dynamic vibration absorber. Eqs. (6a) and (6b) also show that when
the excitation frequency is very large, ka ωð Þ and ca ωð Þ become respectively,

ka 1ð Þ ¼ k�c2

m
(7a)
Fig. 4. Schematics of a simply supported beam with a standard dynamic vibration absorber (Case 2) excited by a disturbed force.
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ca 1ð Þ ¼ c (7b)

According to the discussion in Section 2.1, a change in the stiffness ka in Case 1 would alter the resonant frequencies of
the beam (Fig. 1) while an increase of damping ca will reduce the mean square vibration amplitude at resonances of the
beam. Eq. (7a) shows that the high order resonant frequencies of the beamwith the absorber will be changed while Eq. (7b)
shows that Case 2 design can provide damping effect to the high order resonances of the beam with the absorber.

Three commonways for tuning the standard vibration absorber Case 2, including the undamped classical tuning [1] (c¼0
and k=ρAω1

2 ¼ 1), H1 optimum tuning [1,4] and H2 optimum tuning [2–4], are considered. The corresponding frequency
spectra of the mean square vibration amplitude of the beam are calculated according to Eq. (2b) and plotted in Fig. 5. The
mass ratio between the absorber mass and the beam mass μ is 0.05 in the calculations. The absorber is tuned to the first
mode of the beam and a significant reduction of the mean square vibration amplitude of the whole beam can be observed at
the first resonance of the beam for all three types of tuning of the absorber (Fig. 5). However, only H1 and H2 optimum
tunings provide some damping at other resonances of the beam as shown in Fig. 5. The solid line and the dotted line in Fig. 5
overlapped because they are too close to each other. This figure shows that both H2 and H1 optimum tuning of the absorber
produce similar mean square vibration amplitude of the beam considered. The frequency responses at resonances from
mode 2 to mode 5 by H1 optimum tuning and H2 optimum tuning, the equivalent stiffness and damping coefficient are
calculated and listed in Table 2 for illustration of the dynamic effects of the absorber to the untargeted vibration modes of
the beam. As shown in Table 2, both H1 optimum tuning and H2 optimum tuning provide stiffness and damping effects on
the high frequency modes of the beam with the absorber.

The equivalent stiffness and damping of absorber Case 2 to those of Case 1, i.e. ka ωð Þ and ca ωð Þ, are calculated according
to Eqs. (6a) and (6b) respectively and plotted in Fig. 6 to show the stiffness and damping effects of this absorber to the beam
at different vibrating frequencies. Fig. 6 shows that this type of absorber provides both stiffness and damping to the beam at
high frequencies but no effect at low frequencies. It reveals that if the absorber is tuned at the second or higher modal
frequency of the beam, there will be a strong resonant response at the first or lower vibration modes. This prediction is
confirmed by Fig. 7 with the absorber Case 2 tuned at the second vibration mode of the beam, i.e. ωn ¼ω2 and the mean
square vibration amplitude of the beam is calculated according to Eq. (2b). As shown in Fig. 7, the absorber leads to strong
suppression of the second resonance of the beam and some damping to the higher order resonances but no effect to the first
resonance of the beam. This observation agrees with the calculation of Dayou [22] for this type of vibration absorber.
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Fig. 5. Mean square vibration amplitude, ðρAω1
2=LÞ R L

0 W x; jωð Þ=P jωð Þ
�� ��2dx, of the simply support beam with a dynamic vibration absorber (Case 2) in Fig. 4.

μ¼0.05. –––– H1 optimum tuning (ka ¼ ρAω1
2= 1þμð Þ, ca ¼ ρAω1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3μ= 8 1þμð Þð Þ

p
), ———H2 optimum tuning (ka ¼ ρAω1

2 1=ð1þμÞ� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμþ2Þ=2

p
,

ca ¼ ρAω1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μð3μþ4Þ= 8ð1þμÞð2þμÞð Þ

p
), – – – –Undamped tuning (ka=ρAω1

2 ¼ 1, ca¼0).

Table 2
Vibration amplitude, equivalent stiffness and damping coefficient of the standard dynamic vibration absorber (Case 2) from modes 2 to 5 with H1 and H2

optimum tuning conditions [14].

DVA (Case 2) H1 optimum tuning DVA (Case 2) H2 optimum tuning

ρAω1
2

L

R L
0

W
P

�� ��2dx ka
ρAω2

1

ca
ρAω1

ρAω1
2

L

R L
0

W
P

�� ��2dx ka
ρAω2

1

ca
ρAω1

Mode 2 at 9 Hz 0.427 0.523 0.423 0.482 0.635 0.371
Mode 3 at 25 Hz 0.095 0.521 0.418 0.108 0.631 0.366
Mode 4 at 49 Hz 0.035 0.521 0.417 0.039 0.631 0.365
Mode 5 at 81 Hz 0.016 0.521 0.417 0.019 0.631 0.365



Fig. 6. Frequency responses of dimensionless equivalent stiffness ka=ρAω2
1 and damping coefficient ca=ρAω1 of the standard dynamic vibration absorber

(Case 2) according to Eqs. (6a) and (6b), respectively. Figure legends are same as those in Fig. 5.
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Fig. 7. Mean square vibration amplitude, ðρAω2
2=LÞ R L

0 Wðx; jωÞ=PðjωÞ
�� ��2dx, of the simply-support beamwith a dynamic vibration absorber (Case 2) in Fig. 4.

μ¼0.05, xa ¼ 0:35: ––––H1 optimum tuning (ka ¼ ρAω2
2= 1þμð Þ, ca ¼ ρAω2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3μ=ð8ð1þμÞÞ

p
), ———H2 optimum tuning (ka ¼ ρAω2

2 1=ð1þμÞ� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμþ2Þ=2

p
,

ca ¼ ρAω2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μð3μþ4Þ=ð8ð1þμÞð2þμÞÞ

p
), - - - - Undamped tuning (ka=ρAω2

2 ¼ 1, ca¼0).
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A variant form of the vibration absorber (Case 3) as shown in Table 1 was reported recently [5–9] and found to be more
effective for vibration suppression than the standard DVA (Case 2). Its counteracting force Fa=W and its equivalent stiffness
ka ωð Þ and damping ca ωð Þ are derived in Appendix A. Eqs. (A8) and (A9) show that for absorber Case 3, ka 0ð Þ ¼ 0 and ca 0ð Þ ¼ 0
so this type of absorber has no effect to the stiffness and damping of the beam at low excitation frequencies. Eqs. (A8) and
(A9) also show that for absorber Case 3, ka 1ð Þ ¼ k and ca 1ð Þ ¼ 0, so this type of absorber has stiffness effect but no damping
effect to the high frequency resonances of the beamwith absorber. An interpretation of the little effect of the damper at high
frequency in this case can also be deduced from Eq. (A1) in Appendix A of the manuscript, the equation of motion of the
absorber mass m can be written as k�mω2þ jcω

� �
wa ¼ kwðxaÞ. When frequency ω-1, ωwa-0 and hence the damper

force jcωwa-0. The vibration amplitude as well as the velocity of the absorber mass of Case 3 approach to zero at high
frequency and therefore the damper has practically little effect at high frequency vibration.
2.3. Passive–active vibration absorber (Cases 4–7)

The same analysis method is also applied to four passive–active or hybrid vibration absorbers found in literature (Cases
4–7 listed in Table 1). Consider the hybrid absorber proposed by Chatterjee [10] (Case 4) with the active force f ¼ awa�b _wa.
The counteracting force Fa, ka ωð Þ and ca ωð Þ are derived in Appendix B and written as

Fa ¼ � mks2

ms2þbsþk�a
W xað Þ; (8a)



Fig. 8. Schematics of a simply supported beamwith an active–passive vibration absorber (Cases 4–7) excited by a disturbed force. f is the active force of the
absorber.
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Fig. 9. Mean square vibration amplitude, ðρAω2
1=LÞ

R L
0 Wðx; jωÞ=PðjωÞ
�� ��2dx, of the simply-support beam with a dynamic vibration absorber in Fig. 4. μ¼0.2.

—— Case 4 [10]; ––––Case 5 [13].
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ka ¼ � mkω2 k�a�mω2
� �

k�a�mω2
� �2þ bωð Þ2

and ca ¼ � mkbω2

k�a�mω2
� �2þ bωð Þ2

(8b)

Eq. (8b) shows that for absorber Case 4, ka 0ð Þ ¼ 0 and ca 0ð Þ ¼ 0. Therefore, this type of absorber has no effect to the stiffness
and damping of the beam at low excitation frequencies. Moreover, ka 1ð Þ ¼ k and ca 1ð Þ ¼ 0, indicating that this type of
absorber affects the stiffness but has no impact on the damping for the high frequency modes of the beam with the absorber.

Absorber Case 5 proposed by Cheung et al. [13] with active force f ¼ aw xað Þ is considered and compared to Case 4 in the
following. The counteracting force Fa, ka ωð Þ and ca ωð Þ of Case 5 are derived in Appendix C written as

Fa ¼ �ms2 csþkþað Þ
ms2þcsþk

W xað Þ; (9a)

ka ¼ �mω2 kþað Þ k�mω2
� �þ cωð Þ2

k�mω2
� �2þ cωð Þ2

and ca ¼
mcω2 mω2þa

� �
k�mω2
� �2þ cωð Þ2

(9b)

Eq. (9b) shows that for absorber Case 5, ka 0ð Þ ¼ 0 and ca 0ð Þ ¼ 0, so this type of absorber has no effect on the stiffness and
damping of the beam at low excitation frequency. Moreover, ka 1ð Þ ¼ kþa�ðc2=mÞ and ca 1ð Þ ¼ c, suggesting that the
absorber brings about stiffness as well as damping effects to the higher order resonances of the beam with the absorber.

The numerical examples in the previous section are used for illustrating the effect of the hybrid absorber Cases 4 and 5 to
the untargeted vibration modes of the beam in the following. The hybrid absorber Case 4 or 5 is attached at xa ¼ 0:5 m of the
beam as shown in Fig. 8. The frequency spectra of the mean square vibration amplitude of the beam with absorber Cases 4
and 5 are calculated according to the theories derived in Refs. [10,13] and plotted in Fig. 9. The absorbers are optimized
according to H1 criteria and tuned at the first natural frequency of the beam. Fig. 9 shows that both Cases 4 and 5 designs
provide good vibration suppression at the tuned vibration mode of the beam. However, only Case 5, but not Case 4, has
observable damping effect at the higher order resonances of the beam with the absorber.

The mean square responses at resonances from mode 2 to mode 5 of the beam, the equivalent stiffness and damping
coefficient are calculated according to Eqs. (2b), (8b) and (9b) respectively and listed in Table 3 for illustration of the
dynamic effects of the two absorbers to the untargeted vibration modes of the beam. As shown in Table 3, absorber Case 4
creates very little damping effect to the beam at high frequencies and therefore the resonant response at higher order



Table 3
Vibration amplitude, equivalent stiffness and damping coefficient of hybrid vibration absorbers (Cases 4 and 5) frommodes 2 to 5 with H1 optimum tuning
[10,13].

Hybrid vibration absorber (Case 4) Hybrid vibration absorber (Case 5)

ρAω1
2

L

R L
0

W
P

�� ��2dx ka
ρAω2

1

ca
ρAω1

ρAω1
2

L

R L
0

W
P

�� ��2dx ka
ρAω2

1

ca
ρAω1

Mode 2 at 9 Hz 4.380 2.704 0.066 0.254 5.921 0.755
Mode 3 at 25 Hz 3.826 2.526 0.007 0.057 5.919 0.706
Mode 4 at 49 Hz 0.355 2.507 0.002 0.021 5.919 0.700
Mode 5 at 81 Hz 0.329 2.503 0.001 0.010 5.919 0.699

Fig. 10. Frequency responses of dimensionless equivalent stiffness ka=ρAω2
1 and damping coefficient ca=ρAω1 of (Case 4 ———) according to Eq. (8b) and

(Case 5––––) according to Eq. (9c), respectively.
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modes is much higher than that using absorber Case 5. This comparison shows that absorber Case 5 would be more suitable
than Case 4 to damp down high frequency vibration of a multi degree-of-freedom vibrating structure under broadband
excitation.

The equivalent stiffness and damping of absorber Cases 4 and 5 to those of Case 1, i.e. ka ωð Þ and ca ωð Þ, are calculated
using Eqs. (8b) and (9b) respectively and plotted in Fig. 10 to show the stiffness and damping effects of these absorbers on
the beam at different vibrating frequencies. Fig. 10 shows that absorber Case 5 imposes more significant stiffness and
damping effects than Case 4 absorber does at both high frequencies and low frequencies.

Two other reported hybrid vibration absorbers (Cases 6 and 7 in Table 1) are analysed using the same approach. The
counteracting force Fa, equivalent stiffness ka ωð Þ and damping coefficient ca ωð Þ of these two types of absorber are derived in
Appendices D and E, respectively. Based on the derived ka ωð Þ and ca ωð Þ, it is found that both Cases 6 and 7 provide stiffness
and damping effects to the primary structure at high vibration frequency but no effect at low frequency. A summary of these
analysis results is listed in Table 4 for comparison.

Table 4 shows that both ka 0ð Þ and ca 0ð Þ of all considered absorbers (Cases 2–7) are zeroes. It means all these six absorber
designs have no or little stiffness and damping effects on the primary structure at low frequencies. On the other hand, all
these absorbers have ka 1ð Þa0 and therefore can shift the high order resonant frequencies of the primary structure.
Absorber Cases 2, 5–7 have ca 1ð Þa0 so these absorbers can damp down the high order resonant responses of the primary
structure. The hybrid absorber Cases 4–7 may provide negative restoring forces to the primary structure if ka ωð Þ or ca ωð Þ is
negative and may cause unstable vibration of the primary structure. As shown in Table 4, ka ωð Þ of all hybrid absorber Cases
4–7 may become negative depending on the excitation frequency ω and other parameters of the absorber. ca ωð Þ of
absorbers Cases 6 and 7 may become negative depending on the excitation frequency ω and other parameters of the
absorber. The parameter values of these absorbers must be chosen carefully to prevent unstable vibration of the primary
structure. The proposed method therefore provides an easy way for checking of the stability in the hybrid vibration absorber
design.
3. Conclusion

A subsystem approach is proposed for the analysis of the added stiffness and damping effects of different types of
dynamic vibration absorbers to a MDOF primary structure to which they are attached. Six common designs, including two



Table 4
Equivalent stiffness and damping coefficient of the vibration suppression device at ω-0 and ω-1.

Case Vibration suppression device Refs. Equivalent ka and ca to Case 1 ka 0ð Þ ca 0ð Þ ka 1ð Þ ca 1ð Þ

1

ka ca

w

[1] k c k c

2
wa

w

[1–4,14,19–21]
ka ωð Þ ¼ �mkω2 k�mω2ð Þþm cω2ð Þ2

k�mω2ð Þ2 þ cωð Þ2

ca ωð Þ ¼ m2cω4

k�mω2
� �2þ cωð Þ2

0 0 k� c2
m

c

3

wa

w

[5–9] ka ωð Þ ¼ �mkω2 k�mω2ð Þþk cωð Þ2

k�mω2ð Þ2 þ cωð Þ2

ca ωð Þ ¼ k2c

k�mω2
� �2þ cωð Þ2

0 0 k 0

4

f

f

w

wa
[10,11] ka ¼ � mkω2 k�a�mω2ð Þ

k�a�mω2ð Þ2 þ bωð Þ2

ca ¼ mkbω2

k�a�mω2
� �2þ bωð Þ2

0 0 k 0

5

f

f

w

wa
[13] ka ¼ �mω2 kþað Þ k�mω2ð Þþmc2ω4

k�mω2ð Þ2 þ cωð Þ2

ca ¼
mcω2 mω2þa

� �
k�mω2
� �2þ cωð Þ2

0 0 kþa� c2
m

c

Y.L. Cheung et al. / Journal of Sound and Vibration 342 (2015) 75–89 85



Table 4 (continued )

Case Vibration suppression device Refs. Equivalent ka and ca to Case 1 ka 0ð Þ ca 0ð Þ ka 1ð Þ ca 1ð Þ

6

f

f

wa

w

[12] ka ¼ �mω2 kþað Þ k�mω2ð Þþmcω4 bþ cð Þ
k�mω2ð Þ2 þ cωð Þ2

ca ¼
mcω2 mω2þa

� ��mbω2 k�mω2
� �

k�mω2
� �2þ cωð Þ2

0 0 kþa� c bþ cð Þ
m

bþc

7

f

f

w

wa
[15] ka ¼ �mω2 k�aω2ð Þ k�mω2ð Þþmc2ω4

k�mω2ð Þ2 þ cωð Þ2

ca ¼ mcω4 m�að Þ
k�mω2
� �2þ cωð Þ2

0 0 1 c m�að Þ
m
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passive and four active–passive absorbers found in literature are analysed. Based on the proposed analysis method, some
new characteristics of the absorbers are revealed. The first one is that all absorbers considered have zero or very little
stiffness and damping effects to the primary system at vibrating frequencies lower to the tuned frequency of the absorber.
This finding shows that the absorbers considered only suitable to be used to suppress the first or low order vibration mode
of the primary system or else the primary system will have strong resonant vibration at those low order mode. This
limitation of the absorbers concerned has not been pointed out explicitly in other research reported found in the literature.
This finding provides new insights to common vibration absorbers reported in literature and it helps engineers understand
the limitation of common DVAs when they want to apply them for solving vibration problems.

The second finding based on the proposed comparison is the damping effect to the primary system generated from the
DVAs concerned at frequency higher than the tuned frequency of the DVA. Analyses show that the standard design of
passive absorber (Case 2) can provide additional damping to the primary structure at high frequency but the variant design
of passive absorber (Case 3) cannot. In the analysis of the four active–passive absorbers (Cases 4–7), it is found that three
designs of active–passive absorbers (Cases 5–7) can provide additional damping to the primary structure at high frequency
but the design of Case 4 cannot. The proposed analysis approach provides new insight to common designs of DVA found in
the relevant literature.

The third finding based on the proposed comparison is the added negative stiffness and damping effects of active–
passive vibration absorbers (Cases 4–7) leading to unstable vibration of the primary system. As shown in Table 4, the added
stiffness, ka ωð Þ of all hybrid absorber Cases 4–7 may become negative depending on the excitation frequency ω and other
parameters of the absorber. The added damping, ca ωð Þ of absorbers Cases 6 and 7 may become negative depending on the
excitation frequency ω and other parameters of the absorber. The proposed analysis approach provides a tool to help the
design of the active element in the active–passive vibration absorbers.
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Appendix A. (Case 3)

Case 3 Variant vibration absorber [5–9]
The equation of the motion can be written as

m €wa ¼ �k wa�wðxaÞð Þ�c _wa (A1)



Y.L. Cheung et al. / Journal of Sound and Vibration 342 (2015) 75–89 87
f a ¼ k wa�w xað Þð Þ (A2)

Performing Laplace Transformation on Eqs. (A1) and (A2), we may write

Wa

W xað Þ ¼
k

ms2þcsþk
(A3)

Fa ¼ k Wa�W xað Þð Þ (A4)

Using Eqs. (A3) and (A4) we may write

Fa
W xað Þ ¼ �k ms2þcs

� �
ms2þcsþk

(A5)

At steady state, we may replace s in Eq. (A5) by jω and write

Fa
W xað Þ ¼ �k �mω2þ jcω

� �
k�mω2þ jcω

(A6)

Fa ¼ ��mkω2 k�mω2
� �þk cωð Þ2

k�mω2
� �2þ cωð Þ2

W xað Þ

� jω
k2c

k�mω2
� �2þ cωð Þ2

W xað Þ (A7)

Comparing Eq. (2a) with (A7) above, the stiffness and damping of absorber Case 3 equivalent to Case 1 may be written
respectively as

ka ¼
�mkω2 k�mω2

� �þk cωð Þ2

k�mω2
� �2þ cωð Þ2

(A8)

ca ¼ k2c

k�mω2
� �2þ cωð Þ2

(A9)

Appendix B. (Case 4)

Hybrid dynamic vibration absorber [10] with active force f ¼ awa�b _wa and c¼ 0. The equations of motion may be
written as

m €wa ¼ �k wa�w xað Þð Þþawa�b _wa (B1)

f a ¼ k wa�w xað Þð Þ�awaþb _wa (B2)

Performing Laplace Transformation on Eqs. (B1) and (B2), we may write

ms2þbsþk�a
� �

Wa ¼ kW xað Þ (B3)

Fa ¼ �ms2Wa (B4)

Using Eqs. (B3) and (B4) we may write

Fa
W xað Þ ¼ � mks2

ms2þbsþk�a
(B5)

At steady state, we may replace s in Eq. (B5) by jω and write

Fa ¼
mkω2

k�a�mω2þ jbω
W xað Þ

¼ mkω2 k�a�mω2
� �

k�a�mω2
� �2þ bωð Þ2

W xað Þ� jω
mkbω2

k�a�mω2
� �2þ bωð Þ2

W xað Þ (B6)

Comparing Eq. (2a) with (B6) above, the stiffness and damping of absorber Case 4 equivalent to Case 1 may be written
respectively as

ka ¼ � mkω2 k�a�mω2
� �

k�a�mω2
� �2þ bωð Þ2

(B7)
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ca ¼
mkbω2

k�a�mω2
� �2þ bωð Þ2

(B8)

Appendix C. (Case 5)

Hybrid dynamic vibration absorber [13] with active force f ¼ aw xað Þ. The equations of motion may be written as

m €wa ¼ �k wa�w xað Þð Þ�c _wa� _w xað Þð Þþ f (C1)

f a ¼ k wa�w xað Þð Þþc _wa� _w xað Þð Þ� f (C2)

Performing Laplace Transformation on Eqs. (C1) and (C2), we may write

Fa ¼ �ms2 csþkþað Þ
ms2þcsþk

W xað Þ (C3)

At steady state, we may replace s in Eq. (C3) by jω and write

Fa ¼
mω2 kþað Þ k�mω2

� �þ cωð Þ2

k�mω2
� �2þ cωð Þ2

W xað Þ

� jω
mcω2 mω2þa

� �
k�mω2
� �2þ cωð Þ2

W xað Þ (C4)

Comparing Eq. (2a) with (C4) above, the stiffness and damping of absorber Case 5 equivalent to Case 1 may be written
respectively as

ka ¼ �mω2 kþað Þ k�mω2
� �þ cωð Þ2

k�mω2
� �2þ cωð Þ2

(C5)

ca ¼
mcω2 mω2þa

� �
k�mω2
� �2þ cωð Þ2

(C6)

Appendix D. (Case 6)

Hybrid dynamic vibration absorber [12] with active force f ¼ aw xað Þþb _w xað Þ. The equations of motion may be written as

m €wa ¼ �k wa�w xað Þð Þ�c _wa� _w xað Þð Þþ f (D1)

f a ¼ k wa�w xað Þð Þþc _wa� _w xað Þð Þ� f (D2)

Performing Laplace Transformation on Eqs. (D1) and (D2), we may write

Fa ¼ �ms2 bþcð Þsþkþað Þ
ms2þcsþk

W xað Þ (D3)

At steady state, we may replace s in Eq. (D5) by jω and write

Fa ¼
mω2 kþað Þ k�mω2

� �þmc bþcð Þω4

k�mω2
� �2þ cωð Þ2

W xað Þ

þ jω
mω2 b k�mω2

� ��c mω2þa
� �� �

k�mω2
� �2þ cωð Þ2

W xað Þ (D4)

Comparing Eq. (2a) with (D4) above, the stiffness and damping of absorber Case 6 equivalent to Case 1 may be written
respectively as

ka ¼ �mω2 kþað Þ k�mω2
� �þmc bþcð Þω4

k�mω2
� �2þ cωð Þ2

(D5)

ca ¼
mω2 c mω2þa

� ��b k�mω2
� �� �

k�mω2
� �2þ cωð Þ2

(D6)
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Appendix E. (Case 7)

Hybrid dynamic vibration absorber [15] with active force f ¼ a €w xað Þ. The equations of motion may be written as

m €wa ¼ �k wa�w xað Þð Þ�c _wa� _w xað Þð Þþ f (E1)

f a ¼ k wa�w xað Þð Þþc _wa� _w xað Þð Þ� f (E2)

Performing Laplace Transformation on Eqs. (E1) and (E2), we may write

Fa ¼ �ms2 as2þcsþk
� �

ms2þcsþk
W xað Þ (E3)

At steady state, we may replace s in Eq. (E3) by jω and write

Fa ¼
mω2 k�aω2

� �
k�mω2
� �þmc2ω4

k�mω2
� �2þ cωð Þ2

W xað Þ

þ jω
mcω4 a�mð Þ

k�mω2
� �2þ cωð Þ2

W xað Þ (E4)

Comparing Eq. (2a) with (E4) above, the stiffness and damping of absorber Case 7 equivalent to Case 1 may be written
respectively as

ka ¼ �mω2 k�aω2
� �

k�mω2
� �þmc2ω4

k�mω2
� �2þ cωð Þ2

(E5)

ca ¼
mcω4 m�að Þ

k�mω2
� �2þ cωð Þ2

(E6)
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