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Abstract

A general approach for the online damage detection of laminated composite shells partially filled with fluid (LCSFF) is proposed in
this paper. Based on advanced composite damage mechanics and the interaction between the fluid and the composite shell, a finite ele-
ment (FE) model, is first established to simulate the structural response of LCSFF with damage. Piezoelectric patches are used as sensors
and actuators to realize automatic damage detections in this FE model. The FE model is validated using structural natural frequencies
obtained from experiments. The change in the energy spectrum of the decomposed wavelet signals of structural dynamic responses
between the intact and damaged structures is used as the damage index due to its high sensitivity to the structural damage status.
The non-linear mapping relationships between the structural damage index and various damage status of the LCSFF are established
using an artificial neural network (ANN) trained with numerical structural dynamic response data. Results show that the general
approach proposed in this paper can successfully identify the damage status of LCSFF with satisfactory accuracy.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Composite shells, either empty or partially filled with
fluid, have been extensively used in various sectors of engi-
neering and industry, e.g. aerospace, civil engineering, mar-
ine, machine, petrochemical engineering and nuclear power
generation. Damage such as cracks or delamination in such
shells is inevitable due to a number of factors such as aging,
impact, fatigue and chemical corrosion during their service.
This usually causes serious fluid leakage problems, leading
to catastrophes and economic losses. The automatic detec-
tion of such damages in LCSFF is therefore crucial to the
safety and cost-effective operation of various composite
pipelines and vessels. Therefore, it is necessary to develop
a set of feasible and reliable strategy for the online struc-
tural damage detection using limited number of sensors.
Some of the existing actuating and sensing techniques for
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obtaining structural damage information and signal analy-
sis are unfortunately too complex to allow an automatic
monitoring and detection of structural damages, since in
many cases, manual installation and inspection are usually
required, and the actuators and sensors are sometimes
bulky. For some devices, such as airplanes and spacecraft
during flight, chemical engineering facilities located in poi-
sonous or harmful environments and underground pipe-
lines, which are deprived of easy access, it is very difficult
to obtain in situ structural damage information. In this
regard, the recently developed concept of smart structures
offers new possibilities.

Any localized damage in a structure reduces its stiffness,
which in turn reduces the natural frequencies and alters the
vibration modes of the structure. During the past two dec-
ades, extensive researches have been conducted in the area
of damage detection based on structural dynamic charac-
teristics using different algorithms and useful databases
[1]. Damage modeling in composite structures has been
attempted by various researchers in the past. The latest
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effort includes a generalised laminate model featuring both
weak interfacial bonding and local delamination by Shu
[2]; a plasticity model coupled with the damage and identi-
fication for carbon fibre composite laminates by Boutaous
et al. [3] and a general FEM model by Yan et al. [4]. As far
as the damage index is concerned, a good summary on
vibration-based model-dependent damage identification
and health monitoring approaches for composite structures
can be found in Zou et al. [5]. Araújo dos Santos developed
a damage identification technique based on frequency
response functions (FRF) sensitivities for laminated struc-
tures [6]. Non-linear elastic wave spectroscopy was adopted
for the identification of impact damage in a sandwich plate
by Meo and Zumpano [7]. Damage detection based on the
structural dynamic responses has also been extensively
investigated [8,9]. In terms of acquiring and synthesizing
information on structural damage status from damage
index, owing to their excellent pattern recognition capabil-
ity, soft computing techniques such as the neural networks
[10] and genetic algorithm [11] became very popular in
establishing the non-linear mapping relationships between
the structural damage index and various damage statuses.
Since it is rather difficult to establish an accurate dynamic
model for various complex industrial structures, the non-
parameter methods based on measured vibration data also
arouse extensive interests. In this regard, Staszewski [12]
investigated the intelligent signal processing for damage
detection in composite materials. Specific techniques such
as Lamb wave methods have also been explored [13].

So far, however, most of the vibration-based methods
reported in the literature only applied to simple beam-like,
plate or truss structures. While a study about the impact
response and damage in laminated composite cylindrical
shells has been carried out by Krishnamurthy et al. [14],
works on online automatic damage detection for LCSFF
using methods based on structural dynamics can scarcely
be found. In addition, the presence of the fluid and its cou-
pling to the structure in the LCSFF significantly increase
the complexity of the problem in terms of both modeling
and analysis.

In this paper, an effective damage detection approach
for LCSFF is presented. Based on the fluid–structure inter-
action theory, as well as advanced composite damage
mechanics, a dynamic finite element (FE) model of LCSFF
is established for carrying out the numerical experiments.
The model is then validated using the measured structural
natural frequencies. Two embedded piezoelectric patches,
one acting as an actuator and the other as a sensor, are sim-
ulated in this FE model to obtain structural dynamic
responses. The change in energy spectrum of the decom-
posed wavelet signals of structural dynamic responses [8]
is selected as the damage index. Analyses on damage indi-
ces of the LCSFF with different fluid surface levels (FSL),
ranging from empty to full, show that the selected damage
index is effective for composite vessels filled with fluid.
Finally, an ANN is trained to further verify the effective-
ness of the adopted damage index. It is shown that the
ANN can identify the structural damage status of LCSFF
with satisfactory accuracy.

2. Finite element model

2.1. Fluid–structural interaction model

The equation of motion for a linear structure can be
expressed in the following general form:

½M s�f€ug þ ½Cs�f _ug þ ½Ks�fug ¼ fF ag ð1Þ

where [Ms], [Cs] and [Ks] are the structural mass, damping
and stiffness matrices, respectively. f€ug, f _ug and {u} are the
nodal acceleration, velocity and displacement vectors,
respectively. {F a} is the applied load vector.

The fluid (water) contained in the LCSFF is assumed to
comply with the following assumptions:

1. the fluid is static without sloshing and mean flow;
2. the mean density and pressure are uniform throughout

the fluid;
3. the fluid is compressible (density changes due to pressure

variations); and
4. the fluid is inviscid with no viscous dissipation.

Then the fluid momentum (Navier–Stokes) and continu-
ity equations can be simplified to get the discretized wave
equation as follows:

½M f �f€P eg þ ½Cf �f _P eg þ ½K f �fP eg þ qf ½Re�Tf€ug ¼ 0 ð2Þ

where [Mf], [Cf] and [Kf] are the fluid mass, damping and
stiffness matrices, respectively. Pe is the nodal pressure vec-
tor; qf the mean fluid density; qf[Re] the coupling mass ma-
trix (at fluid–structure interface) which is given by

qf ½Re� ¼ qf

Z
s

fN 0gfNgTfngdS ð3Þ

where {N 0} is the element shape function for displacement
components u, v, and w (obtained from the structural ele-
ment); {n} the normal at the fluid boundary; {N} the ele-
ment shape function for pressure; S the surface where the
derivative of pressure normal to the surface is applied.

In order to fully describe the fluid–structure interaction,
the fluid loading acting at the interface should be added to
Eq. (1) as:

½M s�f€ug þ ½Cs�f _ug þ ½Ks�fug ¼ fF ag þ fF pr
e g ð4Þ

in which fF pr
e g is the fluid loading vector exerted on the

interface S, which can be obtained by integrating the pres-
sure over the area of the surface:

fF pr
e g ¼

Z
S
fN 0gfngP dS ð5Þ

The finite element approximate function P for fluid pres-
sure is given by

P ¼ fNgTfP eg ð6Þ



Fig. 1. Model of a composite shell partially filled with fluid.
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Combining Eqs. (5) and (6) yields

fF pr
e g ¼

Z
S
fN 0gfNgTfngdSfP eg ð7Þ

By comparing the integral in Eq. (7) with the definition of
coupling mass matrix (at fluid–structure interface) qf[Re] in
Eq. (3), it becomes clear that:

fF pr
e g ¼ ½Re�fP eg ð8Þ

Then, substitution of Eq. (8) into Eq. (4) results in the
structural elemental equation of motion:

½M s�f€ug þ ½Cs�f _ug þ ½Ks�fug � ½Re�fP eg ¼ fF ag ð9Þ
Eqs. (2) and (9) provide a complete set of discretized finite
element equations for the fluid–structure interaction prob-
lem and can be written in an assembled form as:

½M s� ½0�
½M fs� ½M f �

� � f€ug
f€P eg

� �
þ
½Cs� ½0�
½0� ½Cf �

� � f _ug
f _P eg

� �

þ ½Ks� ½K fs�
½0� ½K f �

" #
fug
fP eg

� �
¼
fF ag
f0g

� �
ð10Þ

where [Mfs] = qf[Re]
T and [Kfs] = �[Re].

2.2. Verification of the FE model

The validity of this FE model is verified using measured
natural frequencies. The verification consists of two parts.

(1) Using the present FE model, a typical clamped-free
thin wall steel cylindrical storage tank partially filled with
water is simulated. Results are compared with the numeri-
cal and experimental results reported in Ref. [15]. The steel
cylindrical shell has a mean radius R = 36 mm, wall thick-
ness t = 1.5 mm and length L = 231 mm. Its material prop-
erties are: Young’s modulus E = 205 GPa, Poisson’s ratio
m = 0.3 and density q = 7800 kg/m3. The shell is filled with
water up to a level H (see Fig. 1). The lowest 10 natural fre-
quencies for H/L = 0.697 are considered. Results acquired
by experiment, numerical simulation in Ref. [15] and the
present numerical simulation are listed in Table 1 as f1, f2

and f3, respectively. Errors of the two numerical simulation
results with respect to experimental results are also calcu-
lated, and listed as e21 and e31 in Table 1, respectively. Since
the natural frequencies of some lower order modes of the
shell structure are highly sensitive to the boundary condi-
tions set in the FEM model, which is very difficult to
achieve in experiments, errors between the experimentally
measured and numerically simulated data are relatively
large for some modes. Nevertheless, the present model
agrees reasonably well with the experimental data. In gen-
eral its accuracy seems to exceed that of Ref. [15]. It can be
concluded that the FEM program used in this study is
accurate enough in dealing with fluid–structure interaction
problem.

(2) The experimental measurements of natural frequen-
cies of an empty laminated composite shell and LCSFF
were carried out. The dimensions of the LCSFF specimen
are: mean radius R = 36 mm, wall thickness t = 2 mm,
and length L = 280 mm (also shown in Fig. 1). The shell
is made of resin glass fibre with orthogonal layer (�45�/
45�)30, which has the following material characteristics:
E1 = 47.518 GPa, E2 = 4.588 GPa, G12 = 2.10 GPa, l12 =
0.4495, l21 = 0.0434, and q = 1860 kg/m3. The FE model
of the wall of this LCSFF consists of 460 (23 · 20) eight-
node shell elements with three degrees of freedom (DOF)
at each node [16,17]. The FE model of the bottom of this
LCSFF consists of 62 shell elements of the same type. For
the LCSFF partially filled with water (H/L = 0.5678) 806
3-D fluid elements [18] are used. The dimension and mesh-
ing of the LCSFF model are shown in Fig. 1.

During experiment, the LCSFF specimen was put on a
large piece of soft sponge to achieve free boundary condi-
tions. The frequency response function was measured using
a Brüel & Kjær (B&K) 2035 Signal Analyzer Unit. The
structure was excited by a B&K 8206 impact hammer
and the responses were measured by B&K 4397 piezoelec-
tric deltaShear accelerometers connected to a B&K Charge
Amplifier Type 2635 (see Fig. 2).

The measured magnitudes of the frequency response
function for empty shell and shell partially filled with water
(H/L = 0.5678) are shown in Fig. 3. It can be seen that the
dynamic property of the shell changes with the contained
water. It is obvious that the resonant frequencies decrease
as the water level H/L increases due to the mass loading
effect of the fluid. The measured and computed natural fre-
quencies for H/L = 0 and 0.5678 are tabulated in Tables 2



Table 1
Natural frequencies of the cylindrical shell filled with water, H/L = 0.697

Experimental results [15],
f1 (Hz)

FEM results [15],
f2 (Hz)

e21 (%) f2�f1

f1

��� ���%� �
FEM results using present model,
f3 (Hz)

e31 (%) f3�f1

f1

��� ���%� �

522 543.1 4.042 525.43 0.657
582 672.7 15.584 625.29 7.438
798 806 1.003 802.45 0.558

1196 1188.4 0.635 1227.3 2.617
1244 1253.2 0.740 1236.6 0.595
– 1407.4 – 1297.7 –
1394 1425.3 2.245 1456 4.447
1546 1553.8 0.505 1538.7 0.472
– 1679.7 – 1592 –

Brüel & Kjær (B&K) 2035 Signal Analyzer Unit  

B&K Charge Amplifier  Type  2635  

B&K 4397 piezoelectric deltaShear accelerometers 

B&K 8206 impact hammer 

Sponge

Shell

Fig. 2. Schematic diagram of the experimental set-up for LCSFF.
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Fig. 3. The measured frequency response function of the LCSFF with H/
L = 0 and 0.5678.

Table 2
Natural frequencies of the laminated composite cylindrical shell with
H/L = 0

Experiment results (Hz) FEM results (Hz) Error (%)

638 640.48 0.3716
1006 1019.2 1.2951
1712 1795.6 4.66

Table 3
Natural frequencies of the laminated composite cylindrical shell filled with
water with H/L = 0.5678

Experiment results (Hz) FEM results (Hz) Error (%)

422 424.84 0.668487
728 734.92 0.941599
954 984.72 3.119669

1336 1355.2 1.416765
1380 1401.6 1.541096
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and 3, respectively. Since the LCSFF under investigation is
axially symmetrical, all natural frequencies listed in Tables
2 and 3 are repeated natural frequencies, so only the odd
number order ones are listed. Table 2 shows a maximum
error of 4.66% for the first six natural frequencies for the
empty composite shell. Table 3 shows that the average
error is 1.537% and the maximum error is 3.12% for the
first 10 natural frequencies of the LCSFF with water level
H/L = 0.5678. Therefore, the agreement between numeri-
cal and experimental results is generally satisfactory. The
proposed FE model can provide enough accuracy in deal-
ing with fluid contained structures made of composite
materials.

2.3. Mathematical formulation of piezoelectric sensors

and actuators

Embedded and/or surface mounted piezoelectric patches
are widely used in online damage detection due to their
advantage in sensitivity, weight and volume. Based on pre-
vious numerical [8] and experimental work [19,20], simula-
tion on piezoelectric sensors and actuators in FE model is
feasible in numerical study of damage detection.

When piezoelectric patches are embedded into the com-
posite shell as sensors and actuators, the direct and con-
verse piezoelectric equations with respect to the reference
coordinate axes can be written as follows [21]

frPg ¼ ½QP�feg � ½e�
TfEg ð11Þ

fDg ¼ ½e�feg þ ½�e�fEg ð12Þ
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where {rP} and [QP] are the stress vector and the trans-
formed elastic stiffness matrix of the piezoelectric material,
respectively; {e} the strain vector; {E} the electric field vec-
tor; {D} the electric displacement vector; ½�e� the permittiv-
ity matrix and [e]T the transpose of [e]. The piezoelectric
stress coefficient matrix [e] is expressed in terms of the
strain coefficient matrix [d] as

½e� ¼ ½d�½QP� ð13Þ
A thin piezoelectric patch, polarized only in the thick-

ness direction, exhibits transversely isotropic properties in
the plane perpendicular to the thickness direction. Eqs.
(11) and (12) can then be written as

rx
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where E3 is the electric field intensity exerted on piezoelec-
tric materials in the thickness direction, and can be ex-
pressed as

E3 ¼
V 3ðtÞ

tp

ð16Þ

where V3(t) is the applied voltage and tp is the thickness of
the piezoelectric actuator.
3. Detection of structural crack damage

3.1. Crack damage and its effect on the stiffness of a
composite structure

In the FE model, the crack damage is simulated by mod-
ifying the elastic moduli of the damaged element. For com-
posite materials with crack damages, variations of local
elastic modulus can be calculated as follows [22]

E1 ¼ E0
1 þ 2x3ðC3 þ C6ðl0

12Þ
2 � C12l0

12Þ
E2 ¼ E0

2 þ 2x3ðC6 þ C3ðl0
21Þ

2 � C12l0
21Þ

l12 ¼ l0
12 þ x3

1�l0
12

l0
21

E0
2

ðC12 � 2C6l0
12Þ

l21 ¼ E2

E1
l12; l12 � l21

G12 ¼ E2

2ð1þl12Þ
; G23 ¼ G13 ¼ G12

9>>>>>>>>=
>>>>>>>>;

ð17Þ

where E1, E2, l12, l21 and G12 are the elastic moduli, Pois-
son’s ratios and shear modulus of the thin wall composite
shell with crack damage, respectively. E0

1, E0
2, l0

12, l0
12 and

G0
12 are the elastic moduli, Poisson’s ratios and shear mod-

ulus of the intact composite structure, respectively. C1–C12

are material coefficients independent of strains and dam-
age, but dependent on the composite configuration, i.e., fi-
bre geometry and orientations, fibre volume fraction, ply
stacking sequence, etc. These parameters can be deter-
mined by measuring the specimen made of the same com-
posite materials [22]. Let x3 be a variable representing
the crack damage status, which is related to the number,
length and width of the crack. It can be expressed as

x3 ¼ gc�ac
�bc

�f c ð18Þ
where gc is the crack density, which is defined as the crack
number in a unit area; �ac and �bc are the average length and
width of the crack, respectively, and �f c is an adjustment
coefficient, which has been discussed in Ref. [22].

For other types of damage in a resin glass fibre struc-
ture, such as delamination, the variations of local elastic
modulus can also be calculated using Eq. (17) with its cor-
responding material coefficients.

3.2. Index of damage

Generally speaking, changes in structural dynamic prop-
erties due to structural damage are very small. Yan and
Yam [8] pointed out that when the crack length in a com-
posite plate reached 1% of the plate length, the relative var-
iation of the structural natural frequencies was generally
about 0.01–0.1%. Therefore, using vibration modal param-
eters, e.g., natural frequencies, displacement or strain mode
shapes, and modal damping factors is generally ineffective
in identifying small and incipient structural damage. The
revelation of small and incipient damage in in-service struc-
tures has important applied values, because it can monitor
the occurrence and development of structural damage.
Therefore, a sensitive indicator needs to be found to show
the change of the response data caused by damage. Chui
[23] pointed out that the local singularity in a time-
sequence signal could be more clearly exhibited if the signal
is decomposed using wavelet transform. This idea has been
successfully applied to vibration-based structural damage
detection in many works [8,20,24–26]. When structural
vibration response signals in time domain are decomposed
into multiple sub-signals using wavelet transform, the
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change in each sub-signal corresponding to structural dam-
age may manifest notable difference. The percentage
change of energy spectra between the intact and damaged
structures is therefore taken as the feature index of struc-
tural damage. It has been observed that the energy spec-
trum of the decomposed wavelet signal obtained from
structural vibration responses can indicate the structural
damage status with higher sensitivity. Even the ratio of
the damage size to the total structural size retreats to the
order of 0.01–0.1%, the structural damage can still be
detected using energy spectrum variation obtained by
wavelet analysis [8]. So in the present study, the variation
of the energy spectrum of decomposed wavelet signal is
used as the index of damage.

The wavelet transform of a continuous vibration
response x(t) is defined as

W xða; bÞ ¼ ðjajÞ�
1
2

Z
R

xðtÞW� t � b
a

	 

dt ð19Þ

where b is the translation parameter; a the scale parameter;
x(t) the vibration response to be decomposed; W*(t) the
transforming function (mother wavelet); and Wx the calcu-
lated wavelet coefficients, which can be used to recompose
the original function x(t). The recomposed equation for
x(t) can be expressed as

xðtÞ ¼ 1

CW

Z þ1

�1

Z þ1

�1

1

a2
W xða; bÞW

t � b
a

	 

dadb ð20Þ

where CW ¼ 2p
Rþ1

0
ðjWðrÞjÞ2dr=r.
Fig. 4. Damage indices for the same dama
Various forms of wavelet base function W(t) have been
developed. One of the most useful practical methods for
signal decomposition is the wavelet packet analysis
(WPA) [27]. The WPA algorithm is as follows:

Let gn
j ðtÞ 2 Un

j , then gn
j ðtÞ can be expressed as

gn
j ðtÞ ¼

X
l

dj;n
l unð2jt � lÞ ð21Þ

In WPA decomposition algorithm, fdj;2n
l g and fdj;2nþ1

l g can
be calculated as follows:

dj;2n
l ¼

P
k

ak�2ld
jþ1;n
k

dj;2nþ1
l ¼

P
k

bk�2ld
jþ1;n
k

9>=
>; ð22Þ

and the formula for recomposing fdjþ1;n
l g using fdj;2n

l g and
fdj;2nþ1

l g is

djþ1;n
l ¼

X
k

hl�2kdj;2n
k þ gl�2kdj;2nþ1

k

� �
ð23Þ

The WPA method can adaptively choose the corre-
sponding frequency bandwidth according to the character-
istics of the signal to be analyzed, and the decomposed
sub-wavelet functions possess orthogonality in both
frequency and time domains.

Assuming that the original vibration response xðiÞ0;0ðtÞ at
the ith measurement location of a structure is decomposed
into xðiÞL;jðtÞ ðj ¼ 1; 2; . . . ; 2L�1Þ, with L being the selected
layer number of the wavelet tree, xðiÞ0;0ðtÞ can then be
expressed as
ge with different water surface levels.
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xðiÞ0;0ðtÞ ¼
X2L�1

j¼1

xðiÞL;jðtÞ ð24Þ

Let the energy of the jth order sub-signals of the intact
and damaged structures be U 0

L;j and U d
L;j, respectively. A

non-dimensional damage feature index vector can be com-
posed as follows:

V d ¼ fv1; v2; . . . ; v2L�1gT

¼ 1�
U d

L;1

U 0
L;1

; 1�
U d

L;2

U 0
L;2

; . . . ; 1�
U d

L;2L�1

U 0
L;2L�1

( )T

ð25Þ

Generally, different structural damage types, locations
and severities will match one by one with different damage
feature index vectors. Therefore, the element values of dif-
ferent damage feature index vector Vd can not only show
the differences between the intact and damaged structures,
but also indicate the changes of different structural damage
status.
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Fig. 5. Structure of a BP neural network for identification of crack length
and location.

Fig. 6. The error of BP neural network in the training process.
4. Damage index and damage identification of LCSFF by

ANN

4.1. Damage index for LCSFF

In this study the damage indices are expressed in terms
of the percentage changes in the energy spectrum of the
decomposed wavelet signals of structural dynamic response
due to damage. There is a crack in the LCSFF model with
a length �ac ¼ 3 mm and a width �bc ¼ 0:1 mm at location 6
as shown in Fig. 1. For this damaged shell the damage indi-
ces measured for twelve gradually increasing water surface
levels in the shell from H/L = 0 (empty shell) to H/L = 1
(fully-filled) are shown in Fig. 4. It can be seen that most
of the water-contained shells have larger damage index val-
ues than the empty shell. Therefore, compared with the
empty shell, the presence of fluid in the structure does
not reduce the sensitivity of the damage index.

It should also be noted that the locations of the sensors
and actuators are important for damage detection. For
shell with water lever 3, the absolute value of the damage
index is relatively small and is less than 10%, while it
reaches more than 500% for water lever 7. This suggests
that an optimization on the locations of sensors and actu-
ators is worthy of further study.

4.2. Identification of structural damage status by ANN

As an example, one ANN for LCSFF with H/
L = 0.5678 is designed and trained. The vibration
responses of 321 different cases are numerically simulated
using FEM, and in all these cases, H/L = 0.5678. These
321 cases include an intact LCSFF, LCSFFs with crack
damage at 80 different locations of the shell, each with four
different crack lengths (1–8% of the LCSFF height). Then,
damage indices of these 320 damage cases are obtained by
comparing the energy spectrum of the decomposed wavelet
signals for each case with that of the intact structure. From
these damage cases, six cases are selected as verification
samples, with their locations shown in Fig. 1. The other
314 damage cases are used as train samples. The mesh in
present FE model is regular. Then the elements in the shell
can be located by its row and column number. The row
number is counted from top to bottom of the model. The
column number is counted clockwise and the column con-
taining the sensor is selected as the first column. The row
and column number are unified by dividing them by 23
(the total row number) and 20 (the total column number),
respectively. The lengths of the cracks are expressed in per-
millage of the LCSFF height. One back propagation (BP)
neural network, possessing 32 inputs, one hidden layer with
16 nodes and three outputs, is designed (Fig. 5). The inputs
are 32 elements of the damage index, and the outputs are
the row and column number of the damaged element,
and the length of the crack. After trained with 314 samples
for 1142 epochs, the performance goal is achieved (Fig. 6).



Table 4
Identification of crack damage using the trained ANN (crack location and length)

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Row number of damage element (real) 6.000 6.000 11.000 18.000 18.000 21.000
Row number of damage element detected by ANN 6.088 6.054 11.222 18.382 18.215 21.171
Column number of damage element (real) 6 2 2 5 2 2
Column number of damage element detected by ANN 5.879 2.037 1.991 4.923 2.026 1.971
Crack length value (real) (%) 2.000 7.000 8.000 3.000 6.000 8.000
Crack length value detected by ANN (%) 2.014 7.031 8.152 3.044 5.988 8.119
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Results for six sets of verification samples obtained by
numerical simulation using FEM are listed in Table 4.
(The row and column numbers listed in Table 4 are con-
verted to their actual values by multiplying them by the
total numbers of row and column, respectively. The lengths
of cracks listed in Table 4 are converted to percentage of
the LCSFF height.) It shows that the identified crack status
is very close to the actual crack status.

5. Conclusions

In this paper a dynamic FE model of LCSFF is estab-
lished by considering the interaction between fluid and
the composite shell. Two piezoelectric patches embedded
into the composite shell, one serving as an actuator and
the other as a sensor, are included in the FE model for
obtaining the numerically simulated structural dynamic
responses. The advanced composite damage mechanics is
used to simulate the crack, and the change in energy spec-
trum of the decomposed wavelet signals of structural
dynamic responses is used as the damage index due to its
high sensitivity to structural damage. The reliability of
the model is verified using the experimentally measured
structural natural frequencies. Effects of fluid contained
in the composite vessel on structural damage index are
investigated. Damage detection using a BP neural network
for a LCSFF with H/L = 0.5678 is successfully carried out.
It shows that the general approach proposed in this paper,
including the use of smart elements, damage index and the
ANN, provides an effective tool for LCSFF damage detec-
tion applications.
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