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Vibroacoustic Modeling of 
Mechanically Coupled 
Structures: Artificial Spring 
Technique Applied to Light 
and Heavy Mediums 

This article deals with the modeling of vibrating structures immersed in both light 
and heavy fluids, and possible applications to noise control problems and industrial 
vessels containing fluids. A theoretical approach, using artificial spring systems to 
characterize the mechanical coupling between substructures, is extended to include 
fluid loading. A structure consisting of a plate-ended cylindrical shell and its enclosed 
acoustic cavity is analyzed. After a brief description of the proposed technique, a 
number of numerical results are presented. The analysis addresses the following 
specific issues: the coupling between the plate and the shell; the coupling between 
the structure and the enclosure; the possibilities and difficulties regarding internal 
soundproofing through modifications of the joint connections; and the effects of fluid 
loading on the vibration of the structure. © 1996 John Wiley & Sons, Inc. 

INTRODUCTION 

Structures submerged in a fluid medium have 
wide applications in the industrial market. Due 
to the interaction between the vibrating structure 
and the fluid motion, the majority of such prob­
lems require an analysis to take into consideration 
the mutual coupling between the structure and 
the fluid. Typical examples of such situations are 
structures surrounded by a heavy fluid and indus­
trial vessels containing a liquid. A similar situa­
tion arises in cases involving internal acoustic 
radiation produced by a vibrating structure. In 
such cases, the structural vibration and the pres­
sure field inside the enclosure form a complicated 
coupled system. This coupling process is illus-
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trated schematically in Fig. 1, where it is shown 
that three physical mechanisms, in the form 
of structural vibration, acoustic radiation, and 
fluid-structure interaction, have to be mutually 
accounted for. This obviously requires an appro­
priate modeling procedure. 

The so-called artificial spring technique, re­
cently developed by Cheng and Nicolas (1992a) 
and Yuan and Dickinson (1992), would seem to 
be an ideal tool for handling such problems. The 
technique was initially developed to study the 
free vibrations of mechanical coupled structures 
consisting of a number of components or sub­
structures. Cheng and Nicolas (1992a) studied a 
circular cylindrical shell closed at one end by a 
flexible plate, using artificial springs at the shell-
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FIGURE 1 Schematic diagram of the coupling 
process. 

plate junction to simulate the mechanical cou­
pling. At almost the same time, Yuan and Dickin­
son (1992) published an article dealing with 
straight and curved beams using the same idea. 
More recently, the technique has been applied to 
much more complex systems to assess the 
method from the point of view of vibration analy­
sis without any fluid coupling (Missaoui et aI., 
1996; Yuan and Dickinson, 1994). It was shown 
that the technique was quite convenient and effi­
cient in handling the mechanical coupling prob­
lem. It was found that, when using the Rayleigh­
Ritz method for analyzing such systems, the 
admissible functions should satisfy not only the 
geometrical boundary conditions but also the con­
tinuity with adjoining components, which is a 
quite difficult task. In the proposed approach, this 
continuity was automatically assured by permit­
ting the stiffness of the artificial springs to become 
very large compared to the stiffness of the system. 
Moreover, a suitable combination of spring stiff­
nesses makes it possible to simulate a large vari­
ety of intermediate coupling cases. 

The present article discusses the extension of 
the technique to vibroacoustic problems. As is 
well known, some of the most common methods 
for joined structures, such as the receptance 
method (Amizi, 1988) and the transfer matrix 
method (Irie, 1984), are restricted to vibration 
analysis. These methods soon become cumber­
some when one wishes to deal with radiation 
problems where the structure is coupled to the 
acoustic medium. Taking the plate-ended cylin­
drical shell as an example, we propose to extend 
the previous free vibration analysis to include the 
fluid loading from the enclosed cylindrical cavity. 
Both light and heavy fluids are considered. It is 
shown that the proposed modeling takes into ac­
count fluid-structure coupling. Numerical results 
are then presented to highlight the physical 
phenomena and provide guidelines for sound­
proofing. 

MODELING AND ANALYSIS 

Model of Closed Cylindrical Shell 

The model was initially established to study the 
cabin noise of an airplane. Preliminary tests on 
the airplane identified significant sources of me­
ch~nical excitation transmitted from the engines, 
which were attached directly to the aircraft body 
near the rear pressure bulkhead. Therefore, the 
aircraft fuselage and the bulkhead are considered 
to be the two main components affecting the cabin 
noise. The model investigated consists of a finite 
circular cylindrical shell closed at its left end 
(x = 0) by a flexible plate and at its right end 
(x = L) by a rigid cap (Fig. 2). Both the shell and 
the plate are assumed to be thin homogeneous 
structures. The whole structure is assumed to be 
supported initially by a shear diaphragm at each 
end. The excitations are unit point harmonic loads 
applied at arbitrary locations either on the shell 
or on the plate. 

Principle of Artificial Spring Technique 

The artificial spring technique was fully explained 
by Cheng and Nicolas (1992a) and Yuan and Dick­
inson (1992). Readers are referred to the previous 
works for more details. We recall very briefly the 
principle behind the technique. 

The classical Rayleigh-Ritz method is a pow­
erful approach for analyzing the free vibrations of 
structures. However, to ensure good simulation 
results, the trial functions must at least satisfy 
the geometrical boundary conditions associated 
with the translation and rotation (Meirovitch, 
1969). For complex structures, the so-called geo­
metrical boundaries require the continuity be­
tween all substructures at the various junctions. 
This requirement makes the choice of the trial 
functions very difficult. The use of artificial spring 

Plate 

FIGURE 2 Schematic diagram of the structure un­
der investigation. 
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Combined Structure Artificial Spring System 

FIGURE 3 Schematic represe ntat ion of the coupling 
modeling using the artificial spring system. 

sys tems at aj unct ion a llows one to overcome this 
difficulty. As shown in Fig . 3, a virtual set of 
di stributed spring systems is introduced at each 
junction and for every permitted degree of free­
dom . By allowing the spring stiffness to become 
very high compared to the stiffness of the compo­
nent s, one can approximate a rigid connection . 
The use of springs repl aces the geometrical conti­
nuity conditions by corresponding dynamic con­
ditions invol ving the strai n energy of the springs. 
As a result , the choice of the trial functions is 
simplified , because the latter only have to sati sfy 
the geometrical boundary conditions at the non­
connected regions. Thus, the c lass ical Ray leigh­
Ritz method can be applied, considering the 
spring system as a dyna mic element of the whole 
sys tem. Following the principles outlined above, 
we give a brief description of the mathematical 
formulation of the problem. Full deta il s can be 
found in the studies of Cheng and Nicolas (I 992a) 
and Cheng (1994) . 

Analysis of Structure 

The whole structure is divided into two compo­
nents connected by a set of a rtificia l springs. 
Translational and rotational springs, having, re­
spectively, distributed stiffnesses K and C, are 
added between the she ll and the plate along the 
junction edge . All spring cons tants are defined in 
the appropriate units of stiffness per unit length 
along the contour and are assumed to be constant. 

The she ll di splacements u, v, and ware then 
decomposed in terms of the eigenfunctions of a 
shear diaphragm supported shell as: 

I x :x: 3 

{U} 
V = ~o I~O I~I j~ A~lI1lt) TI~l1u(a , n, In , }) , 

~v ( 1) 

where TI~lI1j is the eigenvector of the shear dia­
phragm shell with n and In representing, respec-

tivel y, the circumferential and the longitudinal 
order , a indicating symmetric (a = I) or antisym­
metric (a = 0) mode , and } the type of mode 
(bending, twisting , extension-compress ion) ; the 
A~lI1lt) are the coefficients to be determined . 

The fl ex ural displacement of the plate wp is 
decomposed on a po lynomial basis : 

I 

wp = ~ ~ ~ B~1Il (t)A ~1I1 (a , n , Inp) , 
a =O 1/ = 0 mp=O P P 

A~1I1 (a , n, Inp) = sin(ne + mrI 2)(rl a) l1Ip, (2) 
p 

where n , Inp, and a are , respective ly, the circum­
ferential order, the radial order, and the symmet­
ric index ; a is the radius of the plate; and the 
B~lI1jp (t) are the coefficients to be dete rmined . 

We then calculate the Hamiltonian H of the 
whole sys tem . 

where to and tl are arbitrary times; Tc and Tp 
and Ec and Ep are respectively the kinetic and 
potential energies of the cy lindrical she ll and the 
plate; Ek is the potentia l energy stored in the 
springs; and EF is the work done by the driving 
forces, including fluid loading from the cavity. 

The governing equation s of the plate-ended 
she ll a re obtained by appl ying the variational prin­
ciple to find the ex tremum of the Hamiltonian 
over the subspace of the previou s trial di splace­
ment functions sati sfying: 

oH = O. (4) 

Analysis of Cavity 

By neglecting the influence of the outer fluid me­
dium, the sound pressure inside the cavity Pc can 
be calculated by means of the Green's function 
G, with Neumann boundary conditions with 

where S I ' S2' p, and ware, respectively, the shell 
and plate area and the fluid density and the fre­
quency . The Green 's function G and the pressure 
Pc are then expanded in terms of the acoustic 
modes of the hard-walled cavity <PN leading to 
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x 

Pc = pe2 2: PNIMN, (6) 
N=\ 

with P N the coefficients to be determined, V the 
volume occupied by the cavity, and 8NM the Kro­
necker delta function. The second expression re­
flects the orthogonality of the acoustic modes. 

Inserting Eq. (6) into (5) and using the orthogo­
nality property of the acoustic modes yields a set 
of ordinary differential equations describing the 
internal sound pressure and the coupling with the 
structural vibrations. 

Coupling Equations 

The previous equations can be summarized as 
follows: 

{
ACl"} {FCl(s~el1)} nmJ nmj 

[S] ~:" = F~~late) (8) 

where [S] is the system matrix and the three right­
hand side terms are the generalized forces corre­
sponding to the decomposed terms of the shell 
and the plate. 

The coupling equations, Eq. (8), can then be 
resolved for the complete fluid-structure system. 

NUMERICAL RESULTS, DISCUSSION 
AND CONCLUSIONS 

Numerical results are presented for the average 
sound pressure level inside the cavity and for the 
quadratic velocity of the shell and the end plate. 
As far as shell response is concerned, only radial 
velocities are considered. The quadratic velocity 
is represented in terms of decibels referenced to 
5 * 10-8 m/s. The shell and the plate are assumed 
to have the same material properties as aluminum 
(Young's modulus, 7 * 1010 N/m2 ; density, 2.7 * 
103 kg/m3; and Poisson's coefficient, 0.3). The 
dimensions of the shell are L = 1.2 m and a = 
0.3 m. The thicknesses of the shell and the end 
plate were chosen to be the same and are equal 
to 3 mm. The input load, consisting of a unit point 
force, acted at fixed locations on the shell surface 
(x = 0.35 m) or the end-plate surface (r = 0.2 m). 
A damping factor of 1 % was used for both the 
structure and the cavity. Two nondimensional 

stiffness parameters are defined as: K = Ka 31Dp , 

C = Ca/Dp where Dp is the flexural rigidity of 
the plate. 

Figure 4 illustrates the three types of modes 
for the combined structure, using the so-called 
frequency parameter 0[' , defined as the ratio be­
tween the natural frequency of the structure and 
the ring frequency of the shell. The three types 
are referred to respectively as plate-controlled, 
shell-controlled, and coupled modes. It should be 
noted that the resulting motions are dominated 
by different components depending on the mode. 

One of the merits of the technique is its ability 
to use modal information on each substructure to 
accelerate the convergence speed compared with 
other classical numerical approaches (Cheng and 
Nicolas, 1992a). In the case under study, the rea­
son is believed to be twofold: for the shell, a 
"physical" base is used, in nature quite similar 
to the real structure (as far as the shell portion is 
concerned); for the plate, the boundary is uniform 
and homogeneous, although the expansion series 
is less physical. As pointed out by Pierre et al. 
(1987), irregularities present in structures may be 
a key factor in slowing down the convergence of 
the Rayleigh-Ritz procedure. In our case how­
ever, the shell-plate connection is uniform and 
symmetric, so this problem did not present itself. 

Figures 5 and 6 illustrate the average quadratic 
velocities of the structure with the excitation 
force applied to the shell and plate surface, re­
spectively. In the calculations, the plate is as­
sumed to be rigidly attached to the shell with 
K = C = 108. When the shell excited directly 
(Fig. 5), one can clearly identify the presence of 
shell-controlled modes and some coupled modes 
in the spectrum of the shell response. However, 
no plate-controlled modes are noticeable in this 
shell response spectrum. It is in the spectrum 
of the plate that the plate-controlled modes, to­
gether with shell-controlled and coupled modes, 
appear. As far as the response of the plate is 
concerned,_ we notice a relatively low level at low 
frequencies. Figure 6 provides similar informa­
tion except that the vibration is dominated by 
plate-controlled and coupled modes. Therefore, 
the coupling between the shell and the plate is 
generally weak at low frequencies. The vibration 
response of the substructure that is directly ex­
cited, is dominated by its own modes and coupled 
modes. Modes of every nature, that is to say 
plate-controlled, shell-controlled, and coupled 
modes, generally appear in the response spectrum 
of the substructure that is not directly excited. 
The shell-plate coupling becomes more notice-
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FIGURE 4 Three typical normal modes of the combined structure : (a) shell-controlled 
modes; (b) plate-controlled modes; (c) coupled modes . 
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FIGURE 5 Quadratic velocity of the structure with 
the shell subjected to a unit point load . 
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FIGURE 6 Quadratic velocity of the structure with 
the end plate subjected to a unit point load . 
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able at higher frequencies. To better illustrate 
the energy distribution between the shell and the 
plate, Fig. 5 and 6 are retreated. The quadratic 
velocity ratios between the shell and the plate in 
decibels are plotted in Fig. 7 for the two excitation 
cases used above. It shows that in both cases, 
the curves asymptotically approach the O-dB level 
indicating an egual distribution. 

Figure 8 presents the corresponding sound 
pressure levels inside the cavity when the driving 
force is applied either on the shell or the plate. 
It can be seen that cavity noise arises mainly from 
the directly excited substructure at low frequen­
cies. The sound pressure level inside the cavity 
is much higher when the excitation is applied to 
the end plate. The reason for this is that the plate 
modes generally couple well with the cavity 
modes; whereas the shell modes, although partici­
pating actively in the overall structure response, 
do not couple efficiently with the acoustic ones 
in this frequency range. The observed phenomena 
can be easily explained by inspecting the disper­
sion relation of the shell, plate, and cavity. Conse­
quently, from the soundproofing point of view, 
direct excitations on the plate should be avoided. 

The previous analysis was made for a particu­
lar configuration in which the critical frequency 
is higher than the ring frequency of the shell. 
If the ring frequency is higher than the critical 
frequency, resulting either from an increase of 
the shell thickness or a decrease of the radius of 
the shell, the conclusion concerning the vibration 
energy distribution should still be valid. As a word 
of caution, however, the radius changes may af­
fect the coupling between the structural modes 
and the cavity modes so that the internal acoustic 
field might be affected. Because different parame-
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FIGURE 7 Ratio between the quadratic velocity of 
the shell to that of the plate. 
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FIGURE 8 A verage sound pressure levels inside the 
cavity generated by the motion of the structure with 
the shell and the end plate, respectively, subjected to 
a unit point load. 

ters are involved in this case, a detailed parameter 
analysis is considered to be beyond the scope of 
this study. 

We will present a few numerical results also 
to illustrate the influence of the joint conditions 
between the shell and the plate on the generated 
cavity noise. 

Figure 9 shows the effects of the translational 
spring constant K on sound pressure levels inside 
the cavity with the plate subjected to a driving 
force. The results are presented in one-third oc­
tave bands. It can be seen that in the absence of 
the translational coupling, the structure radiates 
much less sound over a very large frequency 
range except at very low frequencies. This obser­
vation is consistent with the one made in a previ­
ous work (Cheng and Nicolas, 1992b) where the 
sound radiation to a cylindrical hard-walled cav­
ity by a single plate with various boundary condi-
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FIGURE 9 Average sound pressure level inside the 
cavity in one-third octave bands with two limiting 
shell-plate joint conditions in translation. 
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tions was investigated. Similar phenomena were 
observed in previous studies regarding the trans­
lational support of the plate. A detailed analysis 
showed that relaxing the translational support of 
the plate significantly reduces the radiation effi­
ciency of the plate modes and consequently, the 
generated noise. Figure 9 shows that the fact that 
the cylindrical wall is a flexural envelope does 
not fundamentally change this trend. In addition, 
reducing K reduces the plate-shell coupling via 
translation, so that the contribution of the shell 
radiation, although small in the present case, is 
also reduced. 

Figure 10 illustrates the effects of the rotational 
spring constant C, coupling the plate with the 
shell via a rotation along the edge. The noise 
levels are much less sensitive to changes in the 
rotational coupling C than those in K. Although 
small differences existed at low frequencies, the 
noise inside the cavity is not very sensitive to 
rotational coupling up to 700 Hz. Above 1,000 Hz, 
the noise level is reduced appreciably by reducing 
the rotational coupling. However, with a hard­
walled cylindrical cavity, Cheng and Nicolas 
(1992b) showed that no such trend was observed 
when softening the rotational fixation of the end 
plate; and it was shown that the radiation proper­
ties of the plate cannot be systematically im­
proved by changing the rotational supports, un­
like the translational case. It is therefore felt that 
the noise reduction obtained in the present case 
is due to the fact that by relaxing the rotational 
coupling, vibration levels of the shell are reduced 
and consequently, so is its sound radiation. A 
more elaborate investigation shows that the shell 
is indeed coupled to the plate, mainly through 
rotation. Similar investigations have been per-
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FIGURE 10 A verage sound pressure level inside the 
cavity in one-third octave bands with two limiting 
shell-plate joint conditions in rotation. 

formed with excitation loads applied to the shell 
surface. However, it appears that the changes in 
the coupling conditions in this case do not indicate 
general trends as in the case of plate excitations. 

From Fig. 9 and 10, we drew the following 
conclusions: when the excitations are applied to 
the shell, changing the joint conditions does not 
provide any systematic improvement as regards 
the radiated sound field inside the cavity. How­
ever, when the end plate is directly excited, re­
ducing the stiffness of the joint between the shell 
and the plate proves to be a good means to reduce 
cavity noise. Two different mechanisms are in­
volved: the reduction of the translational coupling 
along the longitudinal axis of the shell signifi­
cantly reduces the radiation efficiency of the plate 
modes and softening the rotational coupling re­
duces the mechanical energy transferred to the 
shell. In both cases, cavity noise is reduced. How­
ever, a relaxation of the translational coupling 
seems to give better results in terms of a greater 
noise reduction over a broader frequency band. 

The model is equally valid as a means of simu­
lating a fluid enclosed in a cylindrical vessel with 
end caps. An example is presented to show the 
influence of the fluid density. Retaining the case 
of a unit point driving force, Fig. 11 and 12 show, 
respectively, the structural response to a har­
monic input applied to the shell surface when the 
structure is filled with both light (air) and heavy 
(water) fluid. Several interesting points are worth 
mentioning. The first point is illustrated in Fig. 
11 which compares the vibration level of the 
structure containing air with the case when the 
fluid is absent. It shows clearly that the presence 
of the air, which is considered to be a light fluid, 
has very little influence on the dynamic behavior 
of the structure. At a few resonances, the vi bra-
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FIGURE 11 Quadratic velocity of the vessel in air 
and in vacuo. 
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FIGURE 12 Quadratic velocity ofthe vessel contain-
ing water. 

tion level of the structure seems to be slightly 
modified, indicating that the presence of the air, 
although light, has an influence in terms of mass, 
stiffness, and damping effect on the system. It 
can also be seen from Fig. 11 that the vibration 
level of the shell is much greater than that of the 
end cap. All the peaks emerging from the spectra 
are found to virtually coincide with the natural 
frequencies of the in vacuo structure, which 
clearly demonstrates that the struc;ture-air cou­
pling is extremely weak. The second point is that 
in the case ofthe structure containing water, Fig. 
12 shows that all the previous peaks are shifted 
significantly toward the low frequencies, proving 
that the coupling between the structure and the 
water is important and that the fluid engenders 
significant mass effects on the structure. In addi­
tion, due to the presence of the water, the vibra­
tion level of the end cap is brought to a compara­
ble level with that of the shell, which is the 
substructure being directly excited. This observa­
tion highlights the fact that the mechanical energy 
generated by the shell is transmitted to the end 
plate via the fluid. Consequently, the end cap is 
excited in a more significant manner. Lastly, by 
comparing Figs. 11 and 12, one can see that the 
presence of water in the enclosure reduces the 
vibration level of the shell and, generally, brings 
down the vibration level of the whole structure. 

CONCLUDING REMARKS 

The artificial spring technique was successfully 
applied to the vibroacoustic analysis of a closed 
cylindrical structure. The proposed formulation 
can be applied to cases where the structure is 
filled with either light or heavy fluids. Different 

examples were analyzed to illustrate the versatil­
ity of the approach. The method is simple to use 
when each subsystem is amenable to analysis us­
ing the Rayleigh-Ritz method. As a word of 
caution, it should be noted that the method can 
become cumbersome when the number of sub­
systems increases, resulting in a need for an in­
creasing number of spring systems. Also, the 
speed of convergence can be significantly slowed 
down by the presence of strong discontinuities or 
the lack of suitable physical trial functions. These 
issues will be addressed more specifically in our 
future work. 
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