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The radiation of sound from a point-driven circular plate into a hard-walled cylindrical 
enclosure is investigated. Emphasis is given on studying the effects of the boundary conditions 
of the plate, which are modeled as a continuous distribution of edge springs acting against both 
the deflection and the rotation of the contour of the plate. With this model, both classical and 
intermediate boundary cases can be simulated by adjusting the elastic stiffness of the springs. A 
coupled acoustoelastic formulation is developed following a variational approach, with the use 
of hard-walled cavity modes. In the analysis, the full interaction between the structure 
vibration and the internal cavity sound pressure is considered. Numerical results indicate that 
a significant reduction in noise inside the cavity can be obtained for a relatively wide frequency 
range by completely relaxing the translational support (zero deflection stiffness) of the plate. 
This is mainly due to a weakening of the modal radiation efficiency of the flexural modes of the 
plate. With an increase of the deflection stiffness on the contour of the plate, this beneficial 
frequency range is shifted to higher frequencies. It is hoped that the findings of the present 
work will be useful for practical predictions of airplane cabin noise emitted by the rear pressure 
bulkhead, as well as for noise control in some aerospace structures and mechanical systems 
involving cylindrical-shaped cavities. 

PACS numbers: 43.50.Lj, 43.40.Rj, 43.20.Tb 

INTRODUCTION 

The radiation of sound by vibrating structures into an 
acoustical enclosure has received a great deal of attention in 
the past 30 years. The problem is of considerable importance 
in many engineering applications, especially in the field of 
aerospace or automobile engineering, where the externally 
excited vibrating walls of vehicles induce a significant inter- 
nal sound field. In architectural acoustics, where a rectangu- 
lar room is usually involved, the minimizing of the internal 
noise level radiated by wall partitions is also one of the major 
applications. 

The problem is rather complex in nature because of the 
structure-cavity coupling. In order to reveal the fundamen- 
tal phenomena of the problem, scientists chose systems hav- 
ing a relatively simple geometry, among which the following 
configuration is often used: a rectangular plate backed by a 
rectangular cavity. This model was first investigated by 
Lyon I in 1963. In his work, the noise reduction for such a 
cavity-backed plate was investigated in a straightforward 
but approximate manner, since with a small cavity many 
assumptions were made regarding the plate-cavity coupling. 
Then, Dowell and Voss 2 studied the effect of the cavity on 
the natural frequencies of the plate. This phenomenon was 
confirmed by further investigations of Pretlove. TM More- 
over, he showed that the effects of shallow cavities on the 
vibration of a plate are not negligible. 

The problem was then investigated in more detail by 
many researchers such as Bhattacharya and Crocker, 5 
a> Present address: Mechanical Engineering Department, Universit• Laval, 

Quebec G 1K 7P4, Canada. 

Guy, 6'7 McDonald et al., 8 and Vaicaitis. 9 A general formu- 
lation of the structure-cavity interaction problem was given 
by Dowell et al. 1ø in 1977. Extensive work based upon 
Dowell's formulation followed' For example, Nar- 
ayanan11'12 considered the sound transmission properties of 
sandwich panels. The work of Cheng et al. 13 presented some 
theoretical and experimental results on the damping effects 
of the panel-cavity system. Pan eta/. 14'15 presented another 
analysis on a similar subject. 

This literature review shows that a large amount of 
work has been done, yet very little is known about the effect 
of the boundary conditions of the plate on the radiated sound 
field. In fact, most of the papers mentioned above dealt with 
simply supported plates. Only a few studies •'13 treated 
clamped plates, and the most detailed information available 
is that given by Narayanan et al., • who used a plate with 
two simply supported edges. Therefore, there is a lack of 
general formulation and understanding of the effects of 
boundary conditions. One of the most plausible reasons for 
this may be that these studies rely heavily on the knowledge 
of the in-vacuum normal modes of the plates, and the latter is 
known analytically only for some very special boundary con- 
dition cases. Many questions, however, concerning struc- 
tural boundary conditions are of great importance, and have 
to be answered' What are the effects of the classical bound- 

ary conditions of a cavity-backed structure (free, freely 
guided, simply supported, and clamped); what are the con- 
sequences of elastic support; finally, what are the guidelines 
to be followed for improving the structure-induced sound 
field inside the cavity? 
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In this paper we present an attempt to answer these 
questions with a point-driven circular plate exciting an en- 
closed cylindrical sound field. The choice of this configura- 
tion comes mainly from a practical motivation. In fact, the 
work reported in this paper is one step of a long-term re- 
search activity focusing on the cabin noise of airplanes 
powered by turbofan jet engines. Two main components en- 
closing the cabin are the fuselage skin and a circular rear 
pressure bulkhead (RPB), to which the engines are attached 
through a beamlike structure. Preliminary testings on the 
plane revealed that mechanical excitation was one of the 
main noise sources. Therefore the RPB, which is a circular 
platelike structure, may be a strong sound radiator. As a 
preliminary model, the plane cabin is considered as a cylin- 
drical cavity having an acoustically rigid wall (with infinite 
impedance). A thorough understanding of the effects of the 
boundary conditions of the RPB can, hopefully, help the 
engineer reduce the cavity noise. The work reported here 
does not purport to offer a general model for airplane cabin 
noise predictions. Instead, rather powerful procedures have 
already been established, such as the one reported by Pope. 16 
The interests of the present work are twofold: First, with 
regards to airplane cabin noise, to investigate the effects of 
the RPB, an element that has not received sufficient atten- 
tion up to now in the literature; second, to extend the existing 
knowledge regarding the boundary conditions of a plate in 
the general plate-cavity coupling problem. 

The model used for this study is a circular plate backed 
by a circular cylindrical cavity. The plate is driven by an 
external point force and is elastically supported by rotational 
and translational springs along its edge. With this model, 
both classical boundary conditions and intermediate cases 
can be easily simulated by making use of different combina- 
tions of the elastic constants of the springs. A variational 
formulation associated with a Rayleigh-Ritz approach is 
used in the analysis of the plate by choosing simple polyno- 
mials as trial functions. The same method has been used by 
the authors for a free vibration analysis of a plate-shell sys- 
tem. •7 The reader is referred to this work for more details 

about the plate vibration. For the cavity, the hard-walled 
cavity modes are used as a basis for the decomposition of the 
sound pressure and also for obtaining the Green's function 
of the cavity. The resulting coupling equations, in which the 
full interactions between the structure vibration and the in- 

ternal cavity pressure field are taken into account, are then 
solved. 

The proposed formulation for the vibration of the plate 
is shown to be an interesting alternative to the classical mod- 
al decomposition approaches used by most researchers in the 
problem of plate-cavity coupling. In fact, our formulation 
encompasses all the boundary condition cases in a general 
way, removing all previous restrictions in this regard. 
Thanks to a better understanding of the phenomena, this 
may offer practitioners new possibilities for the challenge of 
noise control. 

This paper is organized as follows: In Sec. I we outline 
the main procedure and results of the analytical formulation, 
ending with several comments on numerical implementa- 
tion. In Sec. II, numerical results are presented and dis- 

cussed. First, the effects of some classical boundary condi- 
tions of the plate are considered. Then, the modal radiation 
behavior of the plate is investigated to give an interpretation 
of the phenomena observed. Finally, the study on elastically 
supported cases reveals the possibilities and limitations of 
soundproofing by changing the structural boundary condi- 
tions. The conclusions are then presented in Sec. III. 

I. THEORETICAL DEVELOPMENT 

A. Description of the model 

The theoretical model considered is a plate-cavity sys- 
tem, as shown in Fig. 1. The cavity (of radius a and length l) 
is a circular cylinder with one wall (AF) at z- 0 being a 
circular flexible plate (of thickness hp ), while all the other 
walls (AR), including the end of the cylinder at Z - 1, are 
acoustically rigid. The plate is elastically supported by trans- 
lational and rotational springs uniformly distributed around 
its edge F. The translation along the plate edge is therefore 
supported by translational springs having a distributed stiff- 
ness K (N/mm) and the rotation is supported by rotational 
springs having a distributed stiffness C (N). The plate is 
assumed to be thin and only flexural vibrations are taken 
into account. A point force F(t) in the positive z-axis direc- 
tion is applied to the plate at the point (rF,OF). In what 
follows, the sound field within the cavity, as well as the vibra- 
tion of the plate, will be calculated. The fluid loading on the 
plate from outside the cavity will be neglected. 

B. Vibrations of the plate 

As part of a structure already studied, the free vibration 
of the plate has been described in a previous work, •7 and the 
reader is referred to this work for more details. Here special 
attention is paid only to the excitation terms by which the 
plate is coupled to the cavity. 

The equation of motion of the structure is obtained by 
finding the extremum of Hamilton's function H for the 
structure over a suitable subspace of displacement trial func- 
tions. For the circular plate considered in Sec. I A, Hamil- 
ton's function H can be expressed as follows: 

F r Plate 

a •'• 

! 

Acou ' 

hard Swt• !!y 

Z 

FIG. 1. Geometry of the problem and coordinate systems employed in the 
formulation. 
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d•t• 1 H= ( Tv -- Ev - EK + Ev)dt , (1) 

where to and t• are arbitrary times, Tv and Ev are, respec- 
tively, the kinetic energy and the potential energy of the 
plate, E• is the elastic energy stored in the springs, Ev is the 
work done by the driving point force F(t) and by the internal 
sound pressure Pc (t). The first three terms are given in Ap- 
pendix A, and Ev is written as 

Ev= [P½(t).wv(t) --F(t)•5(r-- rr) 

X•5(0 -- 0r)% (t) ]r dO dr, (2) 

where wp (t) is the flexural displacement of the plate, Pc (t) is 
the sound pressure inside the cavity, and •5 denotes the Dirac 
distribution. 

The plate displacement wp (t) is then expanded over a 
set of suitable trial functions. For an elastically supported 
plate, no geometric conditions are imposed a priori and a 
simple polynomial decomposition is chosen as follows: 

we(t) = Z Z Z Bn",¾(t)An"%, 
a=O n=O mp=O 

A.% = sin (n0 + a' •/2 ) (r/a) %, (3) 
with n, m•, and a being, respectively, the circumferential 
order, the radial order, and the symmetry index. The 

B •% (t) are coefficients to be determined. 
In the case where sinusoidal motion is assumed, 

F(t) = Fexp(jcot); Pc (t) = Pc exp(jcot); 

w e (t) = w e exp(jcot); Bname(t) = Bnamp exp(jcot), (4) 
where co is the excitation angular frequency. 

Inserting Eqs. (3) into ( 1 ) gives Hamilton's function H 
in terms of the unknown coefficients B name (t). Obtaining the 
extremum of H with respect to the B n",¾ (t) yields the equa- 
tion of movement of the plate. Using expression (4), one has 

Z (R narn?n; ( 1 -Jr-j•?p ) -- co2m narn?n•, )B narn; 
m3=O 

+ Z aN}D K + C e n•tn; 
m•=O 

=Fnar% --Pname, (5) 
where m3 is the current value of the index my. The expres- 
sions for the stiffness term R narn?n;, the mass term M narn?n; 
and the function N (,•,) have been given in Appendix B. The 
excitation terms Friar% and P nar% are 

Fnam• = • F•J(r-- rv)8(O-- OF)A•,% dAv, F 

P .% Pc Ana%, dA F. 
F 

(6) 

In Eq. (5), a structural damping model has been intro- 
duced by means of a complex Young's modulus, and r/e is 
the associated loss factor. It can be seen that the plate is 

coupled to the acoustic cavity via the last term of the right- 
hand side of Eq. (5). 

C. Sound field within the cavity 

The sound pressure inside the cavity is treated here in a 
rather classical way. The pressure, as well as Green's func- 
tion for the cavity, are expanded in terms of the normal 
modes of the acoustically rigid-walled cavity. The orthogo- 
nality of these modes enables us to reduce the problem to a 
set of ordinary differential equations with structural cou- 
pling terms. 

The acoustic pressure Pc inside the cavity is governed by 
the classical wave equation 

V2Pc q- (co/c)2Pc = 0, (7) 

where c is the speed of sound. 
The continuity of velocities on the different parts of the 

cavity walls is expressed by 

Oec 
•--pco2Wt•, onAv, 

Oh 

(8) 
• = 0, on Ae, 

Oh 

where p is the fluid density, AF and A a are, respectively, the 
flexible and rigid portion of the cavity wall surface, and h is 
the unit normal to the corresponding surface (positive to- 
ward the outside). 

It has been shown • that the sound pressure Pc inside 
the cavity can be calculated by means of Green's function G 
with the Neumann boundary condition, 

Pc= -• G OP½ dA; A =AvUAR. (9) Oh 

Using Eq. (8), the above expression becomes 

F 

(10) 

The Green's function in the cavity, which satisfies the Neu- 
mann boundary condition, can be calculated if the cavity 
modes are known: •8 

oo c •_ 4s(Mo)4s(M, ) 

G(Mo,M'o,co)--• • , (11) = • VMs (co• -- o 2) 

• • 4N(Mo )4•(Mo )do = Mm$N•, (12) V 

where 4N (Mo) and ON are, respectively, the nth cavity nor- 
mal mode shape and angular frequency, V is the volume 
occupied by the cavity, and Mo, M [, are two arbitrary points 
in the cavity. Here $N• is the Kronecker delta. 

The pressure inside the cavity can then be expanded in 
terms of the cavity modes as 

Pc=pc 2 • •, (13) 
N=I M N 

in which the Ps are the pressure coefficients to be deter- 
mined. Substituting Eqs. ( 11 )-( 13 ) into Eq. (10) gives 

(CO2 N -- co2)P N = (AF/V)CO2WN, (14) 
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W2v = •-v w v ' qb,v day. (15) F 

For the acoustically hard-walled cylindrical cavity con- 
sidered here, the normal modes are analytically known. In 
this case, the nth mode is represented by the four indices a, n, 
p, q, and the cavity mode shape and the corresponding angu- 
lar frequency are calculated by 

•n3q = sin[nO + a(•/2) ]J• (g•vr)cos[ (q•/1)z], (16) 
= •v+(qv/1) ] , (17) 

where a is the symmetry index, n is the circumferential or- 
der, J• is the nth-order Bessel function, q is the longitudinal 
order, and 2•v is the pth root of the following equation: 

J • (2•va) = 0. (18) 
By using Eq. (12), the modal generalized mass M npq can 
also be calculated. 

Considering the displacement decomposition of the 
plate [ Eq. ( 3 ) ], together with Eqs. ( 15 ) and (16), Eq. (14) 
becomes 

2 O• • ((1) npq -- 0)2 ) P npq _ 0)2 L (a,n,p,m•,) B 
rrl p • 0 

(19) 

where L(a,n,p,m•, ) is the spatial coupling coefficient be- 
tween the plate and the cavity: 

L ( a,n,p,m•, ) = • Anar% q•napq day. (20) F 

The damping in the cavity can be expressed in terms of a 
modal damping factor r/•. Consequently, Eq. (19) can be 
written as 

(21) 

D. Structure-cavity coupling equations 

The pressure term appearing at the right-hand side of 
Eq. (5) can now be expressed by substituting Eqs. (3) and 
(13) into the second expression of Eqs. (6), giving 

oo oo pa 

P" • • L ( a,n,p,m•, ) npq (22) ,%, = P c2A v ' 
p=l q=O M•pq 

Substituting Eq. (22) into Eq. ( 5 ) while taking into account 
Eq. (21 ) yields the structure•avity coupling equations: 

oo o• pa 

= F•m,, -- pc2Av • • L(a,n,p,m•, ) nœq 

2 0)2 a (0) npq -Jff Jr/v 0) npq 0) -- ) P npq 

trip •--- 0 
L ( a,n,p,m•, ) B •"%,. 

(23) 

(24) 

It can be seen from Eq. (24) that the cavity unknowns 

P,vq can be expressed in terms of the B ,m• Therefore, the 
two sets of equations can be combined by eliminating the 
P ,"•,q. Consequently, (23) becomes 

Z [ R •m,,m$ ( 1 -I- jr/•, ) -- 0)2M narnprn; )B narn•, ] 

[ ] + • aN (l) K+ C B•"m; ' 
m; = 0 

with 

z ZEz -- nrnp npqrnt, rn; nm;' (25) 
m•,=O P= I q=O 

Z" = pc2A }0)2L ( a'n'p'm•' ) ' L ( a'n'p'm$ ) (26) ß 

2 0)2 a npqm?n•, V' (0) npq -JI- jr/v0) npq 0) -- ) M npq 
The most particular feature of the coupling equations 

(25) is the selective manner in which the structural response 
can only couple spatially with a limited number of acoustic 
modes. In fact, the structural terms having a circumferential 
order n and a symmetry index a excite only acoustic modes 
that have the same circumferential order and symmetry in- 
dex. 

E. Comments 

L Solution of the equations and definition of 
characteristic parameters 

Two types of problems can be solved by using the estab- 
lished model: free vibrational analysis of a plate in vacuum 
and structure-cavity coupling analysis. 

The free vibrational study of a plate can be made by 
neglecting the right-hand terms of Eq. (25). The solution of 
this eigenvalue equation yields the natural frequencies to- 
gether with the coefficients for constructing the mode 
shapes. A set of results has been reported by the authors for a 
circular plate with general boundary conditions. •7 Compari- 
sons with some previously reported results showed excellent 
agreement. 

The structure-cavity coupling analysis, which is the 
main topic of the present work, can be achieved by solving 
Eq. (25). The acoustic sound field can then be determined 
by Eqs. (24) and ( 13 ). Two main parameters will be used in 
the analysis. 
(i) the average quadratic velocity of the plate (V2), 

(V2) = 2A-• wvw • dAv. (27) F 

In the following, (V 2) is presented in dB referenced to 
2.5 X 10-•5m2/s2: 

(ii) the average sound pressure level inside the cavity L v, 

m r = lO log((pc2)/p•) ), po - 2x lO- 5p, 

(.v ) = f . ,iv. (28) c c 

2. Simulation of the boundary conditions 

The boundary conditions of the plate have been pre- 
viously modeled to be elastic. The limiting cases such as sim- 
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ply supported, clamped, freely guided, or free plates can be 
o•',:•ained by setting the appropriate constant K or C equal to 
ei i:her zero or infinity. For infinity, one considers a suffi- 
ciently large value in the numerical calculations. For this, we 
define nondimensional stiffness parameters with respect to 
the flexural rigidity of the plate D e as follows: 

•- Ka3/D•,, •- Ca/D•,. 
In numerical results that will be presented later, the infinite 
value of • or • is produced by taking a value of 10 8 in each 
case. 

3. Truncation of the linear equations 

For computation purposes, the dimension of the linear 
system (23) and (24) has to be truncated to a finite order. 
For the plate, this has been done by taking 15 terms for n and 
13 terms for m e in the expansion series Eq. (3). For the 
configuration used in this work, this is found to be sufficient 
to cover the frequency range of interest (0--fm•x ) up to 
2000 Hz. As far as the cavity is concerned, all cavity modes 
whose natural frequencies are included in the frequency 
range of interest have been taken in the expansion (13). For 
certain values of n where the natural frequency of even the 
lowest cavity mode is higher than fmax, the first nine lowest 
modes have been taken into consideration. 

II. NUMERICAL RESULTS AND DISCUSSION 

The numerical results that are presented here are for a 
steel plate having a 0.25-m radius and a thickness of 0.003 m, 
whose critical frequency is about 4000 Hz. A cylindrical cav- 
ity of the same radius and having a depth of 0.6 m is filled 
with air. The plate is driven by a unit point force at rr = 0.1 
m and 0r = 0. The loss factors of the plate and the cavity are 
assumed to be constant: r/u ---- r/p ---- 0.01. 

Numerical results and comments are presented in fol- 
lowing order: First, taking a free plate as an example, a brief 
description regarding the fluid-structure coupling is given in 
terms of system modes. Second, plates with classical bound- 
ary conditions are analyzed. The so-called classical bound- 
ary conditions are defined as the following: free case (K = 0, 
C = 0); guided case (K = 0, C = c• ); simply supported 
case (K = c•, C = 0); and clamped case (K = c•, C = c• ). 
Note that these are four typical cases resulting from the dif- 
ferent combinations of the limiting values of the edge stiff- 
nesses K (translational) and C (rotational). Although free 
supports, as well as guided supports, can hardly be justified 
in practical circumstances for cavity configurations, they do 
act as very informative reference cases for understanding 
phenomena. In addition, as will be illustrated later, with the 
decreasing of the stiffness of the supports, the phenomena 
observed in the free case become rather representative of 
more realistic cases. Third, the radiation behavior of a single 
plate mode is investigated with the aim of producing a com- 
prehensive understanding of the problem. Finally, plates 
with intermediate elastic supports are considered, as this 
case is useful for more practical cases. 

A. Modal coupling between the plate and cavity 

In the theory formulated above, the plate-cavity cou- 
pled system is described in terms of the natural modes of its 
two uncoupled subsystems; the in vacuo plate and the acous- 
tically hard-walled cavity. Generally speaking, when the 
plate and the cavity are coupled together, these modes are 
affected by the coupling. This problem has been investigated 
by some authors, 2'3"9 who used simply supported and 
clamped plates to show that the normal modes of the cou- 
pled system can be divided into two groups: plate-controlled 
modes and cavity-controlled modes, the distinction depend- 
ing on whether the modes are dominated by plate vibrations 
or the cavity sound field. It is generally admitted that with a 
light fluid (such as air), this coupling effect is weak for deep 
cavities. 2 Based on some assumptions regarding the nature 
of the coupling at low frequencies, both plate-controlled 
modes and cavity-controlled modes can be rather accurately 
estimated by some simple formulas. '9 

Before proceeding to the effects of the boundary condi- 
tions, we observe the spectrum of the sound pressure level 
induced by a free plate to show this coupling phenomenon 
(Fig. 2). The peaks emerging in the curve are marked by 
different symbols. Those marked by a square represent plate- 
controlled modes, corresponding basically to the resonances 
of the in vacuo plate with a slight shift due to the coupling 
with the cavity. The peaks marked by a circle are cavity- 
controlled modes. For these two types of modes, the uncou- 
pled natural modes of the two subsystems form a good ap- 
proximation of the actual modes at low frequencies, where 
the modal density is low (less than 0.5% for the present 
case). However, it should be stressed that this observation 
cannot be generalized, since the nature of the coupling be- 
tween the plate and the cavity depends greatly on the charac- 
teristics of the system. As an example, a shallow cavity may 
increase the frequency of fundamental plate resonance by as 
much as 15 %.2 Therefore, consideration of the full coupling 
is recommended if precise information is required. In Fig. 2, 
the first peak indicated by a triangle is characteristic of free 
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FIG. 2. Overall sound pressure level inside the cavity radiated by a free 
plate. I: plate'cøntrølled modes; O: cavity'cøntrølled modes; •'. pumping 
mode. 

1508 J. Acoust. Soc. Am., Vol. 91, No. 3, March 1992 L. Cheng and J. Nicolas: Radiation of sound from an end plate 1508 

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  158.132.172.72 On: Thu, 26 Feb 2015 04:05:49



(or guided) plates, corresponding to the piston motion of 
the plates supported by the aerostatic stiffness of the cavity. 
This special mode will be shown to produce a strong cavity 
sound field at its resonant frequency. Let us term it the 
"pumping freqi•ency"f• and proceed to estimate it. 

Upon assuming that only the rigid cavity mode (with a 
zero natural frequency) affects the system, the frequency for 
the fundamental mode of the platefcoup•ed (modified by cou- 
pling with the cavity) can be approximated by •9 

fcoupled • n vacuo q- (Ms V) ' (29) 
where Ms is the generalized modal mass of the plate and Los 
is the coupling coefficient between a plate mode and a cavity 
mode, defined as the integral of their mode shapes over the 
contacting surface: 

Los = • •o IIs dA v, (30) F 

with •o and Ils being, respectively, the mode shapes of the 
rigid cavity mode and the fundamental mode of the plate in 
uacllo. 

For the present case of a free circular plate, the funda- 
mental plate mode is a piston motion. Thus fin oacuo : O, 
IIs= 1, Ms--p•,h•,Av, p•, and hp being, respectively, the 
density and thickness of the plate. For the rigid cavity mode, 
•o = 1. Using these relations, Eq. (29) becomes 

fcoupled =fp = (1/2rr)x/pc2/(pvhvl) ß (31 ) 
Therefore, the three main parameters determining the 

"pumping frequency" of a free plate are the rigidity of the 
acoustic medium tPC 2 (having units of N/m2), the surface 
density of the plate p•h•,, and the cavity depth l. 

Expression (31 ) can also be written in a different form: 

f• = (1/2rr)•Kv/(pvhvAv), 
K•, = pc2Av/l. (32) 
It can be seen that Kp is the aerostatic stiffness of the 

cylindrical cavity. In the present configuration 
Kp = 4.54 X 10 4 N/m. Hence, the "pumping frequency" of 
the system can be simply and precisely calculated by this 
formula. 

B. Plates with classical boundary conditions 

As far as the effect of the boundary conditions of the 
plate, Fig. 3 (a)-(c) shows the results for plates with simple 
supports (solid lines) and free supports (dashed lines). Fig- 
ure 3 (a) shows the comparison in terms of the average qua- 
dratic velocity of the plate (V2). The difference between the 
two curves is caused mainly by the different positions of the 
plate-controlled resonances. Generally speaking, the overall 
level of the plate vibration is not affected much by the bound- 
ary conditions of the plates. Figure 3 (b) compares the corre- 
sponding average sound pressure level within the cavity Lv, 
as defined by Eq. (28). In addition to the plate-controlled 
resonances, already perceived in the quadratic velocity spec- 
tra, one can also notice the peaks corresponding to the cav- 
ity-controlled resonances. Except at very low frequencies, 
the free plate radiates much less than a simply supported 

.- II 

• •o I II II I i IIII I[il I 
• eo 

• 7o 
I:l_ 80 .... • .... ' .... ' ' ' ' ' ' ' ' 

0 400 800 1200 1800 200C 

Frequency (Hz) 

• (b) 
0o 130 

,-, 120 

• 110 

• 100 

• •o 

& 19o 
o • 70 

150 
0 400 800 1200 1800 2000 

Frequency (Hz) 

l:ao 

20 
110 

100 

go 

190 - 

70 .... I , , , , i .... i .... i 
0 400 1900 1200 1800 2000 

Frequency (Hz) 

FIG. 3. Overall sound pressure level inside the cavity and average velocity 
of the plates with two different boundary conditions: simply supported (sol- 
id lines) and free (dashed lines). (a) Average quadratic velocity of the 
plates in narrow bands. (b) Overall sound pressure level inside the cavity in 
narrow bands. (c) Overall sound pressure level inside the cavity in one- 
third octave bands. 
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FIG. 4. Overall sound pressure level inside the cavity (in one-third octave 
bands) radiated by plates with different boundary conditions: Clamped 
(solid lines); simply supported (dashed lines); guided (dot-dashed lines)' 
and free (double dot-dashed lines). 

one. This can be more clearly seen in Fig. 3 (c), in which the 
sound pressure is shown for one-third octave bands. One 
observes that the sound pressure level induced by a free plate 
is 10-20 dB lower than the one radiated by a simply support- 
ed plate. This is true for almost the entire frequency range 
from 50-2000 Hz in the present case. The exception occurs 
in the low-frequency range centered at 16 Hz, where the free 
plate gives a stronger sound field than a simply supported 
one. This is the pumping mode of the plate analyzed in the 
previous section. The fact that this mode contributes signifi- 
cantly to the cavity sound field and that the cavity produces 
non-negligible stiffness shows that the mode is well coupled. 

Figure 4 shows the sound pressure level Lp radiated 
from plates with the four classical boundary conditions: 
clamped supports, simple supports, guided supports, and 
free supports. The results are presented using one-third oc- 
tave bands. Although the comparisons are not very apparent 
at low frequencies (below 200 Hz), where the plate modal 
density is low and the sound field may be completely con- 
trolled by particular plate modes, one notices roughly the 
same radiation capacity for the clamped and simply support- 
ed plates on the one hand, and for the guided and free plates 
on the other. Therefore, it can be concluded that the transla- 
tional stiffness of the contour supports, K, is a key factor in 
the radiation behavior of the plates into the cavity. It seems 
that a lightly deflected support will reduce the sound level 
inside the cavity. This issue will be addressed in Sec. II D, 
where the case of elastic supports is examined. 

C. Modal radiation behavior of cylindrical cavity-backed 
plates 

As representative examples, a free plate and a simply 
supported plate are used to reveal the radiation mechanism 
of plates with different boundary conditions. 

As is known, one of the most useful parameters in far- 
field radiation problems is the radiation efficiency, defined 
as the ratio of the radiated power to a quantity proportional 

to the quadratic velocity of the structure. However, for the 
cavity problem, as pointed out by one of the present au- 
thors, •9 this parameter is no longer suitable, mainly because 
of the standing wave properties of the •cavity. In fact, in this 
case the radiated power as defined in the classical way be- 
comes the power absorbed by dissipation factors of the cav- 
ity such as damping and absorption. As a result, from the 
point of view of physics and physiology, it is no longer a 
parameter as relevant as acoustic energy or sound pressure. 
To this end, we use another parameter • that we call the 
"Radiation Efficiency into Cavity" (REC), and it is defined 
as the ratio of the acoustic energy in the cavity EVA to the 
kinetic energy of the plate Ep•' 

• = 10 Log(EvA/Ep• ), 

1 ;v IP½ 12 dr, EvA = •- ,oc 2 
Ep•-- 1 V 2 -•-p•,h•,Ae( ). (33) 
It is worth noting that • is a nondimensional factor and 

applies not only to the whole structure, but also to a single 
mode of the structure. In the latter case, the arguments in- 
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FIG. 5. The • (REC) for various modes of the plates: Mode (2,1) (solid 
lines); mode (2,2) (dashed lines); mode (2,3) (dot-dashed lines); mode 
(2,4) (double dot-dashed lines). (a) Free plate; (b) Simply supported 
plate. 
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volved in the above definition will be those induced by the 
structural mode in question. In order to avoid any misunder- 
standing, it should be stressed that the term "radiation effi- 
ciency" used in this paper refers to the • defined above. Since 
the acoustic energy is involved in the definition, it will not be 
surprising to see the modal properties of the cavity from this 
parameter. 

Figure 5 shows the radiation characteristics of several 
modes of the plate, for the cases of free supports [ Fig. 5 (a) ] 
and simple supports [ Fig. 5 (b) ]. The four modes illustrated 
are ( 2,1 ), (2,2), ( 2,3 ), and (2,4). For the identification of a 
plate mode, a pair of numbers is used, where the first number 
denotes the circumferential order while the second identifies 

the mode rank by increasing value of the natural frequencies. 
It can be observed that, in both cases, • is weighted by the 
cavity resonances of the same circumferential order (two for 
the present case). One important feature that should be not- 
ed is that the • of the lower-order modes are generally higher 
than those of the higher-order ones. 

A comparison between these two cases allows one to 
understand the weak radiation of the free plates. For the 
same series of modes, this comparison is presented in Fig. 
6(a)-(d) by drawing separately the • of the free plate modes 

together with the equivalent for the case of the simply sup- 
ported plate. The diagrams are arranged in an increasing 
order of modes. Figure 6 (a) shows that the (2,1 ) mode ex- 
hibits roughly the same radiation capacity for both types of 
boundary conditions. As for the (2,2) mode [Fig. 6(b)], 
there is a visible difference between these two curves, indi- 
cating that the free plate mode radiates less. As the mode 
order increases this tendency becomes more and more ap- 
parent, as is seen in the successive figures. For the (2,4) 
mode, which is the highest of the four modes considered, 
Fig. 6(d) shows a difference of some 15-20 dB. Numerical 
studies show that this observation applies to a varying degree 
to the other plate modes as well. 

This observation is consistent with the one made pre- 
viously for the far-field sound radiation from baffled plates. 
In that case, as was pointed out by Skudrzyk 2• and Wil- 
liams, 22 the low radiation efficiency of the free plate modes is 
the result of the cancellation occurring between adjacent 
cells. In a recent work on rectangular plates, Berry et al. 23 
showed that the piston motion alone is sufficient to provide a 
good estimate for the radiated power from a free plate, and 
that the piston motion is in turn a poor radiator. In the pres- 
ent analysis, it has been observed that this predominant role 
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FIG. 6. The • (REC) for various modes of a simply supported plate (solid lines) and of a free plate (dashed lines). (a) Mode (2,1)' (b) mode (2,2); (c) 
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of the piston motion for free field radiation is no longer true 
for cavity problems. This is mainly because the flexural 
modes, which may generate evanescent waves in the far-field 
radiation case, become significant contributors to the sound 
field within an enclosure. Therefore, in our case, the low 
radiation capacity of the flexural modes of the free plate be- 
comes the primary factor. It is believed that such informa- 
tion would be useful at the design stage of such systems. 

D. Plates with intermediate elastic supports 

The two previous sections have focused on some ideal- 
ized and limiting boundary condition cases. The fact that a 
free plate or a guided plate radiates much less than a simply 
supported plate or a clamped plate for a relatively wide fre- 
quency range may be beneficial in engineering applications. 
In other words, this suggests relaxing the deflection res- 
traints at the plate contour to improve the sound field in the 
cavity. Realistically, however, completely free cases do not 
exist, the structures having to be supported in some manner. 
Therefore, it seems necessary to consider elastic support 
cases to reveal their practical possibilities and limitations. 
Here, we can take advantage of the generality of our formu- 
lation to get closer to practical situations. 

Figure 7 compares a simply supported plate with three 
elastically supported plates in terms of the sound pressure 
level Lp calculated in one-third octave bands. For the three 
elastic cases, the plates are supported only by translational 
springs, the stiffness of which are, respectively, 10Kp, 
100K•, and 1000K•, where K• is the aerostatic stiffness of 
the cylindrical cavity, as defined by expression (32). To give 
an approximate estimate of the rigidity of the supports, the 
natural frequency corresponding to the piston motion for the 
three cases are, respectively, 52.4, 158.8, and 499.9 Hz. 

Two main conclusions can be drawn from these results. 

First, in comparison to the free cases, a limiting frequency 
seems to exist for each elastic support, above which the plate 
behaves roughly like a free plate. (For the sake of clarity, the 
curve corresponding to the free plate has been purposely 
omitted.) In fact, the response of the plate supported by 
10K• can be shown to be nearly the same as that of the free 
plate from the one-third octave band centered at 200 Hz. For 
the two other elastically supported cases, this limiting fre- 
quency is, respectively, 800 and 2000 Hz. This frequency can 
be more accurately determined from the spectra in narrow 
bands. Second, a comparison with the simply supported 
plate, represented by the solid line in Fig. 7, illustrates how 
elastic supports affect the cavity sound pressure. The analy- 
sis of Sec. IIB outlined the weak radiating property of the 
free plate. Therefore, the fact that elastically supported 
plates behave nearly like a free one above their respective 
limiting frequencies indicates a significant reduction in in- 
duced sound pressure, as is clearly shown in Fig. 7. Indeed, 
this beneficial effect begins to occur even slightly before this 
limiting frequency. However, in the frequency range below 
this value, a softer support does not always guarantee a re- 
duction in sound. The reason is that different supporting 
conditions modify the structural modes, the consequence of 
which can further change the modal structural-cavity cou- 
pling. As a result, in some frequency ranges, the cavity sound 
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FIG. 7. Overall sound pressure level inside the cavity (in one-third- 
octave bands) radiated by plates with simply supported or elastic supports 
against deflection. Simply supported plate: Solid line. The stiffness of the 
elastic supports are, respectively, 10Kp (dashed lines); 100Kp (dot-dashed 
lines ); 1000Kp (double dot-dashed lines ), where Kp is defined by Eq. ( 32 ). 

pressure may be amplified. Combining these two observa- 
tions, one concludes that the stiffer the support is, the higher 
is this limiting frequency and, consequently, the higher up is 
the frequency range where the beneficial effect is expected. 

III. CONCLUSIONS 

The radiation of sound from a point-driven circular 
plate into a closed cylindrical enclosure has been investigat- 
ed. The study was motivated by the desire to obtain an un- 
derstanding of the noise emitted by the rear pressure bulk- 
head into the cabin of an airplane. In a larger context, this 
work aimed to deepen the existing understanding regarding 
the effects of the boundary conditions of plates and to offer 
new possibilities for noise control. The simulation of the 
boundary conditions of the plates is made possible by means 
of elastic support modeling. The elastic constants for the 
contour of the plate are chosen to simulate free, guided, sim- 
ply supported, and clamped edges as well as other intermedi- 
ate cases. In the formulation, the full coupling between the 
sound pressure field inside the cavity and the structural mo- 
tion is taken into account. The sound field generated outside 
the cavity is neglected in the analysis. For a typical configu- 
ration, numerical results are presented and the phenomena 
observed are interpreted. 

It is shown that the deflection stiffness on the contour of 

the plate plays an important part in determining the radiated 
sound field within the cavity. For a very wide frequency 
range, a significant reduction can be obtained by reducing 
the rigidity of the deflection supports of the plate, the excep- 
tion being at low frequencies where the response may be 
controlled by particular plate modes. As limiting cases, a 
free or a guided plate is shown to radiate much less sound 
into the cavity than a simply supported or clamped one in a 
frequency range above a so-called "pumping frequency" f• 
of the former. This is mainly because of the low radiation 
capacity of the flexural modes of the free or guided plate. In 
situations where the plate is elastically supported against 
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deflection, it seems that a limiting frequency exists above 
which the plate behaves roughly like a free plate, and conse- 
quently where a beneficial effect in the sound level is expect- 
ed, but below which a negative effect may occur because of 
the particular modal coupling. This limiting frequency is 
shown to increase with the deflection stiffness of the sup- 
ports. This analysis illustrates that an improvement in the 
internal sound field is possible by the choice of a suitably low 
deflection stiffness for the structure. 

This paper has focused on a numerical study of the prob- 
lem. Although some measurements confirming partial find- 
ings of the present work have been done, more effort is still 
needed to carry out complete experimental investigations. 
Moreover, further analysis seems to be necessary to address 
the case of nonrigid cavity walls. This will need the simula- 
tion of a system comprising the entire plate-shell structure 
coupled to the acoustic enclosure. These issues should be 
addressed by subsequent research. 
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APPENDIX A: ENERGY EXPRESSIONS OF THE PLATE 

Here we have 

= r dO dr, (A 1 ) rp Tp•,h•, 8t 

o,, fo"r fo= l ( a =w,, + l aW,, l a=W,,) E•, =-•- 

0%)] 
8O 

E k=-•- Kw}+C 8r ado , (A3) 
where p. and h. are, respectively, the density and the thick- 

3/12 ( 1 - • ) represents the ness of the plate; 
flexural rigidity of the plate, with v. and E. being, respec- 
tively, the Poisson's ratio, and the Young's modulus of the 
shell material. In the above expressions, wp should be read as 
w• (t) as used in Eq. ( 2 ), meaning that w• is time dependent. 

APPENDIX B: EXPRESSIONS OF R•mr, m;, M•mr, m;, AND 

ot 
nrnprn• Dp!Ilrnt•rn; {N('>[ (m•, ) (m•, -- n 2 an 2 • •2 ,2 ) 

a 2 

-- (1 -- re)me(me -- 1)(m• -- n 2) 

--(1- ve)m• (m• -- 1)(m} --n2)] 
• nr (2)•2• • + 2(1 -- •pl•* an tm• 1)(m• -- 1)}, 

(B1) 

a hpN an / ( m• + m• + 2), (B2) M nrnprn• • a2tøp ( 1 ) 

rr, for n-•0, N (•= 0, for n=0 and a=0, (B3) 
2rr, for n=0 and a=l, 

where 

={o, 1/(m• + m• -- 2), 

rr, for n%0, N (•2.• = 0, for n = 0 
2rr, for n =0 

for m• + m•; -- 2<0, 
otherwise; 

(B4) 

and a=l, (B5) 
and a = 0. 
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