

ENGINEERING TOWARDS CARBON NEUTRALITY 碳中和資源工程研究中心

Geomechanics for carbon neutrality

Dr. Qi Zhao (qi.qz.zhao@polyu.edu.hk) **Civil and Environmental Engineering** The Hong Kong Polytechnic University

Background

- Global warming facts: ice sheet melting, ocean current slowdown, sea level rise, permafrost disintegrate, etc.
- Worldwide disastrous climatic events: unprecedented typhon, drought, flood, wildfire, etc. These catastrophic events are becoming more severe and frequent^[1].
- Carbon neutrality We need to act NOW!

Challenges

- Our societies still rely on fossil fuel, much more renewable energy is required.
- Wind and solar energy have fluctuations, other renewable energy resources and large-scale energy storage are needed to compensate the fluctuations.

Underground energy storage

- Energy storage is required to balance demand and supply when generating power with wind and solar.
- Large-scale, long-term energy storage that is not batterybased is vital for electrifying our society.
- Underground energy storage is one of the good alternatives.
- Examples:

Compressed Air Energy Storage (CAES) Underground Pumped Hydro Storage (UPHS) Underground Thermal Energy Storage (UTES)

Geomechanics for carbon neutrality

- Large amount of unavoidable carbon will still be released, CO_2 sequestration and permeant storage is needed.
- Geomechanics challenges: difficulties in understanding the thermal-hydraulic-mechanical coupled rock behaviour at depth, injection of fluids underground may induce earthquakes, etc.

Alternative Energy Solutions

Geothermal energy

Beneath our feet lies enough energy to potentially meet all of humanity's requirements.

- thus, the more energy can
- EGS requires stimulation (e.g., hydraulic fracturing) and the cost of the required

Low: 63.50 (mW

- Geomechanics: the study of how subsurface rocks behaviour in response to changes of stress, pressure, and temperature.
- We use geomechanics studies to (1) Optimize the design of renewable energy projects in rocks, (2) Forecast their long-term performance, (3) Mitigate potential hazards, and (4) Improve the interpretation of geophysical monitoring data.

Multiscale characterization and modelling

Carbon capture, utilisation and storage (CCUS) CCUS refers to a suite of technologies that that contributes both to reducing emissions directly and to removing CO_2 to balance unavoidable emissions.

- Reducing emission is not enough, we need to reverse the emission process by capturing and storing CO_2 permanently.
- Geological CO₂ sequestration is one of the most promising storage methods. It has two main mechanisms: (1) physical trapping and (2) geochemical trapping.

 Thermal-hydro-mechanical (THM) coupled hybrid finite-discrete element method (FDEM)

• FDEM combines the advantages of finite element method and discrete element method. It is an excellent tool for studying rock discontinuities, e.g., hydraulic fracturing for enhanced geothermal systems^[3].

