Subject Description Form

Subject Code	ME6101				
Subject Title	Advanced Theory and Methods in Vibration Analysis				
Credit Value	3				
Level	6				
Pre-requisite/ Co-requisite/ Exclusion	Exclusion: ME536 Vibrations and Structure-borne Noise				
Objectives	The subject aims:1. To equip students with the knowledge of MDOF systems;2. To introduce students with elements of analytical dynamics;3. To introduce students with continuous models and advanced analysis methods.				
Intended Learning Outcomes	Upon satisfactory completion of the subject, students are expected to achieve the following outcomes:				
	 a. Able to understand and formulate the dynamic response of MDOF systems; b. Able to apply their knowledge of vibration theory and methods to model mechanical behavior and conduct modal analysis; c. Able to conduct analysis and design in sound and vibration systems with advanced analysis methods; d. Able to comprehend the theoretical aspects in the related literature. 				
Subject Synopsis/ Indicative Syllabus	<i>Introduction to Vibrations</i> - Equivalent springs, dampers and masses; Nature of Excitations, and vibration about equilibrium points; Response of SDOF systems to nonPeriodic Excitations; Whirling of rotating shafts; Vibration isolation, energy dissipation and structural damping.				
	<i>Elements of Analytical Dynamics</i> - Degree of freedom and generalized coordinates; The principle of virtual work and D'Alembert; The hamilton's principle; Lagrange's equations.				
	<i>Multi DOF Systems</i> - Properties of the stiffness and Mass coefficients; Linear transformations – coupling; The eigenvalue problem; Orthogonality of modal vectors; Modal analysis.				
	<i>Continuous Models for Vibrations -</i> Transverse vibration of strings; Vibration of beams; Vibration of plates; Wave Equation.				
	<i>Advanced Selective Topics</i> - Advanced acoustics; Wave propagation and application; Nonlinear analysis methods (perturbation, harmonic balance, or Volterra series etc).				
Teaching/Learning Methodology	Lectures and Tutorials				

Assessment Methods in Alignment with Intended Learning Outcomes	Specific assessment methods/tasks	% weighting	Intended subject learning outcomes to be assessed (Please tick as appropriate)						
Guttonites			а	b	с	d			
	1. Continuous Assessment	40%	V	\checkmark		\checkmark			
	2. Final	60%			\checkmark	\checkmark			
	Total	100%					ľ		
Student Study Effort Expected	Class contact: • Lecture (13 weeks and 3 hrs per week)					39 Hrs.			
	 Lecture (13 weeks and 3 hrs per week) 					39 Hrs.			
	Other student study effort:								
	 Precepts or Tutorials 					26 Hrs.			
	 After-class reading 					39 Hrs.			
	Total student study effort					104 Hrs.			
Reading List and References	 Leonard Meirovitch, Fundamentals of Vibrations, McGraw Hill, latest edition. Haym Benaroya, Mechanical vibration, Prentice Hall, latest edition. 								

Jan 15