A Framework for Estimating Economies of Agglomeration and Supply Chain Network Effects in Maritime Clusters

Anthony M. Pagano
University of Illinois at Chicago
Onésimo Sanchez
Ricardo Ungo
Albano G. Aguilar
Panama Canal Authority
Scope of the Paper

- Economic Clusters
- Economies of Agglomeration
- Supply Chain Network Effects
- Port Clusters
- Framework for Estimating Effects
 - Gravity Model
 - Production Function
- Application to Panama Canal
Clusters of Economic Activity

- Michael Porter – “…. geographic concentrations of interconnected companies and institutions in a particular field. Clusters encompass an array of linked industries and other entities important to competition.”

- Clusters Affect Productivity
 - Better access to a pool of employees and suppliers
 - Access to specialized market, technical, and competitive information
 - Complementarities - linkages among cluster members that results in a whole greater than the sum of its parts.
Problems with Cluster Theory

- Identification of the Geographic Boundaries of the Cluster
- I-O Tables Do Not Capture
 - Firm rivalry and collaboration,
 - Marshallian externalities
 - Knowledge spillovers
- Location Quotients Added to I-O Table to Capture Effects
Economies of Agglomeration

- Clusters Can Result in Economies of Agglomeration
- Measures of Agglomerative Economies:
 - Population Size, Population Density, Travel Time
 - Urban Size
- Not Useful for Maritime Clusters
Network Effects

- Competitive Advantage is Obtained from Value Created by a Network of Firms
- Performance of Network Has Multiple Attributes:
 - Cost Reduction
 - Reliability, Responsiveness, Flexibility
 - Improving Quality, Meeting Schedule Requirements, Accessing New Technologies
Economies of Agglomeration - Result from Cluster Economies

Economies of Scope from 3rd Party Logistics Providers (3PLs)

Economies of Density - Result in Lower Costs through Greater Volume of Activity and Make Specialists Feasible

Network Effects -
- Cost Reduction
- Reliability, Responsiveness, Flexibility
- Improving Quality, Meeting Schedule Requirements, Accessing New Technologies
- Customer Service Benefits
Measuring Effects in Port Clusters

- Effects Intertwined
- Separation of Effects Difficult if Not Impossible

Approach:
- Two Models of Effects – Gravity and Production Function
- Indices of Economies and Network Effects
Gravity Model Formulation

\[T_{ij} = \frac{G \cdot A_i \cdot A_j}{d_{ij}^2} \]

- \(T_{ij} \) = number of trips between places i and j, respectively
- \(A_i \) = measure of attractiveness of place i
- \(A_j \) = measure of attractiveness of place j
- \(d_{ij} \) = distance between places i and j
- \(G \) = a constant of proportionality
Scoring Function

\[S_{ij} = \frac{T_{ij}}{G} = \frac{A_i \cdot A_j}{d_{ij}^2} \]

S_{ij} is the interactivity potential between place i and place j

Used to estimate demand for transportation between two places
Interactivity Between Businesses in Cluster

\[S_{ij} = \frac{B_i \cdot B_j \cdot c_{ij}}{d_{ij}^2} \]

\(B_i \) and \(B_j \) are the (total) sales or employment of the two businesses \(i \) and \(j \), respectively.

\(d_{ij} \) is the distance between the two businesses,

\(c_{ij} \) is the input-output coefficient between businesses \(i \) and \(j \) and

\(S_{ij} \) is the interactivity potential between business \(i \) and business \(j \).

\(n \) is the number of businesses in the cluster.
Economies and Network Effects for All Businesses in Cluster

\[\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{B_i \cdot B_j \cdot c_{ij}}{d_{ij}^2} \]

- Takes Distance Into Account in Estimation
- Much of Logistics – Movement of Goods
- Cluster Participants in Close Proximity – Higher Score
Economies and Network Effects for All Businesses in Cluster

- More Businesses Added to Cluster – Scoring Function Increases
- Network Effects – Incorporated through I-O Coefficients
- Larger Coefficients – Greater Network Effects – Interaction Between Businesses Greater
- Can Implement Using Secondary Data Sources – Economic Census, Map Distances, I-O Tables
A Production Function Formulation

- Focuses on Agglomeration Economies
- Estimates Impacts of Number of Firms on Productivity

Let:

\[Q_i = \text{GDP or production (in physical units) in sector } i \]
\[E(.) = \text{efficiency function} \]
\[L_i = \text{labor in sector } i \]
\[K_i = \text{capital in sector } i \]
A Production Function Formulation

Production Function:

\[Q_i = E(.) \ F (L_i, K_i) \]

Production Per Unit of Capital in Sector i:

\[q_i = E(.) \ F (L_i / K_i) \]

Since E(.) represents the efficiency of the production function, it can be used to portray Economies of Agglomeration
A Production Function Formulation

- Let \(E() \) be a function of the number of firms in sector \(i \) and a vector of other relevant variables \((x)\)
- Then:

\[
q_i = E(n_i, X_i) \frac{F(L_i/K_i)}{n_i}
\]

\[
q_i = f(n_i, L_i/K_i, X_i)
\]
A Production Function Formulation

Estimation Equation:

\[\ln q_i = \beta_0 + \beta_1 \ln n_i + \beta_2 \ln L_i / K_i + \beta_3 \ln X_i \]

Agglomeration Effects reflected in the impact of number of firms on productivity of sector i
Application to the Panama Logistic Services Cluster

Cluster Components

<table>
<thead>
<tr>
<th>Direct</th>
<th>Indirect</th>
<th>Induced</th>
<th>Parallel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canal Operation</td>
<td>Shipping Lines</td>
<td>Ports</td>
<td>Air Hub</td>
</tr>
<tr>
<td></td>
<td>Shipping Agencies</td>
<td>Colon Free Zone</td>
<td>Colon Free Zone</td>
</tr>
<tr>
<td></td>
<td>Ship Chandlers</td>
<td>Canal Tourism</td>
<td>Merchant Marine</td>
</tr>
<tr>
<td></td>
<td>Ship Repair and Maintenance</td>
<td>Logistics Management</td>
<td>Telecommunications</td>
</tr>
<tr>
<td></td>
<td>Launch and Pilot Services</td>
<td>Railway</td>
<td>City of Knowledge</td>
</tr>
<tr>
<td></td>
<td>Services</td>
<td>Export Processing</td>
<td>Legal Services</td>
</tr>
<tr>
<td></td>
<td>Dredging</td>
<td>Zones</td>
<td>Ship Grading and Classification</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intermodal Services</td>
<td>Maritime Court</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cruiseship Tourism</td>
<td>Public Services</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Container Repair</td>
<td>Financial Intermediation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Land Transportation</td>
<td>Education and Training</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Insurance</td>
</tr>
</tbody>
</table>
Cluster Components

- Direct
 - Foreign exchange contributions of the Canal

- Indirect
 - Derived from the provision of additional services to transiting vessels

- Induced
 - Those activities located in Panama as a result of the existence of the Canal, but depending on international and regional markets for their growth

- Parallel
 - Other related economic activities, which do not depend or were induced by the Canal
Data Analysis - Gravity Model Formulation

- ACP Economic Impact Study Report - Estimates of total production for sectors of the Panamanian economy in 2001

- Seven sectors were chosen for detailed analysis. These are the Canal, the Colon Free Trade Zone, Tourism, Bunkering & Shipping Agencies, Shipping Companies, Ship Chandlers and Ports.
Sector Production (2001)

<table>
<thead>
<tr>
<th>Sector</th>
<th>Total Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canal</td>
<td>$868,504</td>
</tr>
<tr>
<td>Colon Free Trade Zone</td>
<td>$5,606,172</td>
</tr>
<tr>
<td>Tourism</td>
<td>$48,000</td>
</tr>
<tr>
<td>Bunkering & Shipping Agencies</td>
<td>$175,014</td>
</tr>
<tr>
<td>Shipping companies</td>
<td>$3,838</td>
</tr>
<tr>
<td>Ship Chandlers</td>
<td>$15,782</td>
</tr>
<tr>
<td>Ports</td>
<td>$172,300</td>
</tr>
</tbody>
</table>
Input-Output Coefficients

- ACP Economic Study
 - First built map of intersectorial relations based on questionnaire
 - Detailed interviews conducted with representative businesses
 - Qualitative classification of degree of linkage among cluster activities developed
 - I-O coefficients developed – both direct and indirect effects
Matrix of Coefficients

- I-O Coefficients Slightly Modified
 - Report divides tourism was divided into cruise ship tourism and canal tourism
 - Combined into one sector called tourism
 - I-O Coefficients show one cluster component as a dependent variable, the other as explanatory
 - This study - Interested in total level of interconnectedness between two cluster components
 - Components of two cluster activities added - One measure of connectivity between two cluster activities
Matrix of Combined I-O Coefficients

<table>
<thead>
<tr>
<th></th>
<th>Canal</th>
<th>Colon FTZ</th>
<th>Tourism</th>
<th>Burkering & Shipping Agenc.</th>
<th>Shipping companies</th>
<th>Ship Chandlers</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canal</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colon FTZ</td>
<td>0.02</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tourism</td>
<td>0.03</td>
<td>0.03</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burkering & Shipping Agencies</td>
<td>1.09</td>
<td>0.05</td>
<td>0.01</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shipping companies</td>
<td>0.4</td>
<td>0.2</td>
<td>0</td>
<td>0.02</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ship Chandlers</td>
<td>0.4</td>
<td>0.01</td>
<td>0</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ports</td>
<td>0.18</td>
<td>0.25</td>
<td>0.03</td>
<td>0.5</td>
<td>0.21</td>
<td>0.5</td>
<td>0</td>
</tr>
</tbody>
</table>
Gravity Model Results
(Hundreds of Millions of Dollars)

<table>
<thead>
<tr>
<th></th>
<th>Canal</th>
<th>Colon FTZ</th>
<th>Tourism</th>
<th>Bunkering & Shipping Agencies</th>
<th>Shipping Companies</th>
<th>Ship Chandlers</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canal</td>
<td>-</td>
<td>15,581</td>
<td>200</td>
<td>26,509</td>
<td>9,728</td>
<td>877</td>
<td>2,693,578</td>
</tr>
<tr>
<td>Colon Free Trade Zone</td>
<td>15,581</td>
<td>-</td>
<td>861</td>
<td>196,232</td>
<td>17,213</td>
<td>3,539</td>
<td>965,943</td>
</tr>
<tr>
<td>Tourism</td>
<td>200</td>
<td>861</td>
<td>6,451</td>
<td>13</td>
<td>-</td>
<td>-</td>
<td>992</td>
</tr>
<tr>
<td>Bunkering & Shipping Agencies</td>
<td>26,509</td>
<td>196,232</td>
<td>13</td>
<td>4,901</td>
<td>54</td>
<td>552</td>
<td>60,310</td>
</tr>
<tr>
<td>Shipping companies</td>
<td>9,728</td>
<td>17,213</td>
<td>-</td>
<td>54</td>
<td>-</td>
<td>-</td>
<td>555</td>
</tr>
<tr>
<td>Ship Chandlers</td>
<td>877</td>
<td>3,539</td>
<td>-</td>
<td>552</td>
<td>-</td>
<td>-</td>
<td>5,438</td>
</tr>
<tr>
<td>Ports</td>
<td>2,693,578</td>
<td>965,943</td>
<td>992</td>
<td>60,310</td>
<td>555</td>
<td>5,438</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>2,746,473</td>
<td>1,199,369</td>
<td>8,518</td>
<td>288,571</td>
<td>27,550</td>
<td>10,407</td>
<td>3,726,818</td>
</tr>
<tr>
<td>% of Total</td>
<td>34.30%</td>
<td>14.98%</td>
<td>0.11%</td>
<td>3.60%</td>
<td>0.34%</td>
<td>0.13%</td>
<td>46.54%</td>
</tr>
</tbody>
</table>
Gravity Model Results

- Ports are the most important component
 - Account for over 46% of the total estimate of cluster economies and network effects
- The second most important component is the Canal itself
 - Ports have many inter-relationships with other cluster activities that the Canal may not have
- Third most important element is the Colon Free Trade Zone
 - Linkages with other cluster activities need to be strengthened
Activities Within an Individual Cluster Component

- Canal - most important linkage with ports
 - Interaction with the ports accounting for 98% of the total estimate of Canal contribution to cluster economies and network effects
- FTZ - most important linkage with ports
 - Accounts for 80% of variation
- Tourism - most important element is itself since combination of cruise ship and canal tourism
Activities Within an Individual Cluster Component

- Colon Free Trade Zone accounts for 68% of the Bunkering & Shipping Agencies component
 - Ports also provide an important linkage
- Chandlers are most closely linked to the ports and the FTZ
 - Each accounting for 52% and 34% of contribution of that component
Conclusions

- The gravity model provides an estimate of maritime cluster economies and supply chain network effects
- Estimates over time will help to understand the growth of these effects
- Model helps to provide an understanding of which components are most important to the cluster and which activities are most closely linked
Conclusions

- The model allows us to peer inside the cluster to understand the inner workings of linkages among the cluster elements.
- This information can play an important role in shaping public policy regarding cluster development and enhancement.
Future Work

- Gravity Model – Expand the number of cluster components included in the analysis
- Production Function Formulation – Perform econometric estimation of the function
- Cluster Development Over Time – ACP currently developing economic model of Panama economy. Can be used to understand how cluster has changed over time
- Public Policy – Investigation of how public policy tools can best be focused to enhance cluster development