
Subject Description Form

Subject Code ENG2002

Subject Title Computer Programming

Credit Value 3

Level 2

Pre-requisite/Co-
requisite/Exclusion

Nil

Objectives (i) To introduce the fundamental concepts of computer programming.
(ii) To equip students with solid skills in Python programming.
(iii) To equip students with techniques for developing structured and object-

oriented computer programs.
(iv) To demonstrate the techniques for implementing engineering applications

using computer programs.

Intended Subject
Learning Outcomes

Upon completion of the subject, students will be able to:

1. Familiarize themselves with at least one Python programming environment.
2. Be proficient in using the basic constructs of Python to develop a computer

program.
3. Develop a structured and documented computer program.
4. Understand the fundamentals of object-oriented programming and be able

to apply it in computer program development.
5. Apply computer programming techniques to solve practical engineering

problems.

Subject Synopsis/
Indicative Syllabus

Syllabus:

1. Introduction to Programming

Components of a computer; Data representation in computers;
Programming environment; Python IDE; Editing, saving, and running a
script; Process of application development.

2. Bolts and Nuts of Python
Data types; Variables and constants; Operators, expressions, and
statements; Basic syntax; Functions and modules; Scope of variables;
Python modules; Absolute and relative import.

3. Program Flow Control and Functions
Branching and looping; Iterators; Unicode; Python functions; static
functions; Lambda function; Position arguments and default arguments;
args and kwargs; Interface with command line; argparse

4. Program Design and Debugging
Structured program design; Testing and debugging a program; Exception
and assertion.

5. Strings and File I/O
String encoding format; F-string; String operations; String and number
conversion; File and directory manipulations; The “os”, “sys”, and “shutil”
modules; Reading/writing text and numbers from/to a file.

6. Tuples, Lists, Dictionaries, and Sets
Basic tuple and list operations; Searching and sorting lists; Dictionary
literals; Basic dictionary operations; Built-in tuple/list/dictionary/set
methods and functions; Use of enumerate and zip

7. Basic Object-Oriented Programming

Objects and classes; Attributes and methods; Inheritance and
polymorphism; Special methods and operator overloading.

8. Data Analytics with Python Libraries
Introduction to NumPy, Pandas, and Matplotlib; NumPy arrays, built-in
methods, and mathematical operations; Reading/writing data files using
Pandas; Pandas operations and functions; Data visualization with
Matplotlib

Teaching/Learning
Methodology

Teaching and
Learning Method

Intended
Subject
Learning
Outcome

Remarks

Lectures,
supplemented with
short quizzes

2,3,4 Students are introduced to the
knowledge of computer
programming through explanation
and illustrative examples.
Comprehension of the knowledge
is strengthened with short quizzes.
Students will be able to monitor the
skills of using Python and apply the
techniques of developing
structured object-oriented
applications.

Laboratories/tutorials
where problems are
given to students for
them to solve

1,2,3,4 Students apply what they have
learnt in lectures and solve
problems in exercises. The
purpose is to ensure students have
captured the important points.
Tutors will aid the lecturer in
helping the students finishing the
exercises, and interactive Q&A will
take place.

Assignment, tests
and final examination

1,2,3,4,5 By doing assignment, students will
develop a firm understanding and
comprehension of the knowledge
taught. They will analyse given
Python applications and apply
knowledge to solve problems.
They will have to design solutions
by evaluating different alternatives.
To enhance the students’ problem-
solving skill in a given
programming environment, open-
book programming tests are
arranged regularly. To assure
students’ understanding of
fundamental concepts, a closed-
book final examination is arranged.

Assessment
Methods in
Alignment with
Intended Learning
Outcomes

Specific Assessment
Methods/Tasks

%
Weighting

Intended subject learning
outcomes to be assessed

1 2 3 4 5

1. In-class exercises
and homework

10%    

2. Short-quizzes 10%   

3. Programming tests 30%     

4. Assignment 20%     

5. Final examination 30%     

Total 100%

Explanation of the appropriateness of the assessment methods in
assessing the intended learning outcomes:

The short-quizzes are for assessing the understanding of fundamental
concepts. The in-class exercises and homework are conducted to help
students familiarized with the programming language and skills. The
programming tests are for assessing the ability of students on solving computer
problems through programming within a specified period. Through doing
assignments, students will be able to experience how to solve engineering
problems and design solutions by using a systematic approach. The final
examination is for assessing the students’ ability on using the programming
language and analysing computer programs.

Student Study Effort
Expected

Class contact:

• Lectures, Tests and Quizzes 26 Hours

• Laboratory/Tutorial 13 Hours

Other student study effort:

• Self-studying 57 Hours

• Homework 12 Hours

Total student study effort: 108 Hours

Reading List and
References

Reference Books:
1. G. van Rossum and the Python development team, Python Tutorial

Release 3.10.0, Nov. 2021.
2. C. Hill, Learning Scientific Programming with Python, (2nd ed.) Cambridge:

Cambridge University Press, 2020.
3. C.P. Millike, Python Projects for Beginners: a ten-week bootcamp approach

to Python programming. Berkeley, CA: Apress, 2020.

January 2023

