
Session H4C

978-1-4673-2418-2/12/$31.00 ©2012 IEEE August 20–23, 2012, Hong Kong
IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE) 2012

H4C-1

A System to Assist the Learning of
Embedded Microprocessor Programming

Yu-fai Fung, Shuyun Ren
Department of Electrical Engineering

The Hong Kong Polytechnic University
Hong Kong SAR

eeyffung@polyu.edu.hk

M. Fikret Ercan
School of Electrical and Electronic Engineering

Singapore Polytechnic
Singapore

mfercan@sp.edu.sg

Abstract—When implementing final year projects, students
may need to program a microprocessor in order to achieve the
project objectives. Therefore, a system is designed in order to
assist students who have limited background knowledge in
computer engineering to learn the basics of microprocessor
programming primarily using the C programming language. In
addition to the software, various hardware components are
provided so that students can develop simple systems so the
learning outcomes can be enhanced by practice. From feedback
collected, users found that they are able to learn simple C
language programming for a microprocessor with the help of the
system.

Index Terms—embedded systems; microprocessor; C
programming language; forms programming

I. INTRODUCTION
There are two undergraduate programs which are Electrical

Engineering and Transportations System Engineering offered
by the Department of Electrical Engineering of The Hong
Kong Polytechnic University. Due to the design of the
curricula, students acquire only a basic training in computing.
For Electrical Engineering (EE) students, C++ programming,
basic assembly language programming and fundamental
computer engineering are included in the first and second-year
curriculum. But in the case of Transportation Systems
Engineering (TSE), students only learn C++ programming in
their first year of studies. Many students find programming
irrelevant to their major studies and are not interested in
learning the subject. Therefore, when students are required to
apply their computing knowledge to implement their final-year
projects, they find it difficult partly because their knowledge is
built by memorizing facts which is now fading and also due to
their training being not comprehensive. In order to help the
students, we would like to implement a system through which
students can learn both software and hardware techniques
relevant to implementing an embedded system themselves. We
targeted embedded system because many final-year projects
developed by students can be classified as embedded systems,
projects such as auto-pilot system for an electrical vehicle,
regenerative braking system and hybrid energy source
management system are some examples. For TSE students,
without the training in computer engineering, they need to put
in extra efforts in order to achieve similar tasks; hence the need
for a self-learning tool is more obvious.

Our objective is to develop a system that can supplement
our teaching for which the 8051-type microprocessor (the
Analog Device ADuC832 [1]) is used, therefore, our system is
also targeted for the same microprocessor instead of the
Arduino or the LEGO system. With the help of the system, our
students are able to learn the basic syntax of programming the
processor, using C language, as well as the design of certain
hardware modules such as a motor driver, keypad etc.

In this paper, we will first discuss the design of the system
in the next section which is followed by details regarding the
architecture of the system. In Section IV, the results of
evaluation of the system will be presented and this is followed
by the conclusions.

II. SYSTEM DESIGN

A. System Model
A typical embedded system involves both hardware and

software components. The hardware may include sensors and
actuators, while the software is used to control these hardware
modules. For example, to implement an auto-pilot system, we
can apply camera to locate the road markings and motors to
drive the robot. The software written should process signals
received from the camera and then produce a proper output to
control the actuators so that the robot can follow a path. The
basic operating mechanism of the system is to process input
signal coming from input devices and then output a proper
control signal to various output devices according to the
program written by the user. From our observations, such
model maps well to most projects implemented by our final-
year students. So the operation flow of the system, as depicted
in Fig. 1, is based on the input/output interaction between the
different components.

The initial stages of the operation mechanism are defining
the input and output modules included in the current design.
The system will provide a list of available I/O components for
the user to select and the user only need to input information
regarding the port and pin number that the component is
connected to; all these are through a graphical user interface
(GUI). Once the I/O components have been defined, the next
step which is optional, user can also define the initial operation
to be performed when powered is on. The next step is most
important; it allows the user to relate the action to be performed

This work was supported by a small-scale learning and teaching
development project grant from the The Hong Kong Polytechnic University
(Project code: LTG09-12/SS/EE1).

Session H4C

978-1-4673-2418-2/12/$31.00 ©2012 IEEE August 20–23, 2012, Hong Kong
IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE) 2012

H4C-2

by the output device according to the status of the input
condition. The GUI for defining the relationships between
input signal to output operation is shown in Fig. 2. For
example, if the input device is an IR sensor and the output
device is a 7-segment display then the user can configure the
system to execute the desired action such as when the IR
sensor is ON then the display will show the value 1. Once
again, all these are completed by using the corresponding GUI.
The final step is to create the C program according to the
information given by the user.

Once the source program is created, the student can
examine the program in order to learn its syntax. To test the
program, the student should connect the components as defined
and then compile the program using the Keil compiler [2]. As a
learning process, student can modify the source program
directly in order to test his/her understanding of the
programming language. Furthermore, the student can create
another program with different I/O combinations to compare
the various programming approaches. Therefore, our system
provides students an environment to learn by doing [3].

B. Hardware Modules
In order to provide students a working system to test the

concept of an embedded system, there must be some hardware
modules. As mentioned in the Introduction, the microprocessor
adopted in the system is the ADuC832 from Analog Devices.
The processor has the 8052 core and therefore it is compatible
with the 8051 instruction set. Besides the processor module,
there are some basic I/O modules including keypad, display,
different types of motors and IR sensors. Based on the
available modules, it is possible to implement a basic speed
control of a DC motor which represents a typical robotic
system.

Figure 1. Operation flow of the system.

The hardware components do not require special design
consideration provided that they can be interfaced with the I/O
ports of the processor. On the other hand, the software of the
system is more significant and is presented in the next section.

III. THE SOFTWARE SYSTEM
The major role of the software component is to assist

students to develop a proper C language program for the
ADuC832 processor so that control of the input/output devices
can be achieved. Based on the design of a similar system [4],
which was tailored for assembly language programming, we
had identified the following design criteria:

1) user-friendliness;

2) proper support of hardware modules; and

3) able to produce the correct C program.

In order to make the system user-friendly, a graphical user
interface (GUI) based on the Windows Forms programming [5]
is adopted as it is easy to implement and maintain. Most
importantly, it is executable in most computers available in our
campus.

There are many different types of I/O modules that can be
included in our system, therefore, it must be expandable to
incorporated new modules easily. The approach used is based
on definition files which are used to identify features of a
device as well as the required program codes to achieve those
features. The definition files are simple text files and can be
created by any text editor. There are two master files, one for
storing all the available input modules and the other is for the
output modules. If the name of the module is not included in
the master files then users will not able to utilize it in the rest of
the process.

Figure 2. The GUI to determine operation performed by an output device.

Besides the master files, the files pertained to the device are
the most important. For example, if the device is a LED
module that can perform two functions – ON and OFF then
three files will be created, namely LEDS.txt, LEDSON.txt and
LEDSOFF.txt. The file, LEDS.txt, will define functions
supported by the device and in this case – ON and OFF. The
LEDSON.txt file contains programming information regarding
how to turn-on the LED and in this example, a single line of
code (P* = 0FFH) is needed. The symbol ‘P*’ in the statement

Session H4C

978-1-4673-2418-2/12/$31.00 ©2012 IEEE August 20–23, 2012, Hong Kong
IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE) 2012

H4C-3

represents the port that the LED is connected to. Since which
port is being used cannot be determined in advance so the
symbol ‘*’ will be replaced by the actual port number based on
information provided by the user. There is one advantage of
using such an approach. As there are various methods to
implement a function so the designer, or the instructor, can
highlight different programming techniques with different
modules. For example, a LED can be used to emphasize how to
output data from a port, whilst the keypad can be used to
illustrate the IF-ELSE construct. Alternatively, different
versions of the same device can be provided so that the user
can learn different approaches to achieve the same goal.

When a device is being selected the information related to
its functions will be extracted from corresponding files. The
process of converting user’s input into a correct C program is
relied on the source codes provided in the function specific
files, such as LEDON.txt, described in the previous paragraphs.
The core operations performed by the system are:

1) substituting the port number and pin number used by
the device; and

2) combining all necessary components into a valid
program.

IV. SYSTEM EVALUATION
The design and architecture of the system discussed in the

previous sections are evaluated for teaching microprocessor
programming. In this section, we will describe how the system
was evaluated. Electrical Engineering students were presented
with the system and required to achieve the task of writing a
program to control the speed of a DC motor based on the PWM
mechanism with a keypad acting as the input device. Our
objective is to gauge the effectiveness of the system as a self-
learning tool, therefore, some features of the system were
disabled. Hence, students must modify the program generated
by the system in order to complete the task. In this case, the
system only supports a single speed setting which is 50% duty-
cycle. Therefore, students must study the program which can
only output a 50% duty-cycle and then extending its functions
to include two more speed levels namely slow (30% duty-
cycle) and fast (70% duty-cycle).

A simple manual was given to the students so that by
following the steps, students can learn how to make use of the
system. Students were asked first to go through a simple
exercise in order to learn the basic operating mechanisms of the
system. At the end of the exercise, a survey was conducted and
32 students participated in the survey.

Regarding functionalities of the system, majority of the
students agree that the system is easy to use (over 80%) and the
system can produce a proper C program based on information
provided by users. It is interesting that only about 63% of the
students would like to use the system to implement an actual

system and only 50% of the students think that other subjects
should also provide similar tools. Certainly, the most important
question would be related to the learning outcome. Half of the
students, 56% and 44% respectively, agree that the system can
help them to learn as well as they have learnt some basic C
language programming syntax for the microprocessor. The
other half is mainly neutral and only a small percentage (6%
and 3%) is holding a negative attitude towards the matter.

In addition to the survey, students were also given a quiz to
evaluate their understanding of the programming syntax of the
C language by comparing to those of an assembly language.
Results from the quiz indicate that over 90% of the group were
able to answer the questions correctly. This could be another
indicator of their learning outcome.

V. CONCLUSION
In this paper, we discussed the design of a system which

can be used as a self-learning tool for C language programming
for an 8052 core microprocessor. The system allows user to
implement an embedded system very rapidly provided that the
proper hardware modules are available. The C source program
can be accessed by the user. Therefore, by testing different
settings and combinations, it enables the student to understand
the different programming syntax and achieving the different
programming tasks. With such exercise, self-learning can be
accomplished.

The system was evaluated by a group of students who have
background training in assembly language programming. From
the survey collected from the students, we can conclude that
students are in general satisfied with the functionalities of the
system. As a self-learning tool, it is too soon to draw a final
conclusion regarding its effectiveness as from the survey only
half of the students answered positively to questions related to
the learning aspect. More studies should be conducted
especially in cases where users have limited knowledge in
microprocessor systems, for example, students doing TSE
program in our Department will be a suitable user group to test
the system.

REFERENCES
[1] Analog Devices, ADuC832 Data Sheet. Norwood, MA: Author, 2009.
[2] Keil Compiler User Manual, ARM [Online]. Available:

http://www.keil.com/.
[3] D. H. Jonassen, “Designing constructivist learning environments,” in

Instructional-Design Theories and Models, A New Paradigm of
Instructional Theory, vol. 2, C. M. Reigeluth, Ed. Mahwah, NJ:
Lawrence Erlbaum, 1999, pp. 215–239.

[4] C. F. Chau and Y. F. Fung, “A tool for self-learning assembly language
programming and computer architecture: design and evaluation,”
Comput. Applic. Eng. Educ., vol. 19, no. 2, pp. 286–293, 2011.

[5] H. M. Deitel et al., Visual C++.NET: How to Program. Upper Saddle
River, NJ: Prentice Hall, 2004.

