Subject Description Form

Subject Code	COMP4423					
Subject Title	Computer Vision					
Credit Value	3					
Level	4					
Pre-requisite / Co-requisite / Exclusion	Pre-requisite: COMP1011/COMP1012 or ENG2002 (Computer Programming) for EEE students					
Objectives	 The objectives of this subject are: Provide an understanding of the fundamental principles of computer vision. Offer hands-on experience to students in applying machine learning and deep learning for real-world applications. Showcase breakthrough applications across different domains enabled by computer vision. 					
Intended Learning Outcomes	 Upon completion of this course, students will: (a) Demonstrate a solid understanding of image sensing, pixel arrays, and digital image representations. (b) Effectively apply image processing techniques for image enhancement and analysis. (c) Implement computer vision algorithms for feature extraction, image classification, image retrieval, object detection, feature extraction, and image generation. (d) Apply computer vision and image processing methods to solve real-world problems. (e) Recognize and evaluate the significance of deep learning applications in computer vision. 					

Subject Synopsis/ Indicative Syllabus	This course provides an introduction to computer vision, covering its principles, mathematical models, and practical applications. The key topics encompassed in this course include image processing, feature extraction, image classification and retrieval, object detection, image segmentation, and image synthesis. These topics will be explored within the framework of both traditional machine learning and deep learning. Students will develop a solid understanding of the fundamental concepts of computer vision and gain practical experience in solving real-world vision problems.					
	Торіс					
	1. Introduction to Computer Vision					
	Introduction to Human Visual System, Image Formation and Digital Image Representations, Camera Model and Geometry					
	2. Image Processing Operations					
	Image Enhancement, Image Sampling and Rotation, Image Filtering, Edge Detection, Morphological Operations					
	3. Feature Extraction					
	Designing Image Descriptors, Feature Descriptors, Global and Local Features, Feature Maps, Feature Aggregation					
	4. Computer Vision Tasks					
	Image Classification and Retrieval, Object Detection, Image Segmentation, Image Synthesis					
	5. Deep Neural Networks					
	Perceptron, Neural Network, Perceptron Training, Gradient Descent, Backpropagation, Convolutional Neural Networks, Attention Mechanisms, Few-shot Learning, Generative Adversarial Network, Transformers, Large- Scale Pretraining, Generative Models					
Teaching/ Learning Methodology	Lectures: The primary focus will be on introducing computer vision and covering fundamental image processing operations. The lectures will delve into topics such as feature extraction, image enhancement, image classification, and object recognition principles, all of which are relevant to real-world applications.					
	Tutorials: Students will engage in practical exercises to gain firsthand experience in applying computer vision algorithms. Each week, a set of tutorial problems will be assigned, focusing on specific image analysis challenges. Students will be encouraged to develop their own solutions to these problems, fostering their problem-solving skills in the realm of computer vision.					
	Assignments: Students will be tasked with implementing specific computer vision algorithms and devising solutions for real-world problems. They will also analyze the performance of their solutions and learn to justify their approaches in tackling the given real-world challenges. This will enable students to enhance their practical skills in applying computer vision techniques and develop critical thinking in evaluating and justifying their chosen solutions.					
	Project: Students will have the opportunity to design and develop a relevant computer vision-based solution for a real-world application. By applying the image processing principles learned in this course, they will gain experience in developing expected or					

	innovative solutions for the showcase their understanding them effectively to address p	g of computer	vision c					
Assessment Methods in Alignment with Intended Learning	Specific assessment methods/tasks	Intended subject learning outcomes to be assessed						
			a	b	c	d	e	
Outcomes	Continuous Assessment	55%			I	I	1	
	1. Assignment I	15%	~	~				
	2. Assignment II	15%	~		~	~		
	3. Project	25%	~	~	✓	~	~	
	Examination	45%	~	~	✓	~	~	
	Total	100%					<u> </u>	
	selecting and implementing a applications. The students can Examination: The examinat capability to understand com modifications for a given applications of basic image p	n be in a group tion compone uputer vision problem and	p of 2-3 ent will algorithed ascert	students help to ms, app	s for any ascerta ly them	specific in the s with app	project. students' propriate	
Student Study Effort Expected	Class contact:							
	Lecture					26 Hrs.		
	Tutorial/Lab 13 Hrs							
	Other student study effort:							
	Regular Reading and Assignment Effort					80 Hrs.		
	Total student study effort					119 Hrs.		
Reading List and References	Reference Books:1.Forsyth, David A. and PEdition, Pearson, 2019.	Ponce, Jean, Co	omputer	Vision:	A Mode	rn Appro	$pach, 2^{nd}$	

2.	Szeliski, Richard, Computer Vision: Algorithms and Applications (2 nd Ed.), Springer, 2022.
3.	Gonzalez, Rafael and Woods, Richard, Digital Image Processing, 4th Edition, 2018.