Subject Description Form

Subject Code	COMP4011				
Subject Title	Theory of Computation				
Credit Value	3				
Level	4				
Pre-requisite / Co-requisite / Exclusion	Pre-requisite: COMP3011				
Objectives	The objectives of this subject are to:				
	1. provide students with concepts in theory of computation; and				
	2. develop students' ability for comprehending mathematical proofs (in theory of computation).				
Intended	Upon completion of the subject, students will be able to:				
Outcomes	Professional/academic knowledge and skills				
	(a) analyse and design automata and Turing machines;				
	(b) prove results in theory of computation;				
	(c) demonstrate in-depth understanding of computability, decidability, and complexity;				
	<u>Attributes for all-roundedness</u>				
	(d) solve problems independently; and				
	(e) think critically for improvement in solutions.				
Subject Synopsis/	Торіс				
Indicative Syllabus	1. Automata				
	Finite automata (DFA, NFA).				
	2. Regular Expressions and Languages				
	Regular expressions, conversion between DFA and regular expressions, properties of regular languages.				
	3. Context-free Grammars and Languages				
	Context-free grammars, parse trees, ambiguity in grammars, normal forms, Chomsky hierarchy.				
	4. Pushdown Automata				
	Pushdown automata (PDA), pumping lemma, properties of PDA.				

	5. Turing Machines							
	Turing machines (TM), extensions to TM, relation to computers.							
	6. Computability and Decidability							
	 Computability, Church-Turing thesis, the halting problem, other undeciproblems, technique of reduction. 7. Intractable Problems The classes P and NP, NP-completeness. 							
	8. Advanced Topics and Applications							
	Polynomial-space Turing machines, randomised Turing machine testing, cryptography, game theory, quantum computing.						rimality	
Teaching/ Learning Methodology	Lectures provide students the main concepts of the topic, together with comprehensive examples for easy understanding. Tutorial sessions offer an opportunity to students for practicing their techniques. Assignments help students develop their design and analysis skills.							
Assessment Methods in Alignment with	Specific assessment methods/tasks	t % weighting	Intended subject learning outcomes to be assessed					
Intended Learning			а	b	с	d	e	
Outcomes	Continuous Assessment	60%		1		1		
	1. Assignments	00%0	~	~	\checkmark	~	~	
	Examination	40%	✓	~	\checkmark	~	~	
	Total	100%						
	Explanation of the appropriateness of the assessment methods in assessing the intended learning outcomes: Both assignments and examination are used to test students' understanding of the							
	subject materials.							
Student Study Effort Expected	Class contact:							
	Lecture				26 Hrs.			
	Tutorial 13 Hrs.							
	Other student study effort:							
	 Reading Book Chapters, J 	Assignments			66 Hrs.			
	Total student study effort					105 Hrs.		

Reading List and References	Reference Book:					
	1. Hopcroft, John E., Motwani, Rajeev, Ullman, Jeffrey D., Introduction to Automata Theory, Languages, and Computation, 3 rd Edition, Pearson, ISBN 1292039051, 2013.					