
Jul 2021

Subject Description Form

Subject Code COMP3438

Subject Title System Programming

Credit Value 3

Level 3

Pre-requisite /
Co-requisite /
Exclusion

Pre-requisite: COMP2432

Objectives The objectives of this subject are to:

1. introduce students the concepts and principles of system programming and to
enable them to understand the duties and scope of a system programmer;

2. provide students the knowledge about both theoretical and practical aspects of
system programming, teaching them the methods and techniques for designing
and implementing system-level programs; and

3. train students in developing skills for writing system software with the aid of
sophisticated OS services, programming languages and utility tools.

Intended
Learning
Outcomes

Upon completion of the subject, students will be able to:

Professional/academic knowledge and skills

(a) organise the functionalities and components of a computer system into different
layers, and have a good understanding of the role of system programming and
the scope of duties and tasks of a system programmer;

(b) grasp the concepts and principles, and be familiar with the approaches and
methods of developing system-level software (e.g., compiler, and networking
software);

(c) apply the knowledge and techniques learnt to develop solutions to real-world
problems;

(d) select and make use of the OS kernel functions and their APIs, standard
programming languages, and utility tools;

(e) organise and manage software built for deployment and demonstration; and

Attributes for all-roundedness

(f) analyse requirements and solve problems using systematic planning and
development approaches.

Jul 2021

Subject
Synopsis/
Indicative
Syllabus

Topic

1. Introduction to System Programming and Unix

Layered structure of a computer system; system software and application
software; scope and tasks of system programming. Evolution of UNIX;
features of UNIX; UNIX standards; good style of UNIX programming.

2. Introduction to UNIX Systems

Files; types of UNIX files; UNIX file system; structure and representation of
files in UNIX file system; directories; accessing files in UNIX; I/O redirection;
devices and device drivers; UNIX file interface (APIs). UNIX shell; UNIX
process creations and execution; process management; parent and child
processes; UNIX process interfaces (APIs).

3. Introduction to Unix Device Driver

Device Drivers; design issues; types of device drivers; major components of a
device driver.

4. Device Driver Development

OS/Driver interface; internal operations of a device driver; structure and major
components; address spaces and data transfer; typical character/block driver
design and implementation.

5. Overview of Compiler Construction

Syntax and semantics of programming languages; language translation
approaches; tasks of a compiler; the compiler process.

6. Lexical Analysis

Tasks of lexical analysis; specifying tokens by regular grammars and regular
expressions; recognizing tokens by Finite Automata (FA); construction of FA
from regular expressions; converting NFA to DFA; simulating DFA.

7. Syntax Analysis

Tasks of syntax analysis; specifying language constructs by context-free
grammars; BNF; derivation; parse and syntax trees; recognizing language
constructs by Pushdown Automata; top-down and bottom-up parsing methods.

8. Code Generation

Intermediate compilation phases; symbol table; intermediate code generation;
code optimisation; code generation.

Tutorials: 3 hours

Laboratory Experiment:

Topic

1. UNIX System and C Programming
2. UNIX Programming (processes, files, device drivers)

Jul 2021

Teaching/
Learning
Methodology

In lectures, concepts, models and algorithms will be explained with illustrative
examples.

Tutorials and lab sessions help students understand concepts and improve their skills
on solving problems.

Assignments help develop students’ programming skills and critical thinking.

Assessment
Methods in
Alignment with
Intended
Learning
Outcomes

Specific assessment
methods/tasks

%
weighting

Intended subject learning outcomes to be
assessed

a b c d e f

Continuous
Assessment 55%

1. Assignments 35%      

2. Mid-Term 20%    

Examination 45%     

Total 100%

All three items are appropriate to evaluate the intended learning outcomes.
Assignments are used to evaluate writing skills, critical thinking, and problem
solving. Mid-term test and final examination can further help evaluate the related
outcomes.

Student Study
Effort Expected

Class contact:

 Lecture and Tutorial 39 Hrs.

 Lab 13 Hrs.

Other student study effort:

 Assignments and Self-study 60 Hrs.

Total student study effort 112 Hrs.

Reading List
and References

Textbook:

1. Aho, A.V., Lam, Monica S., Sethi, R. and Ullman, J.D., Compilers: Principles,
Techniques, and Tools, 2nd Edition, Addison-Wesley, 2006.

2. Molay, B., Understanding Unix/Linux Programming, Pearson Education, 2003.

Reference Books:

1. Stevens, W. R. and Rago, S. A., Advanced Programming in the UNIX
Environment, 2nd Edition, Addison-Wesley, 2005.

2. Appel, A.W., Modern Compiler Implementation in Java, Foundation Books,
2007.

Jul 2021

3. Beck, L.L., System Software: an Introduction to System programming, 3rd
Edition, Addison Wesley, 1996.

4. Cooper, K. and Torczon, L., Engineering a Compiler, Morgan Kaufmann,
2003.

5. Cooperstein, J., Writing Linux Device Drivers: a guide with exercises,
CreateSpace, 2009.

6. Corbet, J., Rubini, A., and Kroah-Hartman, G., Linux Device Drivers, 3rd
Edition, O'Reilly, 2005.

