
Dec 2023

Subject Description Form

Subject Code COMP3022

Subject Title Algorithms Engineering

Credit Value 3

Level 3

Pre-requisite /
Co-requisite/
Exclusion

Pre-requisite:
COMP1011/COMP1012/ENG2002 &
COMP1411 & COMP2011/COMP2013

Objectives

The objectives of this subject are to:

1. design and implement algorithms for real-life computational problems,

with comprehensive consideration of data characteristics, problem
instances and implementation options; and

2. design, conduct, and analyse experiments for comparing the
performance of algorithms with respect to a problem

Intended Learning
Outcomes

Upon completion of the subject, students will be able to:

Professional/academic knowledge and skills
(a) identify the key requirements of real-life computational problems (e.g.,

response time, memory consumption, solution quality);

(b) design comprehensive experiments for comparing the performance of
experimental algorithms;

(c) develop efficient algorithms for real-life computational problems; and

Attributes for all-roundedness
(d) present algorithms, experimental results and analysis clearly to fellow

students.

Subject Synopsis/
Indicative Syllabus

Topic

1. Introduction
 Basic concepts (e.g., requirements, computational problems,

algorithms, experiments), real-life examples of challenging problems
(e.g., vehicle routing, route searching, graph partitioning, near
neighbour search)

2. Problem requirements

Types of requirements (e.g., response time, memory consumption,
solution quality), constraints, optimisation objectives

Dec 2023

3. Analysis of data and problem instances
 Identification of the characteristics of data and problem instances,

utilisation of characteristics in designing algorithms

4. Performance-oriented design of algorithms

Performance profiling, analysis on the performance bottleneck,
techniques on optimizing the response time, the memory consumption,
and the solution quality of algorithms

5. Implementation options
Usage of library functions, usage of compiler options (e.g.,
optimisation options), multi-threading, vectorised code / single-
instruction-multiple-data (SIMD)

6. Experiments
 Ways of measuring the performance, preparation of test cases and

benchmarks, experimental goals, effects of system and hardware
settings, experimental reproducibility, analysis of experimental results

7. Presentation
Guidelines and practices on presenting algorithms and experimental
results, in written and oral formats

Teaching/Learning
Methodology

Students are expected to be proficient in programming (in C, C++, Java, or
Python) and possess basic knowledge in data structures and algorithms.
Lectures will cover the basic concepts and techniques.
Lab sessions offer an opportunity to students for practicing their skills.
Assignments and individual project will be used to assess the abilities of
students in developing algorithms, designing experiments, presenting
results and analysis.

Assessment
Methods in
Alignment with
Intended Learning
Outcomes

Explanation of the appropriateness of the assessment methods in assessing
the intended learning outcomes:
All assessment methods are used to assess the items a, b, c.
In addition, an individual project is used to assess presentation skills (both
written and oral).

Specific assessment
methods/tasks

%
weighting

Intended subject learning outcomes
to be assessed

a b c d

1. Individual assignments 30%

2. Individual project 30%

3. Final exam 40%

Total 100%

Dec 2023

Student Study
Effort Expected

Class contact:

 Lectures 26 Hrs.

 Lab exercises 13 Hrs.

Other student study effort:

 Individual assignments and individual project 66 Hrs.

Total student study effort 105 Hrs.

Reading List and
References

Reference books:
1. Catherine C. McGeoch, A Guide to Experimental Algorithmics.

Cambridge University Press 2012, ISBN 978-0-521-17301-8
2. Rudolf Fleischer, Bernard M. E. Moret, and Erik M Schmidt,

Experimental Algorithmics: From algorithm design to robust and
efficient software, Lecture Notes in Computer Science, 2547,
Springer, 2002.

3. Paul Cohen, Empirical Methods for Artificial Intelligence, MIT
Press 1995.

4. S Halim and F Halim, Competitive Programming 3: The New
Lower Bound of Programming Contests, Lulu Press, 2014.

5. Steven S Skiena and Miguel A. Revilla, Programming challenges,
Springer, 2003.

Online references:
1. The DIMACS Implementation Challenges:

http://dimacs.rutgers.edu/programs/challenge/
2. ACM Journal of Experimental Algorithmics (JEA).

https://dl.acm.org/journal/jea
3. International Symposium on Experimental Algorithms (SEA).

https://dblp.org/db/conf/wea/index.html
4. SIAM Symposium on Algorithm Engineering and Experiments

(ALENEX). https://dblp.org/db/conf/alenex/index.html

http://dimacs.rutgers.edu/programs/challenge/
https://dl.acm.org/journal/jea
https://dblp.org/db/conf/wea/index.html
https://dblp.org/db/conf/alenex/index.html

