
Jun 2021

Subject Description Form

Subject Code COMP3021

Subject Title Programming Language Paradigms

Credit Value 3

Pre-requisite /
Co-requisite/
Exclusion

Pre-requisite: COMP2011 Data Structures or equivalent

Co-requisite/Exclusion: Nil

Objectives

The objectives of this subject are to:
1. provide students with an understanding of various principles and

paradigms in programming languages; and

2. develop skills in describing, analysing, and using the features of
programming languages.

Intended Learning
Outcomes

Upon completion of the subject, students will be able to:

Professional/academic knowledge and skills
(a) understand the general language design principles;

(b) understand the control flow and execution of a programming language;

(c) be aware of different programming paradigms;

(d) evaluate the design of a given programming language for the application
at hand;

Attributes for all-roundedness
(e) solve problems independently; and

(f) think critically for a specific design and the rationale behind.

Jun 2021

Subject Synopsis/
Indicative Syllabus

Topic Duration of
Lectures

1. Programming language paradigms
 Overview of existing programming languages and

programming paradigms; history of programming
languages.

2

2. Scoping and sub-routine
Concept of blocks; environment; scope and visibility of
variables; static and dynamic scoping; run-time stack;
procedure call; parameter passing semantics; activation
records and recursion.

4

3. Concurrent & parallel languages
Multithreading, message passing, languages: Scala,
Go, Erlang, Clojure.

6

4. Functional languages
Mathematical functions, lists, function composition,
languages (e.g., Lisp, ML, Haskell).

6

5. Logic languages
Predicate calculus, theorem proving, logic
programming, languages (e.g., Prolog and its variants).

6

6. Memory management in programming languages
Pointers, dangling references, garbage collection,
common practices for programming.

2

Total 26

Teaching/Learning
Methodology

Lectures provide students the fundamental concepts of the topics, with
corresponding illustrative examples.

Tutorials and lab sessions enable students to experience with the features of
programming languages of different paradigms.

Assignments help students apply design and analysis techniques; whereas
the project focuses on implementation skills.

Jun 2021

Assessment
Methods in
Alignment with
Intended Learning
Outcomes

Explanation of the appropriateness of the assessment methods in assessing
the intended learning outcomes:
All five tasks are relevant to the assessment of programming language
design principles and paradigms (for items a, b).

Lab exercises are used to obtain hands-on experiences on programming
languages of different paradigms (for item c); the project assesses the
evaluation of a programming language for an application (for item d); the
mid-term and examination are used to assess independent problem solving
and critical thinking (for items e, f).

Specific assessment
methods/tasks

% weighting Intended subject learning outcomes
to be assessed

a b c d e f

1. Assignments

55%

2. Lab exercises

3. Project

4. Mid-term / Tests

5. Examination 45%

Total 100%

Student Study
Effort Expected

Class contact:

 Lecture 26 Hrs.

 Tutorial/Lab 13 Hrs.

Other student study effort:

 Assignments 13 Hrs.

 Project 52 Hrs.

Total student study effort 104 Hrs.

Reading List and
References

Textbooks:
1. Robert W. Sebesta, Concepts of Programming Languages, 12th

Edition, Pearson, 2019.
2. Allen B. Tucker and Robert E. Noonan, Programming Languages:

Principles and Paradigms, Second Edition, McGraw-Hill, 2007.

Reference Books:

1. Alfred V. Aho, Ravi Sethi and Jeffrey D. Ullman, Compilers:
Principles, Techniques, and Tools, Second Edition,
Pearson/Addison-Wesley, 2007.

2. Franklyn A. Turbak and Mark A. Sheldon, Design Concepts in
Programming Languages, MIT Press, 2008.

