
Nov 2024

Subject Description Form

Subject Code COMP2021

Subject Title Object-oriented Programming

Credit Value 3

Level 2

Pre-requisite /
Co-requisite /
Exclusion

Pre-requisite: COMP1011/COMP1012/ENG2002

Objectives The objectives of this subject are to:

1. introduce students the basic elements of object-oriented programming;

2. teach students how to program computer systems using an object-oriented
programming language;

3. familiarise students the tools that streamline object-oriented development; and

4. introduce lifelong learning to students

Intended
Learning
Outcomes

Upon completion of the subject, students will be able to:

Professional/academic knowledge and skills

(a) use an object-oriented programming language to solve computer problems;

(b) use an object-oriented programming language to build computer systems;

Attributes for all-roundedness

(c) build computer systems in groups and develop group work; and

(d) cooperate with team members in problem-solving.

Learning to learn

(e) recognize the need for lifelong learning;

(f) plan, conduct, evaluate, and adjust their self-learning activities in problem-
solving and software development.

Nov 2024

Subject
Synopsis/
Indicative
Syllabus

Topic

1. Object-based programming. Concept of objects and classes. Correspondence
between software objects and real-world objects. Object life cycle.

2. “Has-a” relationships and encapsulation. Data hiding and protection.

3. Object-oriented programming. Concept of class hierarchies. “Is-a”
relationships and inheritance. Overriding of methods. Polymorphism. Run-
time binding. Abstract classes and methods.

4. Multiple inheritance/Interfaces

5. Exception handling.

6. Generic programming.

7. Concurrency.

8. Use of UML to model OO projects.

Teaching/
Learning
Methodology

This subject emphasizes both the conceptual elements of computer programming and
practical experiences. A high-level, object-oriented programming language, such as
C++ or Java, will be used for illustration.

The lectures will be used to deliver course materials, and the knowledge learned will
be practiced/reinforced during the tutorials/labs. Individual/Group projects will be
given to help students obtain hands-on development experience.

Certain course project requirements concern aspects of object-oriented programming
that are not fully covered in lectures. Students need to plan, conduct, evaluate, and
adjust their self‐learning activities to master the related knowledge to accomplish the
corresponding tasks.

Peer review of the project design and implementation will be organized to highlight
the need for lifelong learning and to inspire perfectionism in students.

Assessment
Methods in
Alignment with
Intended
Learning
Outcomes

Specific assessment
methods/tasks

%
weighting

Intended subject learning outcomes to be
assessed

a b c d e f

Continuous
Assessment

60%

1. Assignments,
Quizzes & Projects

Final Examination 40%

Total 100%

Notes:

Project software artifacts submitted at the end of the subject will be assessed with
respect to the project requirements, and the peer review reports need to contain

Nov 2024

students’ reflections on the processes and results of their self-learning activities as
well as the identified paths to improve their self-learning approaches.

If a student fails either the continuous assessment component or the final exam
component, his/her overall grade shall not exceed C-.

Student Study
Effort Expected

Class contact:

 Lecture 39 Hrs.

 Tutorial/Lab 13 Hrs.

Other student study effort:

 Assignments, Quizzes, Projects, Exam 68 Hrs.

Total student study effort 120 Hrs.

Reading List
and References

Reference Books:

1. Horstmann, Cay S., Core Java Volume I – Fundamentals, 10th Edition, Prentice
Hall, 2016.

2. Bates, Bert and Sierra, Kathy, Head First Java, 2nd Edition, O’Reilly Media,
2005.

3. Bloch, Joshua, Effective Java, 2nd Edition, Addison-Wesley, 2008.

4. Larman, Craig, Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development, 3rd Edition, Prentice
Hall, 2004.

