
Jul 2015

Subject Description Form

Subject Code COMP 1D04

Subject Title From Scratch to Apps: Foundations of Computational Thinking and Literacy for
Problem Solving

Credit Value 3

Level 1

Medium of
Instruction

English

Pre-requisite and/or
Exclusion(s)

Pre-requisites: Nil

Exclusion:
COMP 1901 Seminars and Topics in Information Technology
COMP 1011 Programming Fundamentals

Objectives

Specific objectives of the subject:

This subject combines relevant content from two subjects for the Broad Discipline of
Computing – the Freshman Seminar and Programming Fundamentals subjects – into a
single subject that is intended specifically for non-Computing students. The objectives
are (1) to introduce non-major students to core concepts of computing as problem-
solving principles, (2) to give them a broad-based foundation in computational thinking
and logical literacy, and (3) to relate the concepts to real-life problems in a broad range
of domains.

Students are not expected to have any background in Computing or programming. The
subject will cover computational concepts, including sequential logic, abstraction and
problem-solving techniques through a hands-on, example-based learning approach. The
hands-on activities will start with a graphical-based, drag-and-drop programming
language such as Scratch, Alice, App Inventor and/or programming environments such
as Excel macros. A gradual, guided transition will then be made to high-level
programming language such as Python or php.

Examples and projects will be centered around applying the computational thinking
skills acquired in class to problems inspired from real-world domains, such as music,
movies, social networks, finance, etc.

Intended Learning
Outcomes

Upon completion of the subject, students will be able to:
(a) understand the basic concepts of computational thinking, including

sequential logic, abstractions, conceptualisation and problem-solving;
(b) possess the ability to design and develop programs to solve basic

computational problems;
(c) possess the ability to model real-life problems as computational

problems; and
(d) possess the ability to extend their knowledge towards learning other high

level programming languages independently.

Relationship between the learning outcomes with the following three essential features:
Literacy, Higher order thinking, and Life-long learning

Literacy:
Learning outcomes (c) and (d) will require students to possess and develop basic
English literacy. Students will be also assigned pre-lecture readings from popular

Jul 2015

computing magazines and journals to broaden their knowledge and exposure to the
field.

In addition, learning outcomes (a)-(c) are designed to teach and to train students’
computational and logical literacy. Substantive practice will be required from students
through reading, designing and implementing programs.

Higher-Order Thinking:
Learning outcomes (b) and (c) are designed to teach and to train students’ higher-order
thinking and problem-solving skills by requiring them to apply basic computational
thinking methods and concepts to solving problems. These problems will range from
straightforward computational problems to more complex problems encountered in
daily life.

Life-Long Learning:
Learning outcomes (c) and (d) are designed to train students and provide them with the
foundations for independent life-long learning. Through demonstrating the link between
computational thinking and real-world problems, the subject aims to motivate students
to pursue continuous learning by making relevant the subject matter to daily life.
Through demonstrating how the foundations of the computational concepts extend to
all programming languages, the subject also motivates and prepares students to learn
new computer programming languages and concepts for their needs in future. In
addition, to broaden students’ knowledge and exposure to the field, pre-lecture readings
from popular computing magazines and journals, such as Communications of the ACM,
IEEE Computer, IEEE Spectrum, etc will be assigned.

Subject Synopsis/
Indicative Syllabus

1. Overview of computational thinking and problem-solving. Application of
sequential logic to computational decomposition of problems.

2. Abstractions of real-life problems as basic programming concepts. Conditions,
selection controls and looping, arrays and functions. Representations of real-life
entities as Abstractions and Data.

3. Problem-solving procedures and tools. Simple algorithms, problem decomposition,

solution design. Implementation, testing and debugging.

4. Application of computational techniques to various domains, including knowledge

management, education, entertainment, digital edutainment, manufacturing, geo-
informatics, bio-informatics, etc.

Teaching/Learning
Methodology

The course material will be delivered mainly in a hands-on, example-based format. A
combination of lectures and workshops will be used to provide students with the
requisite knowledge and reinforcing absorption and retention of concepts through
immediate practice and use.

Assessment
Methods in
Alignment with
Intended Learning
Outcomes

Specific assessment
methods/tasks

%
weighting

Intended subject learning outcomes to be
assessed

a b c d

1. Assignments 50%

2. Tests/quizzes 50%

Total 100%

Jul 2015

The assessment for this subject will include tests/quizzes and assignments. Both
components are designed to evaluate students’ grasp of all the learning outcomes,
including their grasp of basic computational thinking concepts and problem-solving.

To reinforce students’ learning and retention of the subject content, the course will
include around 6-8 short quizzes over the semester. Grade guarantees will be attached
to certain quizzes to allow all students a chance to get a good grade in the subject, even
those who do not have prior computing or programming experience, or who start off the
subject slowly.

Some assignments will be group assignments to allow students to exercise their
problem-solving skills in a more in-depth and creative manner.

Student Study
Effort Expected

Class contact:

 Lectures, Workshops and Labs 26 Hrs.

 Tutorials 13 Hrs.

Other student study effort:

 Self study 31 Hrs.

 Assignments, exercises and projects 35 Hrs.

Total student study effort 105 Hrs.
Reading List and
Reference

1. R. Kowalski, Computational Logic and Human Thinking: How to be Artificially

Intelligent Cambridge University Press; first edition (August 22, 2011).
2. M. Badger, Scratch 1.4: A Beginner’s Guide. Packt Publishing (July 17, 2009).
3. T. Gaddis, Starting Out with Alice: A Visual Introduction to Programming.

Addison-Wesley, 2nd Edition(2010)
4. J. Zelle, Python Programming: An Introduction to Computer Science, Franklin,

Beedle & Associates, Second edition (May 18, 2010)
5. S. Welch, From Idea to App: Creating iOS UI, animations, and gestures (Voices

That Matter), New Riders Press (2011)
6. Appropriate articles from Communications of the ACM, IEEE Computer and IEEE

Spectrum. (Approximately 1 article per 1-2 lectures).

Remark: This subject fulfils CAR (STE) requirement.

