Subject Description Form

Subject Code	COMP 6702						
Subject Title	Advanced Topics in Computation Theory						
Credit Value	3						
Level	6						
Pre-requisite /	Nil.						
Co-requisite/							
Exclusion							
Objectives	• To provide students with in-depth knowledge on the key concepts in computation						
	theory.						
	• To introduce and practice advanced algorithmic techniques necessary for solving						
	sophisticated computer science problems.						
Intended Learning	Upon completion of the subject, students will be able to:						
Outcomes	(a) antically avaluate the literature of computation theory						
	(a) childrany evaluate the interature of computation theory; (b) demonstrate a comprehensive understanding of computation theory;						
	(c) analyze problems in one's research area in the perspective of computation theory						
Subject Synonsis/	1. The computation model						
Indicative Syllabus	Turing machine concepts: efficiency: the halting problem: undecidability.						
Indicative Synabus							
	2. An overview of complexity classes						
	3 NP-completeness						
	the NP class; reductions; NP-completeness; other classes (coNP, EXP, NEXP)						
	······································						
	4. Space complexity						
	the PSPACE and NL classes.						
	5 Randomized computation						
	probabilistic Turing machines; the classes RP, coRP, ZPP, BPP.						
	6 Complexity of counting						
	the class #P; #P completeness.						
	7. Interactive proof						
	interactive proof systems; the class IP; probabilistically checkable proof.						
Teaching/Learning							
Methodology	Lectures provide students the main concepts of the topic, together with comprehensive						
	examples for easy understanding.						
	Tutorials offer an opportunity to students for practicing their analysis and problem						
	solving skills.						
	Written assignments will be utilized to help students develop analysis and problem						
	solving skills for computer science problems.						

Assessment										
Methods in	Specific assessment	%	Intend	tended subject learning outcomes to						
Alignment with	methods/tasks	weighting	weighting be assessed (Pl				ease tick as appropriate)			
Intended Learning			а	b	c					
Outcomes	1. Assignments	60%	~	~	\checkmark					
	2. Examination	40%		~	✓					
	Total	100%								
	 Explanation of the appropriateness of the assessment methods in assessing the intended learning outcomes: Assignments help students understand computation theory concepts, apply them to solve problems, and conduct scholarly research in their problem domain (items a, b, c). The exam is used to assess the students in terms of problem solving skills and writing skills (items b, c). 									
Student Study	Class contact:									
Enort Expected	 Lecture/Tutorial 					39 Hrs.				
	Other student study effort	udent study effort:								
	 Self-study 					83 Hrs.				
	Total student study effort					122 Hrs.				
Reading List and References	 C.H. Papadimitriou, Computational Complexity, First Edition, Addison-Wesley, 1994. O. Goldreich, Computational Complexity: A Conceptual Perspective, First Edition, Cambridge University Press, 2008. S. Arora, B. Barak, Computational Complexity: A Modern Approach, First Edition, Cambridge University Press, 2009. M. Sipser, Introduction to the Theory of Computation, 3rd edition, Cengage Learning, 2012. 									