Subject Description Form | Subject Code | CSE40418 | | | | |---------------------|---|--|--|--| | Subject Title | Advanced Structural Analysis | | | | | Credit Value | 3 | | | | | Level | 4 | | | | | Pre-requisites / | Pre-requisites: CSE301 Structural Analysis I or CSE30301 Structural | | | | | Exclusion | Analysis | | | | | | Exclusion: CSE418 Structural Analysis II | | | | | Objectives | (1) To give students a workable understanding and appreciation of the | | | | | | principles and analysis methods in relation to structural dynamics, | | | | | | structural stability, and plastic theory; | | | | | | (2) To give students an opportunity to enhance their capacities in | | | | | | thinking critically and logically and solving problems | | | | | | independently. | | | | | Intended Learning | Upon completion of the subject, students will be able to: | | | | | Outcomes | | | | | | | a. apply the fundamentals of applied science, mathematics, and | | | | | | statistical methods to formulate effective solutions to solve | | | | | | problems in structural engineering; | | | | | | b. be familiar with the important issues and philosophies associated | | | | | | with structural dynamics, structural stability and plastic theory; | | | | | | c. be conversant in the terminology of the above areas of advanced | | | | | | structural analysis, and develop a workable understanding of these | | | | | | issues related to structural engineering systems; | | | | | | d. design and conduct experimental studies to validate important | | | | | | theoretical concepts in the above areas; | | | | | | e. explain logically and lucidly structural engineering problems | | | | | | through idealisation, analysis and calculation; | | | | | | f. work with others in a structural design team, identify the nature of | | | | | | various structural problems and take responsibility for a shared | | | | | | activity; | | | | | | g. embrace more advanced structural analysis techniques and further | | | | | | their studies or seek assistance or guidance to engage in life-long | | | | | | learning as a civil engineer. | | | | | Subject Synopsis/ | 1. <u>Structural Dynamics</u> (7 weeks) | | | | | Indicative Syllabus | Equation of motion. Natural frequency and period. Damping. | | | | | | Dynamic loading. Resonance. Dynamics of single-degree-of- | | | | | | freedom structures. Dynamics of multi-degree-of-freedom | | | | | | structures. Approximate methods. | | | | | | 2. Plastic Theory (3 weeks) | | | | | | Elastic and plastic properties. Ductility. Plastic hinge. Plastic | | | | | | moment. Theorems of plastic analysis. Equilibrium method. Work | | | | | | method. Plastic collapse of fixed-ended and continuous beams. | | | | | | Plastic collapse of portal frames. Yield line theory. | | | | | | 3. <u>Structural Stability</u> (3 weeks) | | | | | | | Methods of stability analysis. Types of buckling. Stiffness | | | | | | |-------------------|----|---|--|--|--|--|--| | | | equations of beam-columns. Stability functions. Linear and | | | | | | | | | geometric stiffness matrices. Instability of frames. Ultimate load | | | | | | | | | analysis of structures. Elastic critical load. Second-order effect. | | | | | | | | 4. | Laboratory Work | | | | | | | | | Harmonically excited vibration of a shear building model. Plastic | | | | | | | | | collapse of a steel beam. | | | | | | | Teaching/Learning | 1. | Engaged learning is conducted during lectures; | | | | | | | Methodology | 2. | Problem-based learning is conducted during tutorials; | | | | | | | | 3. | Discovery-based learning is conducted during assignment; | | | | | | | | 4. | Cooperative learning is conducted during self-reading; | | | | | | | | 5. | Collaborative learning is conducted during laboratories. | | | | | | | Assessment | | | | | | | | ## Methods in Alignment with Intended Learning Outcomes | Specific assessment methods/tasks | %
weighting | Intended subject learning outcomes to be assessed (Please tick as appropriate) | | | | | | | |-----------------------------------|----------------|--|---|---|---|---|---|---| | | | a | b | С | d | e | f | g | | 1. Assignment | 10 | | | | | | | | | 2. Mid-term test | 12 | | | | | | | | | 3. Laboratory | 8 | | | | | | | | | 4. Final examination | 70 | √ | V | V | | 1 | | | | Total | 100 % | | | | | | | | Students must pass the final examination and achieve a passing overall score/ grade to pass the subject. Explanation of the appropriateness of the assessment methods in assessing the intended learning outcomes: - 1. <u>Assignment</u> is to assess the student's capability of applying the knowledge and methods learned to formulate effective solutions to solve problems in structural engineering; - 2. <u>Mid-term test</u> is to assess the student's capability of developing a workable understanding of the philosophies behind structural dynamics theory; - 3. <u>Laboratories and Reporting in Group</u> is to assess the student's capability of communication, presentation, experimental design and verification, working and negotiation with peers in group, and seeking assistance and guidance to engage in life-long learning as a civil engineer; - 4. <u>Final examination</u> is to assess the student's capability of critically analyzing and interpreting a wide range of problems in relation to structural dynamics, structural stability, and plastic theory. | Student Study | Class contact: | Average hours per week | | | |-----------------------------|---|--|--|--| | Effort Expected | Lectures / Tutorials / Laboratory | 3 Hrs. | | | | | Other student study effort: | | | | | | Assignments / Laboratory Reports / Self-Reading | 6 Hrs. | | | | | Total student study effort | 9 Hrs. | | | | Reading List and References | Paz, M. and Kim Y.H. (2018), Str Computation, 6th Edition, Springer. Paultre, P. (2010), Dynamics of Struc Chen, WF. and Lui, E.M. (1987), Implementation, PTR Prentice Hall. Simitses, G.J. and Hodges, D.H. (20 Stability, Butterworth-Heinemann. Ziegler H. (2013), Principles of Springer-Basel AG. Chen, WF. and Sohal, I.(2013), Pl Analysis of Steel Frames, Springer-V Yu, M.H., Ma, G.W. and Li, J.C. (20 Shakedown and Dynamic Plastic Ar Verlag Berlin Heidelberg. | tures, John Wiley & Sons. Structural Stability: Theory and 06), Fundamentals of Structural tructural Stability, 2 nd Edition, astic Design and Second-Order terlag. 009), Structural Plasticity: Limit, | | |