Subject Description Form

Subject Code	CSE40418			
Subject Title	Advanced Structural Analysis			
Credit Value	3			
Level	4			
Pre-requisites /	Pre-requisites: CSE301 Structural Analysis I or CSE30301 Structural			
Exclusion	Analysis			
	Exclusion: CSE418 Structural Analysis II			
Objectives	(1) To give students a workable understanding and appreciation of the			
	principles and analysis methods in relation to structural dynamics,			
	structural stability, and plastic theory;			
	(2) To give students an opportunity to enhance their capacities in			
	thinking critically and logically and solving problems			
	independently.			
Intended Learning	Upon completion of the subject, students will be able to:			
Outcomes				
	a. apply the fundamentals of applied science, mathematics, and			
	statistical methods to formulate effective solutions to solve			
	problems in structural engineering;			
	b. be familiar with the important issues and philosophies associated			
	with structural dynamics, structural stability and plastic theory;			
	c. be conversant in the terminology of the above areas of advanced			
	structural analysis, and develop a workable understanding of these			
	issues related to structural engineering systems;			
	d. design and conduct experimental studies to validate important			
	theoretical concepts in the above areas;			
	e. explain logically and lucidly structural engineering problems			
	through idealisation, analysis and calculation;			
	f. work with others in a structural design team, identify the nature of			
	various structural problems and take responsibility for a shared			
	activity;			
	g. embrace more advanced structural analysis techniques and further			
	their studies or seek assistance or guidance to engage in life-long			
	learning as a civil engineer.			
Subject Synopsis/	1. <u>Structural Dynamics</u> (7 weeks)			
Indicative Syllabus	Equation of motion. Natural frequency and period. Damping.			
	Dynamic loading. Resonance. Dynamics of single-degree-of-			
	freedom structures. Dynamics of multi-degree-of-freedom			
	structures. Approximate methods.			
	2. Plastic Theory (3 weeks)			
	Elastic and plastic properties. Ductility. Plastic hinge. Plastic			
	moment. Theorems of plastic analysis. Equilibrium method. Work			
	method. Plastic collapse of fixed-ended and continuous beams.			
	Plastic collapse of portal frames. Yield line theory.			
	3. <u>Structural Stability</u> (3 weeks)			

		Methods of stability analysis. Types of buckling. Stiffness					
		equations of beam-columns. Stability functions. Linear and					
		geometric stiffness matrices. Instability of frames. Ultimate load					
		analysis of structures. Elastic critical load. Second-order effect.					
	4.	Laboratory Work					
		Harmonically excited vibration of a shear building model. Plastic					
		collapse of a steel beam.					
Teaching/Learning	1.	Engaged learning is conducted during lectures;					
Methodology	2.	Problem-based learning is conducted during tutorials;					
	3.	Discovery-based learning is conducted during assignment;					
	4.	Cooperative learning is conducted during self-reading;					
	5.	Collaborative learning is conducted during laboratories.					
Assessment							

Methods in Alignment with Intended Learning Outcomes

Specific assessment methods/tasks	% weighting	Intended subject learning outcomes to be assessed (Please tick as appropriate)						
		a	b	С	d	e	f	g
1. Assignment	10							
2. Mid-term test	12							
3. Laboratory	8							
4. Final examination	70	√	V	V		1		
Total	100 %							

Students must pass the final examination and achieve a passing overall score/ grade to pass the subject.

Explanation of the appropriateness of the assessment methods in assessing the intended learning outcomes:

- 1. <u>Assignment</u> is to assess the student's capability of applying the knowledge and methods learned to formulate effective solutions to solve problems in structural engineering;
- 2. <u>Mid-term test</u> is to assess the student's capability of developing a workable understanding of the philosophies behind structural dynamics theory;
- 3. <u>Laboratories and Reporting in Group</u> is to assess the student's capability of communication, presentation, experimental design and verification, working and negotiation with peers in group, and seeking assistance and guidance to engage in life-long learning as a civil engineer;
- 4. <u>Final examination</u> is to assess the student's capability of critically analyzing and interpreting a wide range of problems in relation to structural dynamics, structural stability, and plastic theory.

Student Study	Class contact:	Average hours per week		
Effort Expected	Lectures / Tutorials / Laboratory	3 Hrs.		
	Other student study effort:			
	Assignments / Laboratory Reports / Self-Reading	6 Hrs.		
	Total student study effort	9 Hrs.		
Reading List and References	 Paz, M. and Kim Y.H. (2018), Str Computation, 6th Edition, Springer. Paultre, P. (2010), Dynamics of Struc Chen, WF. and Lui, E.M. (1987), Implementation, PTR Prentice Hall. Simitses, G.J. and Hodges, D.H. (20 Stability, Butterworth-Heinemann. Ziegler H. (2013), Principles of Springer-Basel AG. Chen, WF. and Sohal, I.(2013), Pl Analysis of Steel Frames, Springer-V Yu, M.H., Ma, G.W. and Li, J.C. (20 Shakedown and Dynamic Plastic Ar Verlag Berlin Heidelberg. 	tures, John Wiley & Sons. Structural Stability: Theory and 06), Fundamentals of Structural tructural Stability, 2 nd Edition, astic Design and Second-Order terlag. 009), Structural Plasticity: Limit,		