Air Pollution Laboratory

ZN1109, Block Z,
Department of Civil Environmental and Engineering,
The Hong Kong Polytechnic University
Introduction

Air laboratory is a well-established laboratory in providing air pollution study at institutional level and serving to general public in Hong Kong since 1982. Our laboratory has equipped with many cutting-edge air sampling equipment and analyzers for supporting innovative research projects and general laboratory-teaching experiment.

The Air Pollution Laboratory performs experiment in 3 main areas, namely criteria air pollutant measurements, volatile organic compounds and organic aerosol measurements and indoor air quality (IAQ) study.
High volume air samplers are used for the collection of airborne particulate matter in ambient air. They are available for the collection of Total Suspended particulates (TSP), particulate matter with an aerodynamic diameter of less than 10µm (PM10), or less than 2.5µm (PM2.5), and semi-volatile organic compounds and pesticides (PUF).

Cape D’Aguilar is a strategic air monitoring station in South China Sea to obtain the baseline levels of air pollutants in this region. It helps to monitor the long range transboundary air pollution due to cold-fronts in winters or due to the storm surge in typhoons and greenhouse gases emission due to tidal movements.

Cape D’Aguilar (Hok Tsui) Air Monitoring Station

Teledyne API Ozone / Carbon Monoxide / Carbon Dioxide / Sulphur Dioxide / Nitrogen Oxides / Methane and Non-methane Analyzers provide a comprehensive criteria pollutants monitoring in the air which are considered hazardous to human health.
The Aerodyne aerosol mass spectrometer (AMS) is the only currently available instrument capable of providing quantitative size and chemical mass loading information in real-time for non-refractory sub-micron aerosol particles. The AMS couples size-resolved particle sampling and mass spectrometric techniques into a single real-time measurement system.

The Aerodyne Thermo-desorption Aerosol Gas Chromatography (TAG) automates online sampling and analysis of condensed phase (e.g. aerosol) organic compounds and eliminates the laborious sample collection, transportation, storage, and preparation process associated with filter based measurement.

Carbonaceous aerosols such as organic carbon (OC) and elemental carbon (EC) are detected by a 2001A carbon analyzer developed by Desert Research Institute. The OC and EC by total optical reflectance (TOR) are insensitive to the change in temperature protocol, and therefore the long-term consistency of the IMPROVE database is conserved.
Main Equipment and Facilities

High Performance Liquid Chromatography

High-performance liquid chromatography is a technique in analytical chemistry used to separate, identify, and quantify each component in a mixture.

The HPLC in Air Pollution Laboratory is mainly for chemical characterization of trace-level of carbonyl compounds in air samples.

Filter Handling Room

A temperature and pressure controlled clean room meets Class 5 ISO standard, which provides a stable environment for filter handling process for aerosol study.

The gravitational analysis is done by a 6-digit Microbalance on anti-vibration platform. It could accurately measure the mass of aerosol collected and deposited on the filter substrates.

Environmental Chamber

The Environmental Chamber is a micro-environment which control temperature and humidity during measurements of pollutant emissions in indoor air and stimulation the evolution of air pollutants in ambient air.

By equipping the Teflon Air Chamber with UV sources, the Environmental Chamber can simulate the photochemical smog formation via chemical reactions of precursors in ambient air.
Main Equipment and Facilities

HP 6980 Gas Chromatography and 5977A Mass Selective Detector / Flame Ionization Detector / Electron Capture Detector equipped with Entech 7200 Preconcentrator

GC/MSD/FID/ECD are used to analyze VOCs in canister samples. This technique reaches world-class level. Inter-laboratory comparison is regularly conducted between Air Pollution Laboratory and authoritative institutions in the world.

Trace-level volatile organic compounds (VOCs) in air are analyzed by HP 6980 Gas Chromatography and Mass Selective Detection / Flame Ionization Detection / Electron Capture Detection by directly injecting transformed condensate compounds, which are preconcentrated by Entech 7200 Preconcentrator, from gas phase canister samples collected in ambient air.

With connecting to the Environmental Chamber, the VOCs compounds can be measured directly for emission measurements of indoor air studies or stimulation of photochemical smog formation studies.
Academic Staff

Prof. Guo, H. (郭海)
Professor and Air Pollution Laboratory in Charge
Email: ceguohai@polyu.edu.hk
Homepage: https://www.polyu.edu.hk/cee/~ceguohai/

Prof. Lee, S.C. (李順誠)
Professor and Associate Head (Partnership)
Email: ceslee@polyu.edu.hk
Homepage: https://www.polyu.edu.hk/cee/~ceslee

Prof. Wang, T. (王韜)
Chair Professor of Atmospheric Environment
Email: cetwang@polyu.edu.hk
Homepage: https://www.polyu.edu.hk/cee/~cetwang/
Research Spotlight

Ground-level ozone increases across China and relationships with ozone precursors

Nationwide O₃ increases in China since 2014

- "u(2014) = 54.1 ± 0.2 ppbv
- "u(2015) = 52.2 ± 0.3 ppbv
- "u(2016) = 53.7 ± 0.3 ppbv
- "u(2017) = 55.6 ± 0.6 ppbv
- "u(2018) = 59.2 ± 0.4 ppbv"

Source contributions to VOCs in Hong Kong resolved by PMF

 Profiles of VOC sources in Wuhan, central China

O₃ increases in PRD in last decade

- "0.49 ± 0.66 ppbv yr⁻¹
- "0.51 ± 0.65 ppbv yr⁻¹
- "1.27 ± 0.04 ppbv yr⁻¹
- "0.84 ± 0.05 ppbv yr⁻¹
- "0.50 ± 0.06 ppbv yr⁻¹
- "0.20 ± 0.04 ppbv yr⁻¹
- "0.67 ± 0.07 ppbv yr⁻¹
- "0.23 ± 0.05 ppbv yr⁻¹"

VOC-limited regime in urban areas

Relative incremental reactivity represents O₃-precursor relationships
Research Spotlight

In situ measurements of molecular organic aerosol markers and dynamic sources of atmospheric organic aerosols

Ultrafine and acidic particles in the atmosphere

Particle number distributions in new particle formation processes

Atomic force microscopic images of acidic ultrafine particles in the atmosphere
Tests of particle removal efficiency of filtration materials

We know more than ever what breathe

PM1-OM

8.1% Incense burning
7.0% Candle burning
11.8% Cooking 1
33.4% Cigarette smoking
16.3% Cooking 2
23.3% Outdoor influence
5.4% Cigarette smoking

Non-activity PM1-OM
6.7% Cooking 2
7.6% Incense burning
2.8% Candle burning
2.2% Cooking 1
3% Outdoor influence

Sources of and source contributions to indoor organic matters

Morphology of PFTE membrane

Particle filtration efficiency of N95 masks
Lab-in-charge and Technical Staff

Lab-in-Charge

Prof. Guo, H. (郭海)
Professor and Air Pollution Laboratory in Charge
Email: ceguohai@polyu.edu.hk
Homepage: https://www.polyu.edu.hk/cee/~ceguohai/

Technical Staff

Mr CHAN, C.S., Jazz
Email: jazz.chan@polyu.edu.hk
Tel: (852) 2766 6023

Address
Room ZN1109, The Hong Kong Polytechnic University

Opening Hours
Monday 8:45am – 12:30pm, 1:30pm – 5:45pm
Tuesday to Friday 8:45am – 12:30pm, 1:30pm – 5:30pm
(excluding Saturday, Sunday & public holidays)