

# **Resting-state Functional Connectivity Between the Cerebellum and Cortical Networks: Individual Differences in Verbal Working Memory**

Fangfei Li<sup>1,2</sup>, Manson Cheuk-Man Fong<sup>1,2</sup>, William ShiyuanWang<sup>1,2</sup>

<sup>1</sup>Research Centre for Language, Cognition, and Neuroscience, Department of Chinese and Bilingual studies, The Hong Kong Polytechnic University <sup>2</sup>Research Institute for Smart Ageing, The Hong Kong Polytechnic University

#### BACKGROUND

- The cerebellum is not only involved in motor control, but also in higher-level cognition.
- Verbal working memory is supported by the

#### **METHODS**

9 younger adults (mean age=24.33) and 12 older adults (mean age=65.58) were recruited after passing HK-MoCA.

reciprocal cortical-cerebellar circuits (Chen & • Desmond, 2005).

The correlation between resting-state cortical-cerebellar functional connectivity and individual differences in VWM capacity for both younger • adults and older adults needs further investigation.

### RESULTS

- Significantly higher reading span task scores in younger adults than older adults (see Fig.1).
- Decreased intrinsic connectivity between the cerebellum and the visual network, the sensorimotor network, the auditory network, and the default mode network in older adults (see Fig.2 for visual network).
- The individual differences in VWM capacity was correlated with the connectivity strength between the cerebellum and superior parietal

- A reading span task was used to measure the VWM capacity.
- Resting-state scans were acquired with eyes open.
- Cerebellar Crus I, Crus II, lobules VI and VIIb were chosen as Regions of Interest.



### lobule, middle frontal gyrus, and superior frontal gyrus (see Fig.3).

Fig.1. Behavioral results



## DISCUSSION

The cerebellum is involved in processing and integrating multi-modal (auditory, visual and somatosensory) sensory information (Gentile et al., 2011). This sensory integration is especially important for maintaining posture and alertness during resting-state (Sang et al., 2012; Magalhães et al., 2021). The reduced intrinsic connectivity in older adults might indicate their altered abilities to integrate multisensory information. Our results are consistent with previous task-based fMRI studies that suggest VWM is supported by the functional connectivity between frontal-superior cerebellum and parietal-inferior cerebellum (Chen & Desmond, 2005).

#### **SELECTED REFERENCES**

• Chen, S. A., & Desmond, J. E. (2005). Temporal dynamics of cerebro-cerebellar network recruitment during a cognitive task. *Neuropsychologia*, 43(9), 1227-1237.

• Sang, L., Qin, W., Liu, Y., Han, W., Zhang, Y., Jiang, T., & Yu, C. (2012). Resting-state functional connectivity of the vermal and hemispheric subregions of the cerebellum with both the cerebral cortical networks and subcortical structures. Neuroimage, 61(4), 1213-1225.

#### ACKNOWLEDGEMENT

This work is supported by HKRGC-GRF grant 15606119 awarded to Prof. William Shiyuan Wang.